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Abstract

Causal induction, i.e., identifying unobservable mecha-
nisms that lead to the observable relations among variables,
has played a pivotal role in modern scientific discovery, es-
pecially in scenarios with only sparse and limited data. Hu-
mans, even young toddlers, can induce causal relationships
surprisingly well in various settings despite its notorious
difficulty. However, in contrast to the commonplace trait
of human cognition is the lack of a diagnostic benchmark
to measure causal induction for modern Artificial Intelli-
gence (AI) systems. Therefore, in this work, we introduce
the Abstract Causal REasoning (ACRE) dataset for system-
atic evaluation of current vision systems in causal induc-
tion. Motivated by the stream of research on causal discov-
ery in Blicket experiments, we query a visual reasoning sys-
tem with the following four types of questions in either an
independent scenario or an interventional scenario: direct,
indirect, screening-off, and backward-blocking, intention-
ally going beyond the simple strategy of inducing causal
relationships by covariation. By analyzing visual reason-
ing architectures on this testbed, we notice that pure neu-
ral models tend towards an associative strategy under their
chance-level performance, whereas neuro-symbolic combi-
nations struggle in backward-blocking reasoning. These de-
ficiencies call for future research in models with a more
comprehensive capability of causal induction.

1. Introduction
“There is something fascinating about science.
One gets such wholesale returns of conjecture out
of such a trifling investment of fact.”

— Mark Twain [64]

The history of scientific discovery is full of intriguing
anecdotes. Mr. Twain is accurate in summarizing how influ-
ential science theories are distilled from sparse and limited
investments. From only three observations, Edmond Hal-
ley precisely predicted the orbit of the Halley comet and its
next visit, which he did not live to see. From a few cathode
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Figure 1. Abstract causal reasoning tasks administered to human
participants [22, 61]. The Blicket machine possesses various ac-
tivation patterns in these four cases. One needs to discover the
hidden causal relations to answer two types of questions: whether
object A / B is a Blicket, and how to make the machine stop / go.

rays, Joseph Thomson proved and derived the existence of
electrons. From merely crossbreeding of pea plants, Gregor
Mendel established the laws of Mendelian inheritance much
beyond pea plants. Out of many other possible conjectures,
pioneering scientists picked the most plausible ones.

The above examples of causal induction are only a few
acclaimed cases of omnipresent causal reasoning scenarios
in science history and our daily life. In fact, despite the no-
torious complexity in causal discovery, humans, even young
toddlers, can felicitously identify and, sometimes, intervene
in the unobservable mechanisms from only a trifling num-
ber of samples of observable events [19, 58].

This captivating commonplace trait of human cognition
and its paramount connection to human learning mecha-
nism motivate us to ask a counterpart question for modern
Artificial Intelligence (AI) systems:

At what level do current visual reasoning systems
induce causal relationships?

To answer this question, we propose the Abstract Causal
REasoning (ACRE) dataset. ACRE is inspired by the es-
tablished stream of research on Blicket detection originally
administered to young toddlers [7, 19, 20, 21, 22, 23, 35,
42, 44, 58, 60, 61, 66, 67]. The original experiments de-
signed by Gopnik and Sobel [21] introduced a novel setup
for investigating children’s ability of causal induction, in
which children were given a special machine referred to
as “Blicket detector.” Its underlying mechanism is intuitive:
A Blicket detector would activate, lighting up and making
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noise, when a “Blicket” was put on it. The experimenter
demonstrated a series of trials to participants by placing
various (combinations of) objects on the Blicket detector
and showing whether the detector was activated or not. At
length, the participants were asked which object is a Blicket
and how to make an (in)activated Blicket machine stop (go).

This line of work’s intricate nature lies in how the con-
text and query were designed to test abstract causal rea-
soning beyond the simple strategy of covariation; see an
illustration in Fig. 1. As a base test on causal discovery
by covariation, Sobel et al. [61] show that children can
correctly associate cause and effect using direct evidence.
They also show that with only indirect evidence asserting
the Blicketness of object B, children still made accurate
predictions [22]. However, one must go beyond the simple
covariation strategy to discover the hidden causal relations
in the screening-off case and the backward-blocking case.
Specifically, in the screening-off setting (Fig. 1 Top), object
B (non-Blicket) is screened-off by A (Blicket) from prob-
abilistically activating the machine [22]. The backward-
blocking setting (Fig. 1 Bottom) is even more intriguing
as object B, not independently tested, has undetermined
Blicketness despite the fact that every appearance of it is
associated with an activated machine [61]. See Section 3
for details and the supplementary for a symbolic summary.

The proposed ACRE dataset is built following a sim-
ilar querying manner in the Blicket experiments to study
how well existing visual reasoning systems can learn to de-
rive ample causal information from scarce observation. In
particular, inspired by the recent endeavors of visual rea-
soning in controlled environments [17, 32, 70], we adopt
the CLEVR universe [32] in ACRE’s design and add a
Blicket machine to signal its state of activation, intention-
ally simplifying visual information processing and empha-
sizing causal reasoning. Following attempts made in ab-
stract spatial-temporal reasoning benchmarks [31, 55, 72],
we provide the visual reasoning system with sets of panel
images as context and use image-based queries to ease lan-
guage understanding, echoing the setup and the learning
theories in developmental literature [19, 20, 21, 22, 23].

Specifically, each problem in ACRE consists of 10 pan-
els: 6 for context and 4 for query. The 6 context panels are
divided into two sets, the first of which serves as an intro-
duction to the Blicket mechanism that some objects activate
the machine, and others do not. This simpler set of panels
resembles the introductory trials administered to children in
human experiments [22, 61]. Instead of bringing in the con-
cept of Blicket1, in queries, we only ask a visual reasoning
system to predict the state of the Blicket machine given the
objects in the queries. Half of the queries concern the inde-

1While the notion of “Blicket” is not necessary for a visual reasoning
system to solve the task, we use the term throughout this paper to simplify
expressions and facilitate understanding of the core ideas.

pendent scenarios, wherein a single object is presented, and
the system is challenged to reason about whether this object
is one of the causes that could activate the Blicket machine.
The remaining half of the queries are for interventional sce-
narios, wherein we intervene in an existing context panel
and ask what the state of the Blicket machine would be un-
der the intervention. Each query is independent such that
statistical bias [22, 61] and potential cheating for abstract
reasoning [31, 72] are minimized. In summary, ACRE in-
cludes 30, 000 abstract causal reasoning problems, supports
all 4 types of reasoning queries (direct, indirect, screening-
off, and backward-blocking), and is fully annotated with ob-
ject attributes, bounding boxes, and masks. We further de-
sign two Out-Of-Distribution (O.O.D.) generalization splits
in ACRE to evaluate models’ generalizability.

In experiments, we use the ACRE dataset to analyze cur-
rent visual reasoning systems’ ability in causal induction.
Despite remarkable results in other visual reasoning tasks,
we notice that pure neural networks [8, 28, 55, 68, 77] fa-
vor a covariation-based reasoning strategy and thus can only
achieve performance marginally above the chance level. As
the first attempt in the exploration to empower visual rea-
soning systems for causal induction, we resort to neuro-
symbolic models [26, 39, 43, 50, 51, 70, 71, 74, 76] that
combine neural visual processing [27] and symbolic causal
reasoning [18, 49, 53, 62, 78, 79], which turn out to struggle
in backward-blocking cases in abstract causal reasoning.

To sum up, this paper makes three primary contributions:
• We propose the Abstract Causal REasoning (ACRE)

dataset to probe current visual reasoning systems’ ca-
pacity in causal induction. The dataset is inspired by
the Blicket experiments and contains 30, 000 problems.
ACRE covers all 4 types of causal reasoning queries (di-
rect, indirect, screening-off, and backward-blocking) with
additional O.O.D. generalization splits.

• We benchmark and analyze state-of-the-art visual reason-
ing models in ACRE. Experimental results show that neu-
ral models tend to capture statistical correlations in obser-
vation but fail to induce the underlying causal relation-
ships demonstrated in the trials.

• We propose neuro-symbolic combinations that improve
on pure neural networks. However, our analysis shows
that even with the inductive bias in causality, they still fail
to distinguish a true cause from superficial covariation in
backward-blocking cases. Taken together, these deficien-
cies call for future research in models with a more com-
prehensive capability of causal induction.

2. Related Work
Abstract Visual Reasoning To date, the computer vi-

sion and AI community’s efforts in abstract visual reasoning
primarily focus on the specific task of Raven’s Progressive
Matrices (RPM) [5, 52], commonly known as Intelligence



Context Trials

Independent Queries:
What would be the machine’s state given the object?

Interventional Queries on the Fourth Trial:
What would be the machine’s state given the intervention?

direct 
A: activated

indirect
A: activated

backward-blocking
A: undetermined

screening-off
A: inactivated

Figure 2. A sample problem in ACRE. Of the 6 context trials, we devote the first set of 3 panels for an introduction to the Blicket machinery
and allow more complex configurations in the second set of panels. Queries are either on independent objects or interventional combinations
for an existing trial. In this example, the first query tests causal reasoning from direct evidence, as the gray cube is independently tested
and always associated with an activated machine. The second query requires comparing the fourth and fifth trial to realize that the Blicket
machine is activated by the cube, not the cylinder, based on indirect evidence. As such, we infer that the red and green cylinders in the
sixth trial may not activate the machine because the purple cube can already do so; despite their association with an activated machine
only, their Blicketness is backward-blocked in the interventional trial. The cyan cube is screened-off by the gray cube’s Blicketness from
probabilistically activating the machine. Of note, the screening-off and the backward-blocking case cannot be solved by covariation.

Quotient (IQ) tests, that studies how visual reasoning sys-
tems can induce the hidden spatial-temporal transformation
from limited context and apply it to derive a missing panel.
Santoro et al. [55] extended the relational module [56] to
take panel-based representation and introduced the Wild
Relational Network (WReN). Zhang et al. [72] proposed
to incorporate structural annotations in a neural modular
manner. Methods considering contrast at data-level [29] or
module-level [73] were later shown to improve performance
significantly. Zheng et al. [77] formulated the problem as
teacher-student learning, Wang et al. [68] used a multiplex
graph model to capture the hidden relations, and Spratley
et al. [63] revisited ResNet models combined with unsu-
pervised learning. More recently, Zhang et al. [74] disen-
tangled perception and reasoning from a monolithic model,
wherein the visual perception frontend predicts objects’ at-
tributes, later aggregated by a scene inference engine to pro-
duce a probabilistic scene representation, and the symbolic
logical reasoning backend abduces the hidden rules.

The proposed ACRE dataset complements the spectrum
of abstract visual reasoning tasks by challenging visual rea-
soning systems with causal induction from a limited num-
ber of trials and adding missing dimensions of causal un-
derstanding into the prior spatial-temporal task set.

Causal Reasoning Equipping visual reasoning sys-
tems with causal reasoning capability has been an emerg-
ing topic in computer vision research [12, 41, 46]. Re-
cent causal reasoning datasets [1, 70] established video-

based benchmarks2 for either trajectory prediction in coun-
terfactual scenarios or visual question answering with ex-
planatory, predictive, and counterfactual questions. Never-
theless, causal induction in prior computer vision research
relies heavily on covariation. For instance, psychological re-
search [2, 3, 15, 16, 34] points out that the key to solving
these two problems is intuitive physics, with covariation-
based causal reasoning in associating collision with object
dynamics. Moreover, Edmonds et al. [9, 10, 11] further
demonstrate that covariation would result in catastrophic
failures when the visual features are similar but the under-
lying causal mechanisms dramatically differ. These results
necessitate causal induction beyond covariation: Asymme-
tries in learning under various causal structures [65] refute
parsimonious associative learning [59].

With a particular emphasis on causal induction beyond
the simple causal reasoning strategy of covariation [36], we
design ACRE with diversified causal queries, requiring a
visual reasoning system to induce the hidden causal mecha-
nism from only limited observation. From a cognitive stand-
point, it is argued that Bayesian networks [48, 49] and the
theory-theory [11, 19, 20, 23, 25, 60] play vital roles in ab-
stract causal reasoning. However, how young toddlers in-
duce accurate Bayesian representation and form a correct
theory during such a short exposure remains unclear [14].

2Of note, these prior works do not echo Michotte’s theory of perceived
causality that humans possess a “causal detector” akin to how we perceive
colors [45], as they fail to show humanlike causal perception [57, 80].
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Figure 3. Distributions of (a) labels and (b) query types in ACRE.

3. Building ACRE

The ACRE dataset is designed to be light in visual
recognition and heavy in causal induction. Specifically, we
ground every panel in a fully-controlled synthetic environ-
ment by adopting the CLEVR universe [32] where all ob-
jects, including the Blicket machine, are placed on a table-
top with three-point lighting. All potential Blicket objects
are of the same size and come with 3 possible shapes (cube,
sphere, or cylinder), 2 possible materials (metal or rubber),
and 8 possible colors (gray, red, blue, green, brown, cyan,
purple, or yellow). For the context panels, we set all ob-
jects on a pink Blicket machine at the center of the scene
and signal its state of activation by lighting it up. For the
query panels, we directly put all objects on the tabletop.
In both cases, objects are randomly distributed across the
scenes. To avoid confusion during reference, every object is
uniquely identifiable by its shape, material, and color. Other
than the constraints, every object’s attributes are randomly
sampled from the aforementioned space. Collectively, ev-
ery ACRE problem contains 5 to 8 unique objects. We keep
other scene configurations the same as the original setup in
CLEVR [32] and generate images by Blender [6]. Every im-
age is also fully-annotated with object attributes, bounding
boxes, and masks; see Fig. 2 for a sample problem in ACRE
and refer to the supplementary for more examples.

ACRE Context Every ACRE problem contains 10
panels, of which 6 serve as context panels. Following the
original design [22, 61], we further divide the 6 panels into
2 sets and use the first simpler set as the familiarization set.
Specifically, for the first set of 3 panels, we randomly sam-
ple 2 objects and assign one to be a Blicket and another to
be a non-Blicket. Both objects are independently tested on
the Blicket machine and then placed together on it. These
3 simple trials reveal the nature of a Blicket detector: The
machine will be activated when a Blicket is placed on it.
For the second set of panels, we allow more random sam-
pling; in particular, we sample another group of objects that
is disjoint with the first one and partition it into 3 potentially
overlapping subgroups, corresponding to the configurations
for each of the rest panels. Either one or two of them are
associated with an activated Blicket machine.

ACRE Query The Blicket machine’s activation pat-
tern in context panels supports all 4 types of queries (direct,
indirect, screening-off, and backward-blocking) and pro-
vide sufficient clues for determining Blicketness for each
object; see illustrations in Figs. 1 and 2. Based on expla-
nations of the Blicket mechanism [20, 22, 23, 61], we de-
tail query categorization in the following. Intuitively, an ob-
ject is a Blicket if it is independently and always associated
with an activated machine, which can be determined based
on direct evidence; the same reasoning strategy is applica-
ble to resolve non-Blickets. An object is also considered a
Blicket if the machine activates when we place it together
with other objects but not alone, and the other objects fail to
activate the machine. In these cases, the Blicketness is re-
solved by indirect evidence; no direct observation is avail-
able. An object is considered a non-Blicket when putting it
with other potential Blickets together will activate the ma-
chine, but it fails to do so by itself; this derivation is referred
to as screening-off reasoning. In addition to being a Blicket
or non-Blicket, an object’s Blicketness could also be un-
determined, which occurs when the object is not directly
tested, but can activate the machine together with other po-
tential Blickets; this is referred to as backward-blocking
reasoning. Note that the Blicketness of an individual object
may be undetermined, but together with other undetermined
ones, they can form a set that activates the machine; as such
queries happen in the indirect setting, we also refer to them
as indirect reasoning.

The rich causal relations embedded in the context pan-
els afford us to probe a reasoning system’s causal induction
capability. In particular, we design 4 queries in each ACRE
problem, 2 for independent scenarios and another 2 for in-
terventional scenarios, similar to the questions administered
in human experiments [22, 61]. In the independent scenario,
we randomly sample one object from those tested in the tri-
als. In the interventional scenario, we pick a trial with an in-
activated machine and add a set of objects randomly picked
from those in the context panels. The reasoning system is
then asked to tell the status of the Blicket machine after
placing the objects on it, either inactivated, undetermined,
or activated. To avoid statistical bias [22, 61] or potential
cheating [31, 72], all queries in a problem are independent.

Generalization Splits ACRE comes with additional
O.O.D. splits to measure model generalization in causal
induction; we focus on compositionality and systematicity
in systematic generalization [13, 24, 38, 69]. In the com-
positionality split, we assign different shape-material-color
combinations to the training and test set and ensure the
training set contains every shape, material, and color, sim-
ilar to the Compositional Generalization Test (CoGenT) in
CLEVR [32]. In the systematicity split, we vary the distri-
bution of an activated Blicket detector in the context panels,
with the machine lighting up 3 times in the training set and 4



times during testing. Note the strategy for causal induction
remains the same irrespective of the distribution change.

In total, ACRE contains 30, 000 problems, evenly par-
titioned into an Independent and Identically Distributed
(I.I.D.) split, a compositionality split, and a systematicity
split. The dataset covers all 4 types of queries, and the la-
bel distribution is adjusted to be roughly uniform; see Fig. 3
for the label distribution and query type distribution in the
dataset. Please refer to the supplementary for detailed dis-
tributions of labels and query types for each split.

4. Reasoning Systems on ACRE
This section details the deep neural models adopted

to benchmark the proposed ACRE dataset and the neuro-
symbolic combinations explicitly designed to incorporate
inductive bias for causal induction.

4.1. Deep Neural Models

As ACRE shares the inductive nature with RPM, we test
several established models designed for it [55, 68, 77]. We
also test methods commonly used for linguistic or visual
modeling [8, 28]. Each context-query pair is independently
fed into the network and treated as a classification problem.

CNN-MLP We concatenate context panels with the
query panel in the channel dimension and use a 4-layer stan-
dard CNN architecture to extract features. The CNN archi-
tecture interleaves batch normalization and ReLU activation
between convolution layers. The final convolved features
are passed to a 2-layer Multilayer Perceptron (MLP) with
a dropout layer with a rate of 0.5 in between the two layers.

ResNet-MLP In this model, we replace the CNN
backbone in CNN-MLP with ResNet-18 [28].

CNN-LSTM We use a standard LSTM model [30] to
further process visual features. Specifically, we indepen-
dently extract image features of each panel using a CNN,
append a one-hot position tag to each feature map, and pass
them sequentially into the LSTM module. The final hidden
state is further processed by a linear layer to produce logits.

CNN-BERT A visual BERT [8] model is also tested.
We compute image features using a CNN and follow prac-
tices in BERT: For the sequence of image features, we
prepend <CLS>, separate the context panels and the query
panel with <SEP>, and add position and segment embed-
dings. Output from <CLS> is then used for classification.

WReN We adopt the WReN model proposed by San-
toro et al. [55], which applies the relational module [56] on
panel-based image representations.

LEN LEN [77] stems from WReN but takes into ac-
count the row-wise and column-wise compositions in RPM,
deeper features, and the multi-choice setting. We adapt the
original LEN design to the proposed ACRE by removing
branches for the column-wise composition and making the
prediction on each query independent.

MXGNet A similar strategy in LEN is used to make
MXGNet [68] compatible with ACRE. The two sets of con-
text trials are treated as rows in the model.

4.2. Neuro-Symbolic Models

In preliminary experiments, we notice that pure neural
models tend to capture statistical correlation rather than
modeling the hidden causal relations out of the context tri-
als. To overcome this issue, we propose neuro-symbolic
combinations and explicitly incorporate various forms of
causal inductive bias for the abstract causal reasoning task.

Specifically, we draw inspirations from recent advances
in neuro-symbolic literature [26, 39, 43, 50, 51, 70, 71, 74,
76] and decompose our model into a neural perception fron-
tend and a causal reasoning backend. By design, the fron-
tend is responsible for parsing each context trial to form an
object-based representation, whereas the backend takes the
symbolic output from the frontend and performs causal in-
duction; see an overview of the method in Fig. 4.

Neural Perception Frontend As the first attempt to
solve ACRE problems, we disentangle our neural percep-
tion frontend and independently pretrain the model to parse
each scene. Specifically, we use Mask-RCNN [27] with
ResNet-50 FPN [28, 40] backbone. The perception model
is tasked with predicting the Blicket machine’s state, object
masks, and object attributes (shape, material, and color) for
each object in the scene. Both context and query panels in
the training set of each split are used to train the frontend.

Causal Reasoning Backend Due to its efficiency and
accuracy, we use a score-based continuous optimization
method, denoted as NS-Opt, to simultaneously learn a gen-
eralized Structural Equation Model (SEM) and derive the
hidden causal relations [78, 79]. In particular, denoting the
existence of object j in panel i as Xi,j ∈ {0, 1}, we can
arrange the symbolic parsing results from the neural per-
ception frontend into a data matrix X ∈ {0, 1}6×n, where
n equals the number of unique objects in all context panels
plus the Blicket machine. A generalized SEM assumes that
the state of object j is related to states of its parents via a
function and can be represented as

Xj = fj(Xpa(j)) = gj(X), (1)

where X = [X1|X2| . . . |Xj | . . .], and pa(j) denotes the
parents of object j. The parent finding process is further
generalized in gj(·) and put into optimization constraints.

Following [79], we formulate causal discovery as an op-
timization problem

minimize
g:gj ,∀j∈[n]

1
n

∑
j `(Xj , gj(X))

subject to h(W (g)) = 0,
(2)

where W (g)k,j = ‖∂kgj‖ ∀k, j ∈ [n], and h(W ) =
Tr(eW◦W − I). We use [n] to denote an integer set from
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Figure 4. An illustration of the proposed neuro-symbolic combination (NS-Opt) for ACRE. The neural frontend is responsible for scene
parsing. In particular, we use a Mask RCNN to detect objects and classify their attributes as well as the Blicket machine’s state. The parsed
results are arranged into data matrices and sent into the causal reasoning backend for optimization. A generalized SEM is learned from
context trials during reasoning, which is further used to infer the state of the Blicket machine for each query.

1 to n, ‖·‖ the L2 function norm, and ◦ the Hadamart prod-
uct. Using the binary cross entropy loss as `(·, ·) for each
object j, the optimization problem regularizes the general-
ized SEM to reconstruct the observation, while constraining
the relations among the variables to be a causal Directed
Acyclic Graph (DAG): W (g) can be regarded as the adja-
cency matrix among variables, and h(·) a metric for acyclic-
ity. We use an MLP for each gj(·) and optimize the problem
by Augmented Lagrangian; see [78, 79] for details.

With a learned generalized SEM representing the hidden
causal relations in the context trials, we treat each query as
another optimization problem. Specifically, we construct a
partial data vector for each panel from the symbolic repre-
sentation parsed by the neural perception frontend. Denot-
ing the Blicket machine as object n, the query vector can
be represented as X1:n−1. Treating Xn as the probability of
the Blicket machine being activated, the query optimization
is formulated as

minimize
Xn

1
n

∑
j `(Xj , gj([X1:n−1|Xn]))

subject to 0 � Xn � 1.
(3)

We solve it using L-BFGS-B [4] and set thresholds on Xn

to predict the final state of the Blicket machine.
We also test a constraint-based method [18, 62] and

the well-known Rescorla–Wagner (RW) model [53] for
the causal reasoning backend. The constraint-based method
(denoted as NS-PC) first uses the state-of-the-art PC algo-
rithm [62] to test conditional independence and search for
an underlying causal DAG among objects and the Blicket
machine. It then finds the parent nodes for the Blicket ma-
chine and estimates its conditional probability table, which
can be directly read out for each query configuration. For
the RW model (denoted as NS-RW), we simply treat co-
occurrence of an object with an activated Blicket machine
as its Blicketness. A query configuration’s state is predicted
based on the maximum Blicketness of all objects in it.

5. Experiments

5.1. Experimental Setup

ACRE is equally partitioned into 3 splits, i.e., the I.I.D.
split, the compositionality (comp) split, and the systematic-
ity (sys) split. Each of the splits contains 10, 000 problems.
We further divide each split into 10 folds, with 6 folds
for training, 2 folds for validation, and 2 folds for test-
ing. All models are trained on the training sets, with hyper-
parameters tuned on the validation sets. Results are reported
for the best models on the test sets. In particular, we report
two metrics: query accuracy and problem accuracy. The for-
mer measures how a model performs on each query, and
the later whether a model correctly answers all 4 queries in
a problem instance. Note that based on the label distribu-
tion shown in Fig. 3, a simple strategy of always predict-
ing activation will yield around 37.3% query accuracy and
1.87% problem accuracy, and a completely random guess
would yield 33.3% query accuracy and 1.19% problem ac-
curacy. All neural models, including the neural perception
frontend in the neuro-symbolic models, are implemented in
PyTorch [47] and optimized using Adam [33]. All experi-
ments were run on an Nvidia Titan XP GPU.

5.2. Performance on the I.I.D. Setting

The first portion of Table 1 reports how various mod-
els perform under the I.I.D. setting of ACRE. Surprisingly,
existing state-of-the-art methods for the abstract spatial-
temporal reasoning task [68, 77] do not fare much bet-
ter (even worse in certain cases) than a simple CNN-MLP
model. In particular, MXGNet performs slightly worse than
a random guess, only correctly answering 1% of problems.
With a relational module, WReN is on par with the CNN-
MLP model. CNN-LSTM and ResNet-MLP achieve similar
performance, with the LSTM-based reasoning model per-
forming better in problem accuracy. Of all pure neural mod-



Method MXGNet LEN CNN-MLP WReN CNN-LSTM ResNet-MLP CNN-BERT NS-RW NS-PC NS-Opt

I.I.D. Qry. 33.01% 38.08% 40.86% 40.39% 41.91% 42.00% 43.56% 46.61% 59.26% 66.29%
Pro. 1.00% 2.05% 3.25% 2.30% 3.60% 3.35% 3.50% 6.45% 21.15% 27.00%

Comp. Qry. 35.56% 38.45% 41.97% 41.90% 42.80% 42.80% 43.79% 50.69% 61.83% 69.04%
Pro. 1.55% 2.10% 2.90% 2.65% 2.80% 2.60% 2.40% 8.10% 22.00% 31.20%

Sys. Qry. 33.43% 36.11% 37.45% 39.60% 37.19% 37.71% 39.93% 42.18% 62.63% 67.44%
Pro. 0.60% 1.90% 2.55% 1.90% 1.85% 1.75% 1.90% 4.00% 29.20% 29.55%

Table 1. Performances of models on the I.I.D. split, the compositionality split (Comp.), and the systematicity split (Sys.) in ACRE. We
report 2 evaluation metrics: query accuracy (Qry.) and problem accuracy (Pro.). Please refer to the experimental setup for details.

els, the BERT model achieves the best in query accuracy,
slightly overtaken by CNN-LSTM in problem accuracy.

Among the 3 neuro-symbolic models tested, NS-RW
strictly follows the covariation strategy in solving the causal
discovery problems. We notice that such a simple causal
reasoning method can only handle less than half of ACRE
queries and less than 10% of ACRE problems, verifying
and necessitating our efforts to create a benchmark for
causal induction beyond covariation. NS-PC serves as an
oracle model for causal discovery as it adopts independence
tests and search methods. However, our experiments show
that NS-PC is inferior to the optimization-based NS-Opt
method. We believe such a result is due to the sparse and
limited observation in ACRE problems, making it difficult
to perform reliable independence tests. This challenge fur-
ther perplexes the underlying mechanisms on how humans,
even toddlers, derive the hidden relations so quickly and
accurately from scarce observation. The proposed NS-Opt
method successfully handles two-thirds of the queries but
still has much room to improve on problem accuracy.

5.3. Performance on the O.O.D. Settings

The second and third portions of Table 1 depict the mod-
els’ performance on the O.O.D. settings, i.e., composition-
ality and systematicity. Comparing both query accuracy and
problem accuracy in the compositionality split with those in
the I.I.D. setting, we notice that models’ performances have
no significant changes. Considering the fact that the train-
ing set and the test set in the compositionality split con-
tain completely different object attribute combinations, it
is likely that neural models indeed have emerged a certain
level of causal reasoning, though not perfect, to solve the
problems, rather than entirely relying on statistical visual
features from the training set. However, their underlying
representation of causal knowledge is still elusive; future
work is in need to discover their precise mechanisms.

Even if neural models emerged a causal reasoning strat-
egy, such a strategy is not systematic, as demonstrated in the
comparison between the systematicity split and the I.I.D.
split. Note that only the distributions of an activated ma-
chine are different in the training set and the test set of the
systematicity split, while the solutions can be derived in
the same way. We note that except for the NS-PC model
and the NS-Opt model, all other models experience per-

formance drop; some of them are even worse than always
predicting “activated”. This observation echoes the recent
empirical results that pure neural models still struggle to
systematically generalize [13, 37, 54].

Across the 3 splits, we also notice the conspicuously
large gap between the query accuracy and problem accu-
racy. We hypothesize that the result indicates the existence
of the bucket effect, which we verify in the next section.

5.4. A Closer Look at Queries

The drastic difference between query accuracy and prob-
lem accuracy motivates us to perform a closer inspection on
how models perform on each type of queries; see Table 2
for a summary of our experimental results.

In general, we notice that neural models tend to cap-
ture causal relations by covariation. Most of them excel
in query types directly solvable by this strategy, achiev-
ing the best performance in direct queries or indirect
queries or both across the different splits. This effect is
particularly significant in CNN-based reasoning models
(CNN-MLP and ResNet-MLP) that even reach 87% accu-
racy for indirect queries by learning from only target la-
bels. However, in contrast to the satisfactory performance
on covariation-based reasoning, they are unable to han-
dle the screening-off queries and the backward-blocking
queries, which go beyond co-occurrence. Specifically, the
best-performing neural model (CNN-BERT) embarrass-
ingly fails on screening-off queries in the systematicity
split, while CNN-based reasoning models also struggle in
these settings. Among the relation-module-based models
(MXGNet, LEN, and WReN), LEN and WReN are rel-
atively stable across the different types of queries. How-
ever, with a multiplex graph, MXGNet shows different dy-
namics, learning best in the backward-blocking queries but
counter-intuitively underperforming in the direct and in-
direct queries. It is also worth noting that causal reason-
ing that supports backward-blocking for MXGNet does not
consistently enable screening-off reasoning. A converse ob-
servation is found in CNN-LSTM: The model shines in
screening-off reasoning but fades in backward-blocking in
2 of the splits. Taking these results together, we hypothesize
that pure neural visual reasoning systems have not yet mas-
tered causal induction to a comparable level humans dis-
played in the developmental studies [22, 61].

Performance differences in queries among the neuro-



Method MXGNet LEN CNN-MLP WReN CNN-LSTM ResNet-MLP CNN-BERT NS-RW NS-PC NS-Opt

I.I.D.

D.R. 27.73% 49.07% 55.56% 51.04% 48.20% 54.87% 52.24% 88.88% 84.46% 91.64%
I.D. 29.63% 45.11% 56.31% 41.04% 36.76% 48.37% 44.50% 99.29% 29.33% 69.25%
S.O. 14.88% 33.68% 44.88% 29.75% 53.23% 42.29% 42.59% 7.21% 78.31% 85.37%
B.B. 59.09% 23.91% 9.71% 35.61% 24.91% 21.12% 32.15% 1.66% 20.50% 11.98%

Comp.

D.R. 36.93% 47.58% 57.59% 55.29% 56.58% 62.79% 54.07% 91.74% 89.50% 92.50%
I.D. 55.99% 52.51% 64.38% 66.94% 65.10% 70.01% 46.88% 99.80% 28.66% 76.05%
S.O. 0.00% 18.01% 31.66% 8.44% 19.69% 30.52% 40.57% 4.07% 85.28% 88.33%
B.B. 52.35% 33.63% 15.26% 35.99% 29.27% 8.54% 28.79% 0.67% 15.21% 13.48%

Sys.

D.R. 15.24% 46.22% 70.79% 53.56% 42.57% 65.19% 55.97% 92.44% 89.76% 94.73%
I.D. 5.42% 47.90% 87.61% 71.35% 37.61% 85.07% 68.25% 99.89% 57.08% 88.38%
S.O. 42.58% 30.91% 11.57% 16.80% 63.28% 9.57% 0.00% 0.20% 73.93% 82.76%
B.B. 56.38% 24.89% 3.60% 31.62% 8.70% 13.38% 45.59% 0.46% 24.88% 16.06%

Table 2. A closer look at how models perform on each type of queries on different splits of ACRE: direct (D.R.), indirect (I.D.), screening-
off (S.O.), and backward-blocking (B.B.).

symbolic models potentially point out an Achilles’ heel for
solving abstract causal reasoning problems. NS-RW’s in-
ferior performance is expected as the model only consid-
ers covariation and will surely fail the screening-off and
backward-blocking queries, despite its success in direct and
indirect queries. NS-RW’s results also serve as a sanity
check for queries in ACRE that nearly all of the direct and
indirect queries can be solved by covariation (except for a
minimum number of interventional cases) and nearly none
of the screening-off and backward-blocking queries can
(except for a minimum number of coincidences). Compar-
ing NS-PC and NS-Opt, we notice that both models achieve
fair performance on direct queries and the screening-off
queries. However, the latter fares significantly better in in-
direct queries. We argue that the strict independence tests
and search methods used in PC make the model less robust
against noise, especially under the sparse-and-limited-data
scenario. What is evident in both models, and more signif-
icant in NS-Opt, is their inability in differentiating the su-
perficial correlation with an activated machine and the un-
determined Blicketness within. This close inspection also
indicates that adequately addressing the issue can further
improve the general causal reasoning performance. By com-
paring the low accuracy of NS-Opt and pure neural net-
works in backward-blocking, we hypothesize that a poten-
tial solution to causal reasoning would be to combine the
best of both worlds in learning and symbolic reasoning,
keeping both the learnability of neural methods and the in-
terpretability of symbolic methods.

6. Conclusion
In this work, we present a new dataset for Abstract

Causal REasoning (ACRE), aiming to measure and improve
causal induction in visual reasoning systems. Apart from
the inductive reasoning nature, the defining feature of the
ACRE dataset is the requirement to perform causal reason-
ing beyond covariation. Inspired by the established stream
of research on Blicket experiments, the ACRE dataset is
grounded on a similar setting using the synthetic CLEVR
universe [32]. To measure causal induction beyond covari-

ation, we challenge a visual reasoning system with 4 types
of queries in either independent scenarios or interventional
scenarios: direct, indirect, screening-off, and backward-
blocking. The first 2 types of queries can be answered by
counting co-occurrence, while the last 2 types require in-
depth causal representation. To better measure generaliza-
tion in causal discovery, we further propose the composi-
tionality and the systematicity O.O.D. split.

We devise an optimization-based neuro-symbolic
method to equip a visual reasoning system with the causal
discovery ability. In particular, we decompose the model
into a neural perception frontend and a causal reasoning
backend. The neural perception frontend parses a given trial
using a Mask RCNN [27], whereas the causal reasoning
backend performs continuous optimization for causal
discovery [78, 79]. The context trials are leveraged to
learn a generalized SEM, and the answer to a query trial is
solved by finding the best value to fit the SEM. As the first
attempt, we separately train the two components, leaving
the problem of closing the loop between visual perception
and causal discovery for future work [39, 74, 75].

Existing visual reasoning systems’ causal induction ca-
pability has been benchmarked on ACRE. Specifically, we
notice that pure neural models tend to perform causal rea-
soning by capturing the statistical correlation, achieving sat-
isfactory results on direct and indirect queries but failing
on screening-off and backward-blocking ones. For neuro-
symbolic models, we notice that all of them struggle on
backward-blocking and that the sparse and limited observa-
tion further adds to the complexity of the problem. Com-
paring performances of these 2 types of models on vari-
ous queries, we hypothesize that further combining learning
and symbolic reasoning would be a promising direction for
causal induction and broader causal reasoning problems.

At length, we hope challenges in this causal reason-
ing task would call for attention into visual systems with
human-level spatial, temporal, and causal reasoning ability.
Acknowledgement: The work reported herein was sup-
ported by ONR MURI N00014-16-1-2007, DARPA XAI
N66001-17-2-4029, and ONR N00014-19-1-2153.
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