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Abstract

3D object detection is an important yet demanding task
that heavily relies on difficult to obtain 3D annotations.
To reduce the required amount of supervision, we propose
3DIoUMatch, a novel method for semi-supervised 3D ob-
ject detection. We adopt VoteNet, a popular point cloud-
based object detector, as our backbone and leverage a
teacher-student mutual learning framework to propagate
information from the labeled to the unlabeled train set in
the form of pseudo-labels. However, due to the high task
complexity, we observe that the pseudo-labels suffer from
significant noise and are thus not directly usable. To that
end, we introduce a confidence-based filtering mechanism.
The key to our approach is a novel differentiable 3D IoU
estimation module. This module is used for filtering poorly
localized proposals as well as for IoU-guided bounding box
deduplication. At inference time, this module is further uti-
lized to improve localization through test-time optimization.
Our method consistently improves state-of-the-art methods
on both ScanNet and SUN-RGBD benchmarks by signifi-
cant margins. For example, when training using only 10%
labeled data on ScanNet, 3DIoUMatch achieves 7.7 abso-
lute improvement on mAP@0.25 and 8.5 absolute improve-
ment on mAP@0.5 upon the prior art.

1. Introduction
Object detection is a key task in 3D scene understand-

ing. It provides a concise representation of raw sensor
measurements in the form of semantically meaningful 3D
bounding boxes. This low-dimensional representation can
already serve numerous applications in AR/VR, as well as
in robot navigation and manipulation. As a result, in re-
cent years there has been a surge of interest in develop-
ing improved object detection pipelines and indeed current
state-of-the-art methods show impressive performance. Yet,
much of their success is attributed to the availability of large
datasets of 3D scenes that are carefully annotated. While

* indicates equal contributions.
Project page: http://THU17cyz.github.io/3DIoUMatch

rapid advances in sensor technology facilitate the collection
of 3D scenes at scale, annotating them remains the main
bottleneck. This calls for detection methods that can lever-
age both labeled and unlabeled data at train time.

In this work, we aim to address this requirement by
proposing a novel semi-supervised 3D object detection
method which we dub 3DIoUMatch. As our backbone
object detection network we adopt VoteNet [18], a popu-
lar point-based object detector. To provide supervision to
the unlabeled scenes, we leverage a teacher-student mutual
learning framework [29] and use the bounding box predic-
tions from the teacher network as pseudo-labels to super-
vise the student network on unlabeled data. However, un-
like most pseudo-label techniques that were designed for
classification, in the highly complex (joint regression and
classification) task of object detection, we observe that the
pseudo-labels suffer from significant noise, and using them
directly is suboptimal.

Inspired by FixMatch [26], the state-of-the-art semi-
supervised learning (SSL) method for 2D image classi-
fication that proposed confidence-based filtering to im-
prove pseudo-label quality, we adopt a pseudo-label filter-
ing mechanism for 3D object detection by setting thresh-
olds on predicted class probabilities and objectness scores,
so as to filter out teacher proposals with potentially erro-
neous semantic labels or ones not belong to foreground.
While effective, these two criteria alone are not sufficient
to capture localization quality, and the pseudo-labels may
still have large errors in the bounding box parameters. To
that end, we further propose to leverage estimated IoU (in-
tersection over union) as a localization quality measure for
pseudo-label filtering. IoU estimation was first proposed
in the context of 2D object detection as a localization con-
fidence in the pioneering work IoU-Net [12], where esti-
mated IoU was proven successful in replacement of class
confidence for test-time Non-Maximal Suppression (NMS).
To the best of our knowledge, leveraging IoU estimation for
pseudo-label filtering is a novel idea for SSL on both 2D
and 3D object detection. With our newly devised differen-
tiable 3D IoU estimation module, we are able to filter out
poorly localized pseudo-labels and leverage estimated IoU
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for both train-time and test-time NMS.
A key challenge when filtering based on IoU estima-

tion is how to properly set the threshold. Unlike object-
ness and class confidence for which high threshold values
(e.g. 0.9) work well, 3D IoU is more sensitive to small er-
rors. Setting the threshold too high would reduce the num-
ber of pseudo-labels to very few, from which little could
be learned. To balance between quality and coverage, we
propose a two-stage filtering process: first, using a rela-
tively low IoU threshold; then, an IoU-guided class-aware
Lower-Half Suppression (LHS) that removes only half of
the highly-overlapping boxes with low predicted IoU. Our
proposed LHS thus naturally sets a threshold that is both
dynamic and class-aware. Our experiments show that LHS
outperforms IoU-guided NMS, which suppresses all but the
top one during semi-supervised training. Beyond train-time
filtering, we also leverage our differentiable 3D IoU mod-
ule for test-time IoU-guided NMS and optimization-based
bounding box refinement, which is not possible with previ-
ous non-differentiable 3D IoU modules [32].

Our method consistently improves upon the previ-
ous state-of-the-art method, SESS [34], on both Scan-
Net and SUN-RGBD benchmarks by significant mar-
gins. When using only 10% labeled data on ScanNet,
3DIoUMatch outperforms SESS by 7.7 absolute improve-
ment on mAP@0.25 and by 8.5 absolute improvement on
mAP@0.5. When using 5% labeled data on SUN-RGBD,
3DIoUMatch outperforms SESS by 4.8 absolute improve-
ment on mAP@0.25 and by 8.0 absolute improvement on
mAP@0.5.

Our main contributions can be summarized as follows:
1. We propose a novel semi-supervised method for 3D

object detection in point clouds based on pseudo-label
propagation along with a carefully designed filtering
mechanism.

2. For the first time, we leverage predicted 3D IoU as a lo-
calization confidence score for pseudo-label filtering,
and further propose IoU-guided Lower-Half Suppres-
sion for robust pseudo-label deduplication.

3. We devise a 3D IoU module that enables our localiza-
tion filtering, IoU-guided bounding box suppression,
and IoU optimization for bounding box refinement.

4. We achieve markedly improved performance over
prior art on the two major indoor object detection
benchmarks, ScanNet and SUN-RGBD.

2. Related Works
Semi-Supervised Learning (SSL) Many of the recent
SSL methods [2, 31, 1] leverage consistency regularization,
first proposed in [23, 13], which enforces the model to pre-
dict consistently across label-preserving data augmentation
of different intensity. Borrowing the concept from Mean
Teacher [29], the model with frozen weight can be viewed

as the teacher model, otherwise student model. Some meth-
ods [2], following Mean Teacher, make the teacher model
as the EMA of the student model for further regularization.
Pseudo labeling [15] is another popular class of SSL method
which can also be treated as a kind of consistency regu-
larization, as one output of the unlabeled data is enforced
to be consistent with the other (the pseudo-labels) by be-
ing supervised with the other. To improve the quality of
pseudo-labels, FixMatch [26], a state-of-the-art SSL work
on image classification, has shown that the student network
can improve significantly by setting a classification confi-
dence threshold τcls and filtering out low-confidence pre-
dictions from the teacher. With the filtered pseudo-labels,
the student model only gets supervised on the unlabeled
data whose pseudo-labels are kept. Another key factor to
the success of these methods is strong data augmentation.
It has been shown crucial to many SSL works [23, 13, 31].
Recent works [1, 26] proposed to adopt even more powerful
augmentation such as RandAugment [3] and Cutout [5].

Semi-Supervised Object Detection Since the beginning
of the deep learning era, tremendous progress has been
made in 2D object detection, e.g region-based detectors [8,
7, 22] and single-stage detectors [16, 21, 30]. Similarly
in 3D object detection, a number of deep learning meth-
ods have been proposed for different 3D data modalities,
e.g. RGBD-based detectors [19, 17], point-based detec-
tors [33, 25, 14, 18], voxel-based detectors [35], point-
voxel-based detectors [24], etc.

Despite the great progress in both 2D and 3D object de-
tection, most works focused on a fully-supervised setting.
A few works [10, 6] have proposed to leverage unlabeled
data or weakly-annotated data for 2D object detection. Un-
der a standard SSL setting as we follow, CSD [11] proposed
a consistency regularization method to enforce the consis-
tency between predictions from an image and its flipped
version. STAC [27] adopts a two-stage scheme for training
Faster R-CNN [22]: in the first stage it pre-trains a detector
with labeled data only and then predicts the pseudo labels
for the unlabeled data; in the second stage, STAC leverages
asymmetric data augmentation and the pseudo-label filter-
ing mechanism to remove object proposals with low confi-
dence. Note that the pseudo-labels are only generated once
at the end of the first stage.

The only prior work on semi-supervised point-based
3D object detection, is SESS [34]. SESS is built upon
VoteNet [18] and adopts a two-stage training scheme. It
leverages a mutual learning framework composed of an
EMA teacher and a student, uses asymmetric data aug-
mentation, and enforces three kinds of consistency losses
between the teacher and student outputs. Although SESS
brings noticeable improvements upon a vanilla VoteNet
when using only a small portion of labeled data, we find
their consistency regularization suboptimal, as it is uni-
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Figure 1. 3DIoUMatch pipeline at semi-supervised training stage. We adopt as our backbone an extended version of VoteNet with
an additional 3D IoU estimation module. For SSL, we utilize a teacher-student mutual learning framework, composed of a learnable
student taking strongly augmented input data and an EMA teacher taking weakly augmented input samples. On labeled data, the student
network is supervisedly trained. On unlabeled data, the student network takes pseudo-labels from its EMA teacher. To improve the
quality of pseudo-label, we adopt a confidence-based filtering mechanism that filters out predictions that fail to pass all thresholds on class
probability, objectness, and 3D IoU. We further use IoU-guided Lower-Half Suppression to remove the duplicated predictions. Using the
filtered pseudo-labels, we selectively supervise the student predictions that are around the bounding boxes in the pseudo-labels.

formly enforced on all the student and teacher predictions.
In this work, we instead propose to apply confidence-based
filtering to improve the quality of pseudo-labels from the
teacher predictions and we are the first (in both 2D and 3D
object detection) to introduce IoU estimation for localiza-
tion filtering.

IoU Estimation IoU estimation was first proposed in a
2D object detection work IoU-Net [12], which proposed an
IoU head that runs in parallel to bounding box refinement
and is differentiable w.r.t. bounding box parameters. IoU-
Net adds an IoU estimation head to several off-the-shelf
2D detectors and uses IoU estimation instead of classifi-
cation confidence to guide NMS, which improves the per-
formance consistently over different backbones. Thanks to
its differentiability, IoU-Net can perform IoU optimization
on bounding box parameters for iterative refinement, which
further brings noticeable performance improvement.

For 3D object detection, STD [32] follows IoU-Net to
add a simple IoU estimation branch parallel with the box
estimation branch and to guide NMS with IoU estimation.
This IoU estimation module design, unfortunately, is not
suitable for IoU optimization as the features fed to the IoU
estimation branch are not differentiable w.r.t. the bounding
box size. This is because STD concatenates the canonical
coordinates w.r.t. box center with features of interior points
to create the initial features for each bounding box proposal,
which is unaware of the box size. Moreover, the bounding
box location is regressed along with IoU estimation so the
bounding box estimated and optimized is the one before re-
gression, namely the feature offset problem [36], which is
also a problem in IoU-Net. In contrast, our 3D IoU esti-

mation module is simple yet effective, can support the IoU
optimization while avoiding the feature offset problem.

3. Method
In this section, we describe our solution in detail. After

formulating the problem in 3.1, since our backbone detec-
tion module is based on VoteNet, we summarize it in 3.2.
We then explain our newly devised 3D IoU estimation mod-
ule in 3.3. These set the stage for a detailed description of
our proposed 3DIoUMatch pipeline in 3.4. We further ex-
plain how we use the estimated 3D IoU for pseudo-label
filtering and deduplication in 3.5. Finally, we illustrate how
we leverage the pseudo-labels for supervision in 3.6.

3.1. Problem Definition

Given a 3D point cloud representation of a scene x ∈
RN×3 containing a set of objects O = {o(j)}, we aim at
detecting the amodal oriented 3D bounding boxes of all ob-
jects inO, along with their semantic class labels. In particu-
lar, we are interested in accomplishing this task under chal-
lenging conditions of limited supervision where we have
access to a (small) set of labeled scenes {xl

i,y
l
i}

Nl
i=1 and

a set of unlabeled scenes {xu
i }

Nu
i=1, where Nl and Nu are

the number of labeled and unlabeled scenes, respectively.
For a labeled scene x, the label y comprises bounding box
parameters {b(j)} and semantic class labels {q(j)} of all
ground truth objects {o(j)}.

3.2. VoteNet for 3D Object Detection

VoteNet [18] is a single-stage object detector for 3D
point clouds. Built upon PointNet++ [20] backbone,
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Figure 2. 3D IoU module takes inputs seed feature points and a
bounding box along with its predicted class label, and estimates
the 3D IoU between the box and its maximum overlapping ground
truth. The module constructs a 3D regular grid with D3 virtual
grid points spanning over the bounding box. We then perform a 3D
grid feature pooling that applies a distance-weighted interpolation
for feature propagation from the seed points to the grid points.
Then the local coordinates of these grid points along with their
features are pushed through a PointNet to regress class-aware 3D
IoU. Finally, we use the input class label for output selection.

VoteNet first processes the input point cloud {xi}Ni=1 to
generate a sub-sampled set of M < N seed points enriched
with high-dimensional features {[xi; fi] ∈ R3+C}Mi=1.
Next, each seed point votes for the center of the object it
belongs to, and the votes are grouped into K clusters. Fi-
nally, each of the K vote clusters is aggregated to make a
prediction of a 3D bounding box parameters b(k), a corre-
sponding objectness score sk = P(b(k) is an object), and
a probability distribution {pcls} over L possible semantic
classes. The bounding box parameters b are its center lo-
cation c ∈ R3, scale d ∈ R3, and orientation θ around the
upright axis.

At train time, VoteNet jointly minimizes a weighted
combination of the following target losses: vote coordinate
regression, objectness score binary classification, box cen-
ter regression, bin classification and residual regression for
heading angle, scale regression, and category classification.
We refer the readers to [18] for a detailed description of
each loss term.

At test time, VoteNet applies Non-Maximum Suppres-
sion (NMS) based on objectness score to remove duplicated
bounding boxes. Here, we instead rely on a 3D IoU estima-
tion module which we describe next.

3.3. 3D IoU Estimation Module

As will be made clear in the full pipeline description,
a key contribution in this work is an IoU-guided filtering
scheme. To facilitate the rejection of poorly localized pro-
posals, as well as guiding deduplication and test-time re-
finement, we devise a new 3D IoU estimation module dif-
ferentiable w.r.t bounding box parameters.

In detail, for each predicted bounding box b(k), we
wish to estimate its 3D IoU v(k) ∈ [0, 1] with respect
to its corresponding ground-truth box {ok ∈ {o(j)}|k =
argmaxj(IoU(b(k), o(j)))}. VoteNet does not have inter-
mediate region proposals and only output bounding box
parameters at the end stage. Features used for bounding
box parameter regression are gathered from vote points in
a fixed-radius ball vicinity around each vote cluster, which
are unaware of the final bounding box prediction. So, dif-
ferent from implementation in IoU-Net [12] that parallel the
bounding refinement and IoU estimation, we need to do it
serially by pooling features again specifically for 3D IoU
estimation using the final predicted bounding box.

This feature pooling layer takes a bounding box as in-
put and should generate continuous features with respect to
the change in bounding box parameters. Existing RoI pool-
ing methods proposed in GSPN [33] and PointRCNN [25]
and 3D IoU module proposed in STD [32] simply set a hard
cropping boundary at the bounding box surface, taking the
point features inside the proposal and ignoring any points
outside. These designs have poor differentiability and cause
discontinuities whenever a change in the box parameters
modifies the point population inside the box, thus are not
suitable for 3D IoU optimization (see Table 3).

Here, for the first time, we devise a 3D pooling layer,
3D Grid Pooling, that is differentiable with respect to
the change in all bounding box parameters. Inspired by
RoIAlign [9] in 2D object detection, we propose to con-
struct virtual grid points spanning the space of the bounding
box and their features are obtained by distance-weighted in-
terpolation from real points not restricted inside the box.

Network architecture Taking as inputs the seed points
{zi}Mi=1, predicted bounding box b = {c,d, θ}, and a pre-
dicted label l, our 3D IoU module estimates the largest 3D
IoU between B and all ground truth bounding boxes. Fol-
lowing IoU-Net [12], the IoU estimation is class-aware.

To build a differentiable 3D IoU module, we first con-
struct a D×D×D grid {gm ∈ R3 |m ∈ [0, D3− 1]} that
exactly span over the space of b and evenly divide its width,
length, and height. For each grid point gm, we find its k
nearest neighbours among all seed points and interpolate
their features to get fm =

Σk
i=1wifi
Σk

i=1wi
, where wi =

1
d(gm,gi)2

and d is the L2 distance. Ideally, if k is equal to the num-
ber of all seed points, then the IoU module is continuously
differentiable. Due to the computational cost, we empiri-
cally find k = 3 is sufficient for accurate 3D IoU estimation
with smooth gradients. We then concatenate gm and fm
for each grid point and form a grid feature set {[gm; fm]}.
The feature set will be pushed towards a PointNet to pre-
dict class-aware 3D IoU. A final 3D IoU selection will be
performed using the input class label.
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Training IoU Estimation Module To train the 3D IoU
estimation branch in both stages, we generate on-the-fly
training data via jittering the bounding box predictions, i.e.
adding Gaussian noise to the box center and size. As a way
of data augmentation, this jittering is essential for the gen-
eralization of IoU estimation to unlabeled data. We use an
L1 loss to supervise the IoU estimation module.

3.4. 3DIoUMatch for SSL on 3D object detection

With the incorporation of 3D IoU module into VoteNet,
we construct an IoU-aware VoteNet for SSL on 3D object
detection. Our proposed solution is comprised of two train-
ing stages: a pre-training stage, where we train our IoU-
aware VoteNet on the labeled data, followed by an SSL
stage where the entire data is utilized by pseudo-labeling
the unlabeled scenes.

Pre-training. We start by training our IoU-aware VoteNet
in a supervised manner, using the labeled set {xl

i,y
l
i}

Nl
i=1.

The training loss is a sum over the original VoteNet losses
Lvotenet and 3D IoU lossLIoU. Once converged, we clone the
network to create a pair of student and teacher networks.

Semi-supervised training through a teacher-student
framework. We follow a teacher-student mutual learn-
ing framework [29] and train our networks on both labeled
{xl

i,y
l
i}

Nl
i=1 and unlabeled data {xu

i }
Nu
i=1. Each training

batch contains a mixture of {xl
i}

Bl
i=1 labeled samples and

{xu
i }

Bu
i=1 unlabeled samples.

For labeled samples, we supervise the student network
using ground truth supervisions (as done in the pre-training
stage) whereas for unlabeled samples, the student networks
is supervised using pseudo-labels {ỹu

i }
Nu
i=1 generated from

the teacher network. The final loss is formed as:

L = Ll({xl
i}

Nl
i=1, {y

l
i}

Nl
i=1) + λuLu({xu

i }
Nu
i=1, {ỹ

u
i }

Nu
i=1)

where λu is the unsupervised loss weight.
To succeed in semi-supervised learning, it is crucial for

the teacher network to generate high-quality pseudo-labels
and maintain a reliable performance margin over the stu-
dent network throughout the training. As commonly used
in SSL literature, e.g. Mean Teacher [29] and SESS [34],
we adopt an EMA teacher. We further leverage asymmetric
data augmentation and pseudo-label filtering (see Sec.3.5).

To be in a position of advantage, the teacher network
takes input data with weak augmentation only while the stu-
dent network uses stronger data augmentation. We share
the same data augmentation strategy with SESS. The input
point clouds to our teacher network are augmented only by
random sub-sampling while the inputs to the student net-
work further undergo a set of stochastic transformation T ,
including random flip, random rotation around the upright
axis, and a random uniform scaling.

3.5. Pseudo-Label Filtering and Deduplication

In the teacher-student framework, the performance gap
between the teacher and the student is usually quite
marginal given that these two models are just different by
EMA on weight and data augmentation strength. Hence,
it is not always true that the teacher prediction is more ac-
curate than the student’s on a specific training sample. On
unlabeled data, the student model will only benefit from the
pseudo-labels that are more accurate than its predictions.
Therefore we should filter out low-quality predictions from
the teacher model and only supervise the student model with
the rest of the teacher model predictions.

Jointly filtering based on class, objectness, localization
confidences For VoteNet, we propose to set an objectness
threshold τobj and filter out bounding box predictions with
objectness score s < τobj . We further propose to set a clas-
sification confidence threshold τcls for filtering out predic-
tions that are likely to contain a wrong class label.

Note that none of these two confidence measures cap-
ture the accuracy of bounding box parameter predictions.
We propose to predict a 3D IoU for each predicted bound-
ing box, use the 3D IoU estimation as a localization con-
fidence, and set a localization threshold τIoU to filter out
poorly localized predictions. Formally, we remove all the
predictions that fail to satisfy all three confidence thresh-
olds, i.e. s > τobj , max(pcls) > τcls, and v > τIoU.

IoU-guided lower-half suppression for deduplication
After the confidence-based filtering, there is still a lot of du-
plicated bounding box predictions that may introduce harm-
ful noise to our pseudo-labels. NMS is a standard process
in object detection for duplicate removal before evaluation,
which takes a set of highly overlapped bounding box pre-
dictions that share the same class prediction, ranks them ac-
cording to a confidence score and removes all but the top-1
prediction. STAC [27] applies class confidence based NMS
to teacher predictions during pseudo-label generation.

The default NMS used in VoteNet is based on object-
ness confidence. Given that objectness score doesn’t cap-
ture the localization quality, a train-time IoU-guided NMS
will naturally perform better (see Table.2), where we use
the product of predicted IoU and predicted objectness as
the ranking metric. However, using the top one selected
by IoU-guided NMS can still be suboptimal, since the pre-
dicted IoU will inevitably carry some errors. We argue that
different from the test time scenario, pseudo-labels do not
need to be fully deduplicated. Imagine this situation: if a
bounding box predicted by the student is 0.2m to the left of
its corresponding ground truth, it is a foreground object and
will get bounding box supervision in VoteNet. However, if
unfortunately the pseudo-label survives after non-maximal
suppression is to the right of the ground truth more than
0.1m, this predicted bounding box may lose supervision
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5% 10% 20% 100%
Dataset Model mAP

@0.25
mAP
@0.5

mAP
@0.25

mAP
@0.5

mAP
@0.25

mAP
@0.5

mAP
@0.25

mAP
@0.5

ScanNet

VoteNet 27.9±0.5 10.8±0.6 36.9±1.6 18.2±1.0 46.9±1.9 27.5±1.2 57.8 36.0
SESS reported \ \ 39.7±0.9 18.6 47.9±0.4 26.9 62.1 38.8

SESS 32.0±0.7 14.4±0.7 39.5±1.8 19.8±1.3 49.6±1.1 29.0±1.0 61.3 39.0
Ours 40.0±0.9 22.5±0.5 47.2±0.4 28.3±1.5 52.8±1.2 35.2±1.1 62.9 42.1

Abs. improve. +8.0 +8.1 +7.7 +8.5 +3.2 +6.2 +1.6 +3.1

SUN-RGBD

VoteNet 29.9±1.5 10.5±0.5 38.9±0.8 17.2±1.3 45.7±0.6 22.5±0.8 58.0 33.4
SESS reported \ \ 42.9±1.0 14.4 47.9±0.5 20.6 61.1 37.3

SESS 34.2±2.0 13.1±1.0 42.1±1.1 20.9±0.3 47.1±0.7 24.5±1.2 60.5 38.1
Ours 39.0±1.9 21.1±1.7 45.5±1.5 28.8±0.7 49.7±0.4 30.9±0.2 61.5 41.3

Abs. improve. +4.8 +8.0 +3.4 +7.9 +2.6 +6.4 +1.0 +3.2
Table 1. Comparison with VoteNet and SESS on ScanNet val set and SUN RGB-D val set under different ratios of labeled data. We report
the mAP@0.25 and mAP@0.5 as mean±standard deviation across 3 runs under different random data splits. Due to the randomness of the
data splits and our better pre-training protocol, SESS results provided by us are higher than those reported in the paper on mAP@0.5, and
the mAP@0.25 results differ a little (the only difference is the pre-trained weights and data splits). The final improvement is the absolute
improvement of our method over SESS results provided by us. Following SESS, we also report the results with 100% labeled data, where
we simply make a copy of the full dataset as unlabeled data and train our method.

and be treated as a background box. This example shows
that strict non-maximal suppression can lead to a smaller
number of student model predictions that can receive super-
vision. Since we cannot know the best pseudo label among
a bunch of highly-overlapped ones, it’s fine to be less strict.
To this end, we propose a novel Lower-Half Suppression,
or in short, LHS, that only discards half of the proposals
with lower predicted IoU. We argue that since LHS sup-
presses bounding boxes sharing the same class label, this
suppression can be seen as a second-step class-aware self-
adjusted filtering, which sets dynamic thresholds among the
overlapping bounding boxes to keep the ones with higher
confidence and hence find a better balance between pseudo-
label quality and the amount of supervision. We also use
the product of predicted IoU and predicted objectness as
the confidence metric.

Final-step pseudo-label processing After the filtering
and IoU-guided LHS, we now have high-quality predic-
tions {ŷuT }K

′

k=1 from the teacher network, where K ′ is the
number of bounding boxes remains. Given that the student
model inputs go through a stronger augmentation including
an additional geometric transformation T , in synchronize
with the student model inputs, the bounding box parameters
of the pseudo-labels need to go through the same transfor-
mation T , namely b̃

u
= T (b̂

u

T ). We further take convert
the predicted class probability distribution p̂uT into semantic
class label via q̃u = max(p̂uT ). Now we obtain the filtered
pseudo-labels ỹ = {b̃

u
, q̃u}K′

k=1.

3.6. Selective Supervision using Pseudo-Labels

For our generated pseudo-labels, there is no guarantee
that the labels can cover all the ground truth objects from

O due to the filtering and potentially inaccurate teacher pre-
dictions. Given the incompleteness of our filtered pseudo-
labels, we are relatively confident about the bounding boxes
in this set but student predictions far away from all of our
pseudo-labels are not necessarily negative. Our experiments
show that supervising objectness on unlabeled data using
the pseudo-labels seriously hurts the performance. For sim-
ilar reasons, we do not supervise vote loss, which is a unique
element in VoteNet and not shown in other detectors. For
more analysis and experimental proof for this, we refer the
readers to the supplementary materials. In this case, we will
only supervise the bounding boxes in the vicinity of the
pseudo bounding boxes and aim to improve their bound-
ing box quality. More specifically, we stick to the way
how VoteNet select foreground objects for bounding box
parameter supervision: we supervise bounding box param-
eters and class for a prediction only if the vote that gener-
ates this prediction is within 0.3m of any bounding box in
the pseudo-labels. For this set of pseudo-foreground pre-
dictions, we adopt the same way that VoteNet establishes
association and enforce original VoteNet losses except for
objectness loss and vote loss.

4. Experiments

4.1. Datasets and Evaluation Metrics

We evaluate our 3DIoUMatch on ScanNet [4] and SUN
RGB-D [28]. ScanNet is an indoor dataset consisting of
1,513 reconstructed meshes, among which 1,201 are train-
ing samples and the rest are validation samples. SUN RGB-
D contains 10,335 RGB-D images of indoor scenes which
are split into 5,285 training samples and 5,050 validation
samples. For both datasets, we follow[18, 34] for prepro-
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ScanNet 10% SUN-RGBD 5%Obj&Cls
Filter

IoU
Filter

Train-time
Suppression

Test-time
Suppression

Test-time
IoU opt. mAP@0.25 mAP@0.5 mAP@0.25 mAP@0.5

Obj-NMS 38.4 19.8 32.9 12.5
X Obj-NMS 44.5 24.7 36.9 17.5
X Obj-NMS Obj-NMS 44.2 25.2 37.1 17.4
X X IoU-NMS Obj-NMS 45.9 26.8 37.4 18.7
X X IoU-LHS Obj-NMS 46.5 26.9 37.9 18.5
X X IoU-LHS IoU-NMS 47.0 28.2 38.8 20.8
X X IoU-LHS IoU-NMS X 47.2 28.3 39.0 21.1
Table 2. Effects of the different components, including train-time filtering and deduplication, and test-time improvements.

cessing data and labels to train our method and we report
mAP@0.25 (mean average precision with 3D IoU thresh-
old 0.25) and mAP@0.5 in the following experiments.

4.2. Implementation Details

Training For the pre-training stage, we train with a
batch size of 8 and follow the same data augmentation of
SESS [34]. We then use those pre-trained weights to ini-
tialize the student and teacher networks. For the SSL stage,
we construct each batch by taking 4 labeled samples and 8
unlabeled samples, with the same data augmentation. The
weights of different loss terms (e.g. center regression loss,
size regression loss, etc.) are the same as VoteNet and we
set λu = 2. The student network is trained for 1000 epochs
(the labeled data is traversed in one epoch), optimized by an
ADAM optimizer with an initial learning rate of 0.002, and
the learning rate is decayed by 0.3, 0.3, 0.1, 0.1 at the 400th,
600th, 800th and 900th epoch, respectively. The number of
generated 3D proposals is 128. We use k = 3, D = 4
for the IoU module. The three thresholds are set to be
τobj = 0.9, τcls = 0.9, τIoU = 0.25. For more details,
we refer the readers to the supplementary materials.

Inference We forward the input to the student network
to generate proposals. We first apply IoU optimization to
refine the bounding box parameters following IoU-Net [12],
followed by an IoU-guided NMS with a 3D IoU threshold
of 0.25.

4.3. Result Comparison

Table 1 shows the results of our method compared to
SESS and VoteNet under different ratios of labeled data on
ScanNet and SUN RGB-D, respectively. The results illus-
trate that, with our effective train-time filtering and test-time
improvement leveraging IoU estimation, we are able to sig-
nificantly outperform current state-of-the-art, SESS, under
all labeled ratio settings. With 5% labeled data, our method
outperforms SESS by 8.1 and 8.0 on mAP@0.5 on ScanNet
and SUN RGB-D, respectively. Note that our method gains
more improvement on mAP@0.5, thanks to the high quality
of pseudo labels and the IoU guidance for test-time NMS.

4.4. Ablation Study

Filtering and Deduplication Mechanism. We study the
effect of each component of the filtering and deduplication
mechanism. In Table 2, the second row shows the results
of naive pseudo labeling, which takes all predictions from
the teacher model for supervision. Expectedly the results
are not satisfying, only a little higher than VoteNet. Simply
applying the dual filtering of classification and objectness
confidence gives significant improvement, as the filtering
picks out the teacher model proposals that are very likely to
be close to true objects and have the correct class. The con-
ventional objectness-based NMS in VoteNet, however, fails
to improve further, since the remaining proposals already
have high objectness scores and the objectness-based NMS
is not capable of picking the ones with higher localization
accuracy.

As shown in the fifth and sixth row, after we introduce
IoU during train time, IoU filtering and train-time IoU-
guided NMS contribute to better performance under both
settings. Our proposed IoU-guided LHS improves over IoU
guided NMS on mAP@0.25, since LHS finds a better bal-
ance between quality and coverage. With better filtering and
deduplication leveraging IoU estimation during train time,
we gain 2.3 and 1.7 absolute improvement over the without-
IoU version on mAP@0.25 and mAP@0.5 respectively on
ScanNet 10%. This verifies that considering localization
confidence is important for getting high-quality pseudo la-
bels. With test-time improvements, our method gains in to-
tal 3.0 and 3.1 absolute improvement respectively.

We set 0.9 for both classification and objectness confi-
dence threshold following STAC [27] and investigate the ef-
fect of different IoU thresholds on ScanNet 10%, as shown
in Figure 3. The performance (with test-time improve-
ments) is higher than the without-IoU baseline by large mar-
gins when τIoU ≤ 0.5. Note that the performance peaks
at τIoU = 0.25 for mAP@0.25 while peaking at 0.5 for
mAP@0.5, simply because mAP@0.5 prefers a stronger fil-
tering on localization quality. When τIoU > 0.5 , further
increasing τIoU may lead to a drastic drop in pseudo-label
coverage and hence is detrimental to the performance.
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ScanNet SUN RGB-D
Method mAP

@0.25
mAP
@0.5

mAP
@0.25

mAP
@0.5

Obj-NMS [18] 57.84 35.99 58.01 33.44
Box query

IoU-NMS only 57.56 37.07 58.16 34.81

Box query
IoU-NMS + Optim. 57.62 37.17 58.19 34.90

Ours
IoU-NMS only 57.92 37.01 58.82 36.22

Ours
IoU-NMS + Optim. 58.46 37.43 59.11 36.71

Table 3. Comparison of our IoU module with box-query on Scan-
Net 100% and SUN RGB-D 100% .

Test-time IoU-guided NMS and IoU optimization. We
then evaluate the improvement brought by using IoU esti-
mations at test time. The last two rows in Table 2 shows
that IoU-guided NMS and IoU optimization improves the
performance further.

As mentioned in 3.3, some region-based 3D detectors,
e.g. STD [32], crop the features inside a predicted bound-
ing box and regress the offset. To capture their core char-
acteristics under IoU optimization, we build a simple IoU
estimation module which only queries points inside the pre-
dicted box and passes the queried feature points through a
PointNet to predict the 3D IoU, namely box query. In prin-
ciple, the differentiability of this module is the same as that
in STD, which doesn’t release their code and misses the
IoU optimization step in their paper. For a fair comparison,
we train another IoU-aware VoteNet with box query as the
IoU estimation module and show the comparison between
it and our proposed method on the full set of ScanNet and
SUN RGB-D. From the results in Table 3, we prove that our
method is more effective on both IoU-guided NMS and IoU
optimization than box query.

4.5. Result Analysis

In this section, we examine how our 3DIoUMatch works
during training on ScanNet 10%. The upper two curves in
Figure 4 show that as the training goes, the performance
on unlabeled data and test data increases conformably. The
increasing performance on unlabeled data indicates the in-
creasing quality of pseudo-labels. We also show how the
coverage of the pseudo-labels changes on the unlabeled data
over the training. Here coverage at a certain threshold sim-
ply means the class-agnostic recall, measuring the percent-
age of ground truth objects that can find a pseudo-label with
an IoU larger than the threshold. As we can see from the
lower two curves in Figure 4: at the beginning, the cover-
age of the pseudo-labels is relatively low due to the strict
filtering mechanism; as the semi-supervised learning goes
on, the improving detection performance leads to a higher

Figure 3. 3DIoUMatch results with different IoU thresholds on
ScanNet 10%.

Figure 4. The performance improvements and pseudo-label cover-
age over the semi-supervised learning stage on ScanNet 10%.

passing rate of the filter and hence a higher coverage of
the pseudo-labels, which in return feuls the semi-supervised
learning; by the end of training, the coverage at 0.25 and at
0.5 both increase by about 10%.

4.6. Limitations

As discussed in 3.6, we do not supervise objectness loss
and vote loss on unlabeled data due to the uncertainty about
negative samples. Also, we do not supervise the 3D IoU
module on unlabeled data. We expect further performance
improvements if the unlabeled data can be utilized to im-
prove their training.

5. Conclusion
In this paper, we propose 3DIoUMatch, a novel semi-

supervised 3D object detection method leveraging IoU esti-
mation. Built upon a teacher-student mutual learning frame-
work, we use EMA teacher, asymmetric data augmentation
and pseudo-label filtering and deduplication to make the
student effectively learn from the teacher. With our IoU es-
timation module, we make filtering and deduplication aware
of localization confidence and apply test-time IoU-guided
NMS and IoU optimization, leading to further improve-
ment. Experiment results on two real-world datasets verify
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the effectiveness of our method and we achieve significant
gain over the prior art under each setting. We believe our
idea of leveraging IoU estimation is generally helpful and
can be coupled with different kinds of 2D and 3D object
detectors to improve their semi-supervised learning.

Acknowledgement: This research is supported by a grant
from the SAIL-Toyota Center for AI Research, NSF grant
CHS-1528025, a Vannevar Bush Faculty fellowship, and
gifts from the Adobe, Amazon AWS, and Snap corpora-
tions.

A. Implementation Details
Network Design Our IoU-aware VoteNet shares the same
structure with VoteNet[18] except for the IoU estimation
module. We provide a more detailed description of the IoU
estimation module here. The IoU estimation module is ap-
pended after the proposal generation module of VoteNet and
takes the bounding box proposals as input. For each bound-
ing box proposal, we create 4×4×4 virtual grid points. We
obtain the relative coordinates of the grid points by subtract-
ing the coordinates of the bounding box center. For every
grid point we find its k nearest neighbours among all seed
points and interpolate their features to get fm =

Σk
i=1wifi
Σk

i=1wi
,

wherewi =
1

d(gm,gi)2
and d is the L2 distance. The interpo-

lated features of every grid point is then concatenated with
the relative coordinates and forwarded into an MLP with
channel dimensions of [256+3, 128, 128, 128] to learn a
new feature. Then the features of all grid points go through
a global max pooling, after which go through another MLP
with channels [128, 128, 128, C], where C is the number
of classes, to make the IoU prediction class-aware. Finally,
we select the per box IoU estimation by using the class label
(during training) or class prediction (during inference).

Training For the pre-training stage, we find that the net-
work does not converge using the same protocol as fully-
supervised VoteNet. We instead use a new protocol, where
the network is trained for 900 epochs, optimized by an
ADAM optimizer with an initial learning rate of 0.001, and
the learning rate is decayed by 0.1, 0.1, 0.1 at the 400th,
600th and 800th, respectively. We observe convergence us-
ing this protocol on all ratios of labeled data.

Inspired by IoU-Net[12], for both stages, we generate
on-the-fly training data via jittering the bounding box pre-
dictions for the IoU estimation module. Specificly, we add
εsize ∼ N(0, (0.3d)2) to each bounding box size prediction
d and add εcenter ∼ N(0, (0.3d)2) to each bounding box
center prediction c to obtain Nproposal more training sam-
ples. The final IoU estimation loss is the L1 loss averaged
over all IoU trainig samples, original predictions or jitters.
The IoU estimation loss weight is 1.

Inference As IoU-Net[12] did not release code, we im-
plemented a simple version of test-time IoU optimization.

1. We obtain the original bounding box proposals.

2. We calculate the gradients of the IoU estimation w.r.t.
to bounding box size and center, gradsize, gradcenter,
and update the bounding box size and center by adding
gradsize ∗λ, gradcenter ∗λ to the box size and center,
respectively, where λ is the optimization step size.

3. We repeat the second step for T times.

We find setting T to 10 yields noticeable improvement
while not slowing inference speed too much. Choosing λ
from the range of [1e−4, 5e−4] has similar performance.

B. Overhead of the IoU module
Our light-weighted IoU estimation module brings mod-

erate overhead to the network, as shown in Table 4. The
memory reported in the second column refers to the mem-
ory consumed by training with batch size 8 on a single GTX
1080Ti GPU. The last two columns mean the time con-
sumed by a full pass (forwarding and backwarding) of a
batch of 8 on a single GTX 1080Ti GPU, training ScanNet
and SUNRGB-D respectively. Note that regardless of the
network design, there is overhead introduced by calculating
the ground truth IoU for supervision.

Method Mem. (GB) ScanNet (s) SUNRGB-D (s)
VoteNet 6.56 0.282 0.316

Ours 6.60 0.325 0.377
Table 4. Memory and time overhead of the IoU module.

C. More on IoU Module Comparison
We provide more explanation on why an IoU estimation

network design like that in STD[32] is less effective in IoU
estimation and is not differentiable. Given a bounding box
proposal, STD concatenates the canonized coordinates and
features of the points inside the bounding box to form new
features of the points. Therefore, the new feature of a point
f ′ can be denoted as a function of the point coordinates p,
the original point feature f , the bounding box center c and
the bounding box heading angle θ. Then STD voxelizes the
bounding box and sample points in each voxel to produce
the voxel feature fv . The process of producing the voxel
feature from points in voxels consist of no other parameters
except from the point features {f ′i} and point coordinates
pi, so fv is still a function of {fi}, {pi}, c, θ. As all voxel
features are flattened and fed to an MLP, which outputs the
final IoU, we can conclude that the IoU estimation is not
differentiable w.r.t. bounding box size.
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cab bed chair sofa table door wind bkshf pic cntr desk curt fridg showr toil sink bath ofurn
VoteNet mAP@0.25 17.9 74.7 74.5 75.3 45.6 18.3 11.7 21.7 0.7 28.4 49.4 21.5 23.2 18.5 79.6 25.7 66.3 11.7
SESS mAP@0.25 20.5 75.1 76.2 76.4 48.1 20.0 14.4 19.4 1.2 30.0 51.8 25.0 30.0 26.4 82.2 29.2 72.3 14.1

Without IoU mAP@0.25 22.6 79.5 77.8 77.8 49.6 25.4 18.6 27.7 3.3 41.4 56.2 27.4 30.4 53.6 81.3 28.5 74.5 18.8
3DIoUMatch mAP@0.25 26.6 82.6 80.9 83.3 52.1 28.0 19.9 29.4 3.7 45.0 61.9 29.2 34.1 51.2 85.7 32.3 82.8 21.5

VoteNet mAP@0.5 3.2 64.6 43.4 49.3 25.1 2.8 1.1 8.7 0.0 2.4 14.7 3.9 7.6 1.1 46.8 11.9 39.4 1.5
SESS mAP@0.5 3.7 61.2 48.0 44.8 29.5 3.2 2.8 8.4 0.2 7.5 19.2 5.0 12.2 1.8 48.7 15.3 40.8 2.2

Without IoU mAP@0.5 3.9 66.1 52.7 50.7 35.1 7.9 5.0 13.1 0.9 14.5 26.1 10.3 17.5 7.0 63.9 11.7 62.1 4.9
3DIoUMatch mAP@0.5 5.9 72.0 60.5 56.6 39.7 10.3 5.2 18.1 0.7 16.0 35.3 8.3 21.4 6.2 67.5 13.2 67.6 5.2

Table 5. Per class mAP@0.25 and mAP@0.5 on ScanNet val set, with 10% labeled data.

bathtub bed bookshelf chair desk dresser nightstand sofa table toilet
VoteNet mAP@0.25 67.8 32.2 39.4 58.5 53.5 8.0 1.9 14.7 3.2 20.3
SESS mAP@0.25 70.8 34.7 41.9 60.4 63.0 9.8 3.7 25.2 4.0 28.0

Without IoU mAP@0.25 75.1 33.5 43.0 59.5 76.9 6.8 5.1 33.0 3.5 34.8
3DIoUMatch mAP@0.25 75.4 37.7 45.2 64.2 77.0 6.0 5.7 34.6 4.5 39.4

VoteNet mAP@0.5 31.2 6.2 15.5 29.6 14.6 0.5 0.2 2.0 0.3 5.2
SESS mAP@0.5 36.7 7.2 19.2 31.8 20.4 0.7 0.5 7.0 0.4 7.1

Without IoU mAP@0.5 41.5 9.7 25.7 34.5 40.8 0.8 0.8 8.3 0.8 11.4
3DIoUMatch mAP@0.5 45.2 14.4 27.8 43.6 47.2 0.8 1.9 15.7 0.6 13.4

Table 6. Per class mAP@0.25 and mAP@0.5 on SUNRGB-D val set, with 5% labeled data.

We also argue that for VoteNet, since the number of seed
points with features are small (1024), box query methods
may have difficulty querying points inside a bounding box,
especially if a bounding box is too small. Our method, in-
stead won’t suffer from this as we are not confined to points
inside the bounding box.

Although STD didn’t release code, we still implemented
an IoU estimation module according to the paper for better
comparison. However, some issues need to be stated. First,
since the backbone of STD is very different from VoteNet,
the comparison between IoU estimation module alone is in-
herently problematic. Second, STD aims at outdoor object
detection, where the task is slightly different. Third, we
adopted most of the parameters of STD in the paper, but
changed number of voxels (to 27) and number of points
sampled per voxel (to 6) due to memory concerns and the
small number of seed points in VoteNet. The results in Ta-
ble 7 show the better performance of our IoU module. We
also observe serious overfitting using the STD IoU module,
suggesting that it may not be suitable for our problem.

D. Why not Supervise Votes and Objectness?

As we mentioned, we supervise all VoteNet loss terms
on unlabeled data except for vote regression loss and object-
ness binary classification loss. As we observe, supervising
votes or objectness with pseudo labels leads to degrading
performance. The main reason is that by rigorous filtering
and deduplication we can only be highly confident of a true
object being close to a pseudo bounding box, but we are not
sure whether or not there is a true object where there are
no pseudo bounding boxes nearby. If we supervise object-

ScanNet 100% SUNRGB-D 100%

Method
mAP

@0.25
Improv.

mAP
@0.5

Improv.

mAP
@0.25
Improv.

mAP
@0.5

Improv.
Ours

IoU-NMS +0.08 +1.02 +0.81 +2.78

Ours
IoU Opt. +0.54 +0.42 +0.29 +0.49

STD
IoU-NMS -0.03 +0.22 +0.20 +1.32

STD
IoU Opt. +0.04 +0.00 +0.00 -0.01

Table 7. Effectiveness of the IoU module in STD compared with
our method.

ness on unlabeled data with the pseudo labels the same way
as VoteNet, it’s not difficult to imagine the network would
be more and more biased on detecting objects. In Table
8, our experiments on ScanNet 10% and SUNRGB-D 5%
show that the performance suffers a drop after supervising
objectness on unlabeled data.

Vote prediction is an unique component of VoteNet. For
a point, the label for its vote is the center of the object it
belongs to. To generate pseudo vote labels, the straightfor-
ward way is to count every point inside a pseudo bounding
box as a vote. However, since this pseudo vote label set is
also far from complete, we face a similar problem supervis-
ing with it. In Table 8, our experiments on ScanNet 10%
and SUNRGB-D 5% also show that the performance drops
after supervising vote prediction on unlabeled data.
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Figure 5. Qualitative results on ScanNet, with 10% labeled data. Here green bounding boxes have an IoU ≥ 0.25 while red bounding
boxes are with an IoU < 0.25.

Figure 6. Qualitative results on SUNRGB-D, with 5% labeled data.
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ScanNet 10% SUNRGB-D 5%
Method mAP

@0.25
mAP
@0.5

mAP
@0.25

mAP
@0.5

3DIoUMatch 47.2 28.3 39.0 21.1
+vote sup.

on unlabeled 45.4 28.3 37.9 20.9

+obj. sup.
on unlabeled 40.1 26.0 38.2 20.4

Table 8. Objectness & vote supervision on unlabeled data using
pseudo-labels.

E. Per-class Evaluation

We report per-class average precision on ScanNet with
10% labeled data and SUNRGB-D with 5% labeled data,
respectively. The bold numbers are the highest per class.
The results in Table 5, 6 show that our method improves
the average precision on nearly all classes over SESS. Our
3DIoUMatch also has better performance on most classes
than the without-IoU version.

F. Qualitative Results

We show the qualitative results on ScanNet val set with
10% labeled training data, Figure 5 and on SUNRGB-D val
set with 5% labeled training data, Figure 6. For the results
of our method, SESS and VoteNet, green bounding boxes
are the predicted bounding boxes whose IoU ≥ 0.25, and
the red bounding boxes are those with an IoU < 0.25. As
can be seen in both figures, our method give more accurate
predictions and significantly reduces the number of false
positives.
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