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Abstract— Obstacle detection is a fundamental task for
Advanced Driver Assistance Systems (ADAS) and Self-driving
cars. Several commercial systems like Adaptive Cruise Controls
and Collision Warning Systems depend on them to notify the
driver about a risky situation. Several approaches have been
presented in the literature in the last years. However, most of
them are limited to specific scenarios and restricted conditions.
In this paper we propose a robust sensor fusion-based method
capable of detecting obstacles in a wide variety of scenarios us-
ing a minimum number of parameters. Our approach is based
on the spatial-relationship on perspective images provided by a
single camera and a 3D LIDAR. Experimental tests have been
carried out in different conditions using the standard ROAD-
KITTI benchmark, obtaining positive results.

I. INTRODUCTION

Over the last years, several intelligent vehicle applications
that depend on obstacle detection have been presented in
the literature. Nevertheless, those systems are still often
limited to specific conditions like flat surface or geometric
appearance. In some cases, they must be calibrated to detect
obstacles with a minimum height or size. The most common
application that use obstacle detection is tracking of objects,
which is presented often as a specialized system to track or
detect specific type of objects like cars, pedestrians, posts and
trees or even curbstones. In most cases, statistical or machine
learning techniques associated to temporal information are
used in order to treat possible errors, sensor noise and
limitations from detection methods.

In this work we present a road terrain estimation method
that uses an obstacle detection technique that avoids the
majority of common assumptions presented in the literature.
Our obstacle detection method is an evolution of a work
already presented on literature by [1], [2]. Our algorithm
takes advantage from sensor fusion like accuracy of each
point from 3D-lidar and creates a local spatial-relationship
between all points using the 3D projection on perspective
images.

The results obtained show robust classifications in several
different scenarios and conditions. Our method is accurate
enough to detect many types of unstructured objects like
vegetations, trees and medium grass. Also, our system does
not need to make assumptions about size, height or shape
of obstacles allowing detecting cars, pedestrians, posts and

1Patrick Y. Shinzato and Denis F. Wolf are with Mobile Robotic
Laboratory, Institute of Mathematics and Computer Science, University
of Sao Paulo - ICMC-USP, Sao Carlos, SP Brazil [shinzato,
denis]@icmc.usp.br

2Christoph Stiller is with the Department of Measurement and Con-
trol Systems, Karlsruhe Institute of Technology, Karlsruhe, Germany
stiller@kit.edu

most importantly, curbstones. Therefore, our road terrain
estimation system is capable of detecting the road area
without geometric parameters definitions.

II. RELATED WORK

Road terrain estimation is a well know research topic
for vision approaches, see [3] for a review. Most often,
algorithms try to find edges as road delimiters (curbstones,
lane-markings, edges between asphalt and grass) in order to
detect the drivable space ahead of vehicle [4], [5]. These
approaches are often limited to well-maintained roads as
they make use of some image processing techniques that
need threshold parameters. Some works based on machine
learning learn texture and color in a previous training step,
where a human manually annotates the road area [6] [7].
These vision approaches can easily fail if they are evaluated
in scenarios that differ from those on the training data or
if assumptions like an always navigable bottom part of the
image are not true.

For approaches that use 3D-lidars, a planar road assump-
tion has been imposed in [8] and a local convexity feature
has been introduced in [9] to distinguish road surface from
objects in lidar data. Also, the road estimation can be based
on intensity measurement processing in order to detect lane-
markings [10], detection of curbs, and berms [11] as road
delimiting. Or even estimation of roughness for segmentation
and then detection of road delimiters [12]. These approaches
are based on data structures such as grid or voxels, they
are limited due the need of parameters definitions like
intensity threshold value, cell size, and minimum height
difference. Also, grid approaches do not work properly for
distant objects, since few points hit the same cell and loose
accuracy depending on the cell size. In order to avoid these
problems, many approaches accumulate few scans (temporal
information) before performing the classification.

Most presented approaches have many assumptions or
conditions to work well. The most important common char-
acteristic in these works is the previous set up of parameters
that helps achieve good results but decrease the robustness
from their system. In this work, we developed a road esti-
mation technique that relies on only two constant parameters
manually selected, without temporal information and without
any previous information like maps.

III. ROAD TERRAIN ESTIMATION

Our method is based on fusion of a sparse and unstructured
3D point clouds and images. It requires a previous calibration
step to estimate intrinsic and extrinsic parameters that make
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Fig. 1. Results from our obstacle detection method in 2D image world. Red represents edges between two points classified as obstacle, green represents
edges between non-obstacles points, and blue represents edges between non-obstacle points and obstacle points.

possible to transform a 3D point from real world in the 2D
image coordinate. The main idea of our method is to use
spatial-relationship in image perspective view combined to
real 3D metric values to determine if a point corresponds to
an obstacle or not. After that, polar histograms are used to
generate a confidence map that represents the road area in
the image.

The entire system follows a sequence of five processing
steps. The first one is the fusion step, where each 3D point
is projected in the image. The second step generates a graph
that creates a local spatial-relationship between all points.
The third step is a classification of the points as obstacle
or non-obstacle. The fourth step generates several polar
histograms that estimate the free space area. Finally, the fifth
step creates a confidence map combining all free space areas
determined by the polar histograms created in previous step.

A. Sensor Fusion

As presented in [13], we used intrinsic and extrinsic
parameters to transform a 3D point pl = (xl ,yl ,zl ,1)T rel-
ative to 3D LIDAR coordinate frame to a 3D point pc =
(xc,yc,zc,1)T in camera coordinate frame using the Equa-
tion 1:

pc = R0
rectT

cam
velo pl , (1)

where R0
rect is the rotation matrix from raw-image-camera to

rectified-image-camera and Tcam
velo is the transformation matrix

defined as:

Tcam
velo =

(
Rcam

velo tcam
velo

0 1

)
, (2)

where Rcam
velo and tcam

velo are, respectively, rotation matrix and
translation vector that transforms a point from 3D LIDAR
coordinate frame to the camera coordinate frame. After
applying Equation 1 to all points from 3D LIDAR sensor, we
can remove any point pc such that not satisfy the Equation 3:

pc[zc]> 0 (3)

In order to obtain the screen coordinates (u,v), we apply
the projection matrix P(i)

rect from the ith image-plane in all 3D

points pc, as shows the Equation 4:u
v
1

=

x/w
y/w
w/w

= P(i)
rect


xc
yc
zc
1

 , (4)

After applying Equation 4 to all remaining points, we can
remove points such that coordinates (u,v) are not inside the
image. The image can be defined as I(m,n), where m is
number of lines and n is number of columns of image. The
remaining points compose a set of a new type of point p =
(xc,yc,zc,u,v)T .

B. Graph Generation

In this step, it is created an undirected graph G = {P,E},
where P is the set of all nodes that represents remaining
points p = (xc,yc,zc,u,v)T (from previous step) and E is
the set of all valid edges. This step generates edges that
connects all nearest neighbours for each node from G using
the coordinates (u,v) in the image plane and the planar
Delaunay Triangulation [14].

The Delaunay Triangulation properties guarantee that
there is not any other point between points from Delaunay’s
edges. A post-processing step eliminates all edges (p,q) that
not satisfies Eq. 5:

||p−q||< ε, (5)

where ||p−q|| is the vector length in 3D values and ε is the
maximum length for any edge. All edges created in this step
represent the local spatial-relationship between two points
and are be used in the obstacle classification step.

C. Obstacle Classification

The obstacle classification is a evolution of [1] subse-
quently used by [15] and others, most used in stereo vision
processing. Using the graph G from previous step, our
approach differentiates obstacle from non-obstacle nodes
using only a spatial condition represented by the Equation 6
for each pair of nodes connected by edge. This method
classifies points as obstacles without any height threshold
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value. The result image (Fig. 1) from this step is used to
generates the polar histograms in next step.

Given the graph G = {P,E}, for each node p ∈ P exists a
subset Q(p) ⊂ P of nodes that represents its neighborhood.
The node p is classified as obstacle if the function obst()
returns a positive value and non-obstacle if it returns zero.
The function obst() is defined in Equation 6:

obst(p) = ∑
n∈Q(p)

{
1 if −(p[yc]−n[yc])

||p−n|| > cos(θ)

0 otherwise
(6)

where (p[yc]− n[yc]) corresponds to the difference from
height values between these two points, θ is a constant,
||p−n|| is vector length from vector (p−n) and Q(p) can be
expressed as Q1(p)∪Q2(p) where Q1(p) = {p1 | (p, p1) ∈
E} and Q2(p) = {p2 | (p1, p2) ∈ E ∧ p1 ∈ Q1(p)}.

D. Multiples Free Space Detection

Since our obstacle classification is accurate enough to
detect curbs, it can be used to estimate the road terrain area
delimited by them. Our system creates several polar range
histograms in the image world with origin in bottom center
of image. The difference between all polar histograms is the
coordinate v from origin point. This allows our system to
estimate the road area without geometric parameters.

The creation of one polar histogram is obtained using the
coordinates (u,v) from all obstacle points to calculate the 2D
distance in pixels (image coordinates) from the origin point.
Each bin stores the closest obstacle point on a respective
angle. This histogram represents the free area in the image
(Fig. 2).

Fig. 2. Upper Image: Polar range histogram with origin in the center of
the image. Each green line represents one bin from histogram, that shows
the first obstacle point in the respectively direction. Bottom Image: shows
the area covered by one histogram.

E. Road Area Estimation

Our road estimation approach calculates the confidence
map R combining the area covered by all polar histogram
with Equation 7:

R(u,v) =
1
H

H

∑
i=1

img(i)(u,v), (7)

where (u,v) are coordinates in the image space, H is the
number of histograms and img(i) is an image generated from
histogram (i). In img(i), the area covered by the histogram
has the value 1.0, while the remaining pixels has the value
zero.

Finally, the Otsu’s threshold method [16] is used to remove
areas with low costs from our confidence map R. The result
of our road estimation method can be viewed in Fig. 3.

Fig. 3. Result of our road estimation method as confidence map to Fig. 2.
The combination of several histograms improves classification results in
road border area.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
In order to validate the approach described in the previous

sections, we used experimental data from the AnnieWAY
platform that is available online on KITTI Benchmark [13].
More specifically we used the ROAD-KITTI Dataset that
includes calibration parameters, ground truth images, and
scripts for evaluation. This benchmark is useful because
provides a comparison of systems with different algorithms
and sensors.

As in [17], we adopted the evaluation of road area estima-
tion results in metric 2D space. Therefore, we transform the
ground truth images and our classification data in BEV. This
avoids the perspective effect that has bias to results from
near range. The images in BEV representation covers -10m
to 10m in lateral direction and 6m to 46m in longitudinal
direction. Using a resolution of 0.05m/px, these images have
800×400 pixels.

TABLE I
RESULTS [%] OF ROAD AREA EVALUATION FOR θ = 77.

F-me AVP PRE REC FPR FNR
UM 83.64 71.95 76.19 92.70 12.16 7.30

UMM 89.55 85.27 86.87 92.41 14.48 7.59
UU 81.99 70.41 74.92 90.54 10.29 9.46

Our general evaluation aims to check the influence of the
θ threshold parameter from Equation 6. For this, our system
was evaluated for θ values varying from 30 to 89 degrees.
The charts in Fig. 4 show the F-measure (F-me), average
precision (AVP), precision (PRE) and recall (REC) of our
method for all training dataset. Each curve represents a set
(Urban Marked, Urban Multiple Marked, Urban Unmarked).
The X-axis corresponds to the θ variation and the Y-axis is
the evaluation varying from 0 to 100. Also, Fig. 5 shows the
false positive (FPR) and false negative rates (FNR). All these
charts show that the best θ for this dataset is between 75.0
degrees and 80.0 degrees. Based on this analysis, we selected
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Fig. 4. Charts (a),(b),(c),(d) show respectively F-measure, Average Precision, Precision and Recall of our method for all training dataset. Each curve
represents one set, Urban Marked (Red), Urban Multiple Marked (Green), Urban Unmarked) (Blue). The X-axis is the θ variation from 30 degrees to 90
degrees and the Y-axis is the evaluation values varying from 0 to 100.

the parameter θ = 77.0, which maximizes the classification
results. All metric evaluation proposed in [17] has been
adopted and is presented in Table I. Figures 6, 7 and 8 show,
respectively, raw image, ground truth and our estimation
results.

Since our system is free of geometric model assump-
tions, the results can be considered very satisfactory when
compared to others approaches in the literature. Despite
that all tree dataset are different, our method achieved an
homogeneous result of F-measure of more than 80% for all
datasets. This happens because our system achieved almost
100% classification success in regular conditions, but still
got a high FPR in some situations that we discuss below.

As we use detected obstacles to delimit and consequently
estimates the road, this approach achieves good results in
scenarios where other vehicles appears and where curbstones
are totally visible, as showed in Fig. 6. Even in scenarios
where other cars appears near to our vehicle (as in Fig. 7),
our system was able to detect the road with good accuracy.
The fact that we are using a 3D-lidar sensor also guarantees
that our system is robust to light condition variations and
shadow effects, as we can see on Fig. 8.

Despite the good results obtained, the general FPR shows
that our method is still too permissive when the road is not
delimited by curbstones, as showed in Fig. 9. However, it is
important to notice that even with short grass delimiting the
road, as in Fig. 9(a), our obstacle classification was able to
detect robustly the near grass as obstacle. We believe that
temporal or color information would be able to improve our

Fig. 5. Charts (a),(b) show respectively false positive rate and false
negative rate of our method for all training dataset. Each curve represents
one set, Urban Marked (Red), Urban Multiple Marked (Green), Urban
Unmarked) (Blue).
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Fig. 6. From left to right, raw image, ground truth, our result. Results
of our method in simple scenarios where curbstones are totally visible, we
achieve almost 100% of right classification.

Fig. 7. From left to right, raw image, ground truth, our result. Scenarios
with other vehicles near to our vehicle also was correctly classified.

Fig. 8. From left to right, raw image, ground truth, our result. 3D-lidar
sensor allow our system be robust to shadows.

system in cases like this. Another important fact about this
case is the grey areas in our confidence map (Fig. 9(d)).
These areas are result of the sum of costs from different
road areas generated by our polar histograms. These areas
can be very different when the obstacle detection fails due
noisy from the sensor, the existence of a small object or a
small holes on the road. The different origins from our polar
histograms help to deal with situations where an obstacle
detection fails and could increase the FNR.

Fig. 9. (a) Raw image (perspective view) from scenario without curbstones
on delimitations of road. (b) Bird eye view from raw image. (c) Ground truth
in bird eye view. (d) Our result in bird eye view.

Despite the good appearance of our result (Fig. 10(a)),
our system was not able to always detect the delimitation
between the road and the sidewalk. Our system selected
all area from origin of histograms until reaching the first
evident obstacle, like cars or walls. Also, we believe that even
temporal information will not help to detect these delimiters.
In order to avoid to use previously obtained information like
maps, we believe that only visual information like edges or
texture could improve the classification in these cases.

V. CONCLUSIONS AND FUTURE WORK

Several intelligent vehicle applications that depend on
obstacle detection have been already presented by research
and industrial community. Nevertheless, those systems are
still often limited to certain conditions and require sev-
eral assumptions. This paper proposes an obstacle detection
method that avoids those common assumptions and, based
on our obstacle detection we also propose a road estimation
method. We evaluated our approach using a standard bench-
mark dataset for road estimation. Our system was able to
successfully detect the road (paved free space) in multiple
scenarios without previous training, making assumptions
about road geometry, or threshold values for height and size
of obstacles. Also, our system does not have problems as
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Fig. 10. (a) Raw image (perspective view) from scenario with very small
curbstones between the road and the sidewalk, as parking entrance. (b) Bird
eye view from raw image. (c) Ground truth in bird eye view. (d) Our result
in bird eye view.

grid and voxel-based approaches like cell size parameter
definition. As future work, we intend to replace the fusion
by stereo processing and integrate visual information like
edges, colors or texture. We also plan to extend our method
to detect road-markers in order to approach the lane detection
problem.
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