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Abstract

While recent studies on semi-supervised learning have
shown remarkable progress in leveraging both labeled and
unlabeled data, most of them presume a basic setting of the
model is randomly initialized. In this work, we consider
semi-supervised learning and transfer learning jointly,
leading to a more practical and competitive paradigm that
can utilize both powerful pre-trained models from source
domain as well as labeled/unlabeled data in the target do-
main. To better exploit the value of both pre-trained weights
and unlabeled target examples, we introduce adaptive con-
sistency regularization that consists of two complementary
components: Adaptive Knowledge Consistency (AKC) on
the examples between the source and target model, and
Adaptive Representation Consistency (ARC) on the target
model between labeled and unlabeled examples. Exam-
ples involved in the consistency regularization are adap-
tively selected according to their potential contributions to
the target task. We conduct extensive experiments on pop-
ular benchmarks including CIFAR-10, CUB-200, Indoor-
67 and MURA, by fine-tuning the ImageNet pre-trained
ResNet-50 model. Results show that our proposed adap-
tive consistency regularization outperforms state-of-the-art
semi-supervised learning techniques such as Pseudo Label,
Mean Teacher, and MixMatch. Moreover, our algorithm is
orthogonal to existing methods and thus able to gain ad-
ditional improvements on top of MixMatch and FixMatch.
Our code is available at https://github.com/SHI-Labs/Semi-
Supervised-Transfer-Learning.

1. Introduction
Deep neural networks have achieved great success in su-

pervised learning tasks especially in computer vision [21,
15]. Yet, this heavily relies on a large amount of labeled
data. As data annotation is usually expensive and time-

*Equal contributions and by alphabetical order. † Correspondence.

consuming, Semi-Supervised Learning (SSL), which pur-
sues the goal of effectively leveraging both labeled and
unlabeled data, is widely studied. Recent state-of-the-art
methods can be roughly summarized in three categories,
which are consistency based regularization [22, 42], entropy
minimization [12] and pseudo label [23].

While most works focus on the general setting that train-
ing a randomly initialized model from scratch, we consider
a more realistic setting utilizing the powerful pre-trained
model which is adequately fit on large-scale datasets for
general purposes such as ImageNet [6] and Places365 [54].
These pre-trained models are empirically proven to have ex-
cellent transferability on various down-streaming tasks [49]
and can significantly improve the generalization capacity
of target tasks especially when the sample size is relatively
small. Moreover, they are free to fetch and can be efficiently
fine-tuned to adapt to new tasks. A recent study [55] points
out that the benefit of semi-supervised learning sometimes
may be marginal when fine-tuning a pre-trained model on
the target dataset. However, the investigation of a system-
atic solution on DNN-based semi-supervised transfer learn-
ing has rarely been delved into.

In this work, we propose a semi-supervised transfer
learning framework beyond a simple combination of these
two kinds of algorithms. We extend the effective idea of
consistency regularization in semi-supervised learning to
adapt to inductive transfer learning, where the pre-trained
weight learned by the source task is available. Specifi-
cally, our method is composed of two essential components:
(1) Adaptive Knowledge Consistency (AKC) on the exam-
ples between the source and target model. We utilize tar-
get examples to transfer knowledge from the pre-trained
model and help generalize the target model inspired by re-
cent studies about knowledge distillation [51] and transfer
learning [24]. To cope with the risk of negative transfer [43]
caused by the discrepancy between the source and target
task, we use the knowledge adaptive sample importance for
proper cross-task knowledge consistency regularization. In-
tuitively, we are inclined to select examples lying in the
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trusted region of the source model. (2) Adaptive Represen-
tation Consistency (ARC) on the target model between la-
beled and unlabeled examples. In transfer learning applica-
tions, labeled examples are often insufficient and thus they
are prone to be projected onto an inappropriate representa-
tion with only the supervision of their labels. To tackle this
problem we utilize ample unlabeled examples to adjust the
representation produced by supervised learning to the real
target domain. This is achieved by minimizing their Max-
imum Mean Discrepancy (MMD) distance. Furthermore,
we adaptively decide the sample set used for restricting the
representation distance. An intuitive explanation about the
motivation of ARC is showed in Appendix A.3.

We evaluate our method on several semi-supervised
transfer learning settings considering various typical scenar-
ios. We use popular datasets CIFAR-10, CUB-200-2011,
MIT Indoor 67, and MURA,covering domains including
objects, animals, scenes and, radiographs.

Our main contributions can be summarized in the fol-
lowing points.

• To the best of our knowledge, we are the first to pro-
pose an advanced end-to-end semi-supervised transfer
learning framework for deep neural networks. Consid-
ering incorporating inductive transfer learning, our re-
search is closer to the actual problems in practice. Pre-
vious empirical study [55] provided observations and
understandings by directly combining SSL with fine-
tuning, but did not develop effective algorithms.

• We introduce adaptive consistency regularization to
improve semi-supervised transfer learning by exploit-
ing the characteristics of both semi-supervised learn-
ing and transfer learning, including cross-task knowl-
edge distillation with adaptive sample importance
named Adaptive Knowledge Consistency and repre-
sentation adaptation for supervised learning using se-
lected unlabeled data as the reference named Adaptive
Representation Consistency.

• We conduct extensive experiments and show that the
proposed adaptive consistency regularization is su-
perior to classic semi-supervised learning algorithms
such as Pseudo Label, Mean Teacher, and MixMatch
on various semi-supervised transfer learning tasks.
Furthermore, our method is shown orthogonal to exist-
ing methods and can obtain additional improvements
even on top of MixMatch and FixMatch, which com-
bine several state-of-the-art SSL techniques.

2. Related Work
2.1. Deep Transfer Learning

Previous research [34] proposed a comprehensive survey
dividing transfer learning into three categories, which are
inductive transfer learning, transductive transfer learning,

and unsupervised transfer learning, according to the rela-
tionship between the source and target domain, and whether
examples are labeled in either domain. In the deep learning
community, most concerned transfer learning tasks include
fine-tuning, domain adaptation, and few-shot learning. In
this paper, we focus on fine-tuning as the main method,
which belongs to inductive transfer learning according to
[34].

Fine-tuning. Previous research pointed out that deep
neural networks well-trained on large scale datasets for gen-
eral purpose show great transferability on various down-
stream tasks [49]. Thus fine-tuning a pre-trained model
to adapt new tasks has become a popular paradigm for
many real world applications [18]. To further improve the
effectiveness, some methods are investigated to improve
the knowledge exploitation of the pre-trained model during
fine-tuning, instead of merely treating it as a better start-
ing point than random initialization. For example, [24] ar-
gued that the starting point should be used as the reference
to regularize the learned weight. [51] demonstrated that
knowledge distillation through attention map can be applied
to different tasks and useful to enhance the performance of
transfer learning. [26] proposed a channel level attention
for knowledge distillation from the source to target task.
Besides the idea of utilizing the pre-trained model, there
are studies from other perspective, such as sample selec-
tion [10, 5, 31], dynamic fine-tuning path selection [53, 14]
and suppressing negative transfer [46, 25].

Domain Adaption. Different from fine-tuning, domain
adaptation [38] copes with the problem of sample selection
bias between the training and test data. An important con-
cept in classic domain adaptation methods is to generate do-
main invariant representation over the training set. Some
earlier studies [11, 17] proposed sample re-weighting algo-
rithms to adjust the decision boundary learned by the train-
ing examples to adapt to the target domain. Another use-
ful idea is to explicitly minimize the distribution distance
between the source and target domain. This kind of meth-
ods [33, 28, 47] intend to learn a proper feature transfor-
mation that can simultaneously project both domains into
a shared representation space. Our work is highly inspired
by the critical ideas developed for domain adaptation such
as sample re-weighting and representation adaptation, while
the task is rather different.

Few-shot Learning. Few-shot learning has been paid
to increasing attention in recent years as it aims at imitat-
ing human intelligence by which knowledge can be gener-
alized provided only several examples. The mainstream re-
search direction is related to meta learning [7, 40]. It is quite
different from regular transfer learning paradigms that the
transferred knowledge is how to learn rather than what (e.g.
model parameter) has learned. Recent work [50] designed a
semi-supervised few-shot learning framework TransMatch
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by incorporating Imprinting and MixMatch. They demon-
strated that utilizing unlabeled examples makes their frame-
work surpass the purely supervised few-shot learning com-
petitors.

2.2. Semi-Supervised Learning

There exist a vast number of classic works on semi-
supervised learning, and most of them fall into one of the
three main mechanisms[32]: consistency based regulariza-
tion, entropy minimization, and pseudo label. All these
methods share an intuition to use additional unlabeled data
to exploit the underlying structure, which usually could hint
the separation of samples whose labels we want to distin-
guish. We only briefly discuss the branch of consistency
based regularization, which is the most related to our work.

Consistency regularization is based on the hypothesis
that the decision boundary is not likely to pass through high-
density areas. This hypothesis results in a specific principle
that a sample and its close neighbours are expected to have
the same label. This forms the basic motivation of consis-
tency based methods, as well as many self-supervised learn-
ing approaches, which all care about the utilization of unla-
beled data. For example, the Π model [22] arguments the
input sample with different noises, and adds a regulariza-
tion term to reduce the discrepancy between outputs with
respect to the original input and its perturbed peers. Tempo-
ral Ensembling [22] and Mean Teacher [42] involve ensem-
ble learning to promote the quality of labels of the perturbed
samples. Specifically, they use the moving average weights
or predictions. Recently, Interpolation Consistency Train-
ing (ICT) [44] improved the perturbation method by using
Mixup with another unlabeled sample instead of adding ran-
dom noise. This is regarded as a more efficient transforma-
tion when dealing with low-margin unlabeled points. Mix-
Match [2] further proposed artificial label sharpening for
unlabeled data and mixing both labeled and unlabeled data
in Mixup. FixMatch [41] continued the trend to combine
diverse mechanisms for exploiting unlabeled examples.

Our work does not pursue to search for the best choice
among those general semi-supervised learning algorithms
in the transfer learning setting. Instead, we intend to de-
velop more targeted strategies utilizing the properties of the
combination of semi-supervised and transfer learning prob-
lems.

2.3. Semi-Supervised Transfer Learning

Semi-supervised transfer learning can be regarded as a
natural extension of regular semi-supervised learning by
taking a related auxiliary task into consideration or as an
extension of regular transfer learning with only a propor-
tion of the labeled target examples. There are few works
targeting this sort of problem. Early work [39] investi-
gated this problem under the setting of the traditional ma-

chine learning framework. They proposed an improved co-
training method for inductive transfer learning with instance
re-weighting according to the training error. Two diverse k-
Nearest-Neighbour (kNN) learners with different values of
k are trained collaboratively. Recently, [55] presented an
empirical study showing that the gains from state-of-the-
art SSL techniques decrease or sometimes even disappear
compared with a fully-supervised baseline when we fine-
tune the target task starting from a pre-trained model. While
these observations pointed out the necessity of considering
this more competitive and practice baseline, they did not
aim at inventing a solution. [19] imposed the Lautum reg-
ularization with which they improved the pre-training stage
using examples from both the source and target task. Al-
though the accuracy outperforms several baselines, the re-
quirements of accessing the source dataset and an extra pre-
training for every target task are usually unrealistic.

Some recent studies investigated semi-supervised trans-
fer learning on specific tasks. [48] discussed the task of
rain removal with a framework of semi-supervised trans-
fer learning. [47] introduced a semi-supervised domain
adaptation method for semantic segmentation. [8] studied
pseudo-labeling method on unsupervised domain adapta-
tion for person re-identification.

Different from those works, this paper introduces a novel
framework for general semi-supervised transfer learning.

3. The Proposed Framework

In this section, we introduce the proposed semi-
supervised transfer learning framework in detail*. The
flowchart of the framework is illustrated in Figure 1.

Problem definition: In inductive transfer learning, we
have the source dataset Ds and the target dataset Dt cor-
responding to different tasks. A typical deep neural net-
work f can be split into two parts: a representation function
Fθ and a task-specific function Gφ. Fθ is able to contain
general knowledge if trained over a dataset with diverse se-
mantics and thus is transferable. While Gφ has the partic-
ular architecture with respect to the task attribute such as
the number of classes. We denote the parameters of the
representation function (called feature extractor in our task)
and task-specific function (called classifier in our task) pre-
trained over the source dataset as θ0 and φ0 respectively.
For the target dataset, we denote Dlt = {x1,2. . . n

l } as the
labeled examples and Dut = {x1,2. . . ,m

u } as the unlabeled
examples. Here we ignore the subscript s or t for a spe-
cific example x as we will only use the target dataset after
the pre-training stage. We then define the complete target
dataset Dt = Dlt ∪ Dut and its size is n + m. To solve the
target task, we formalize the general form of the optimizing

*Please check the more detailed illustration of the proposed framework
in Appendix A
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Source feature extractor

Target feature extractor

Target labeled
images

Target unlabeled
images

Source labeled
representation

Source unlabeled
representation

Target labeled
representation

Target unlabeled
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Target classifier

Adaptive Representation 
Consistency
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Adaptive Knowledge 
Consistency

Target unlabeled
prediction

Source labeled
prediction

Source unlabeled
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Cross - Entropy loss

Semi - Supervised
Consistency

Prediction
entropy gate

Figure 1. The framework of adaptive consistency regularization for semi-supervised and transfer learning.

objective as

θ∗, φ∗ = arg min
θ,φ

n∑
i=1

LCE(θ, φ;xil) +R(θ) (1)

, where LCE is the commonly used cross-entropy loss indi-
cating the prediction error and R refers to additional regu-
larization related to the pre-trained parameter θ0, φ0 and the
target dataset Dt. Note that since a labeled example can be
regarded as unlabeled if we ignore its label, we actually use
Dt when we need a set of unlabeled examples.

3.1. Pre-training and Imprinting

We adopt a popular strategy to implement inductive
transfer learning, which is to sequentially learn from the
source and the target dataset. The first step is pre-training.
The representation parameter of the target model is initial-
ized with θ0. We do not discuss other paradigms of utiliz-
ing the source dataset in this paper such as co-training the
source and target dataset like [10].

Although the task-specific function G can not be shared
directly, we borrow the idea of Imprinting from recent low-
shot learning research [35]. Imprinting performs an infor-
mative initialization on G instead of random initialization.
Such knowledge derived from the feature extractor F of
the source model provides a much better starting point to
the target model with immediate good classification perfor-
mance.

3.2. Adaptive Knowledge Consistency

Knowledge distillation is widely studied with the orig-
inal motivation of compressing complex ensembling mod-
els [16]. While recent studies reveal that knowledge distil-
lation can also help improve the identical model [9] over the

same task and even generalize a different task [51, 27, 26].
We adopt the method to distill the knowledge of the source
model through the representation rather than the task-
specific logits output, as the latter is not suitable for han-
dling different tasks. While different from previous studies,
we employ both labeled and unlabeled data as the bridge
of knowledge transfer and impose adaptive sample impor-
tance to prevent negative transfer cause by the discrepancy
between the two datasets. Specifically, we constrain the
weighted Kullback–Leibler divergence (or mean square er-
ror) of outputs between the pre-trained feature extractor Fθ0
and the target feature extractor Fθ using the entire target
datasetDt. In our setting, we denote L = {xil}Bl ⊂ Dlt as a
mini-batch ofBl labeled examples, and U = {xiu}Bu ⊂ Dut
as a mini-batch of Bu unlabeled examples. Formally, the
regularization term of a mini-batch can be written as

RK =
1

Bl +Bu

∑
xi∈L∪U

wiK KL(Fθ0(xi), Fθ(x
i)) (2)

To calculate the sample importance wiK, we leverage the
pre-trained source model with the parameter θ0 and φ0. In
detail, a target example xi is fed forward the pre-trained
model and we obtain the final output post-processed by the
softmax operation, marked as pis = Gφ0(Fθ0(xi)). pis is
a 1-dimensional vector with the length equal to the number
of source classes Cs. We get the weight of sample xi by
calculating the entropy of pis as:

wiK = G(H(pis)) = G(−
Cs∑
j=1

pis,j log(pis,j)). (3)

Where G is an entropy-gate function, which projects calcu-
lated entropy to a value of sample importance. Intuitively,
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the entropy of the output as a probability on different classes
indicates the confidence of the recognition with respect to
the input. In other words, higher output confidence implies
that the input sample is more likely to fall into the source
model’s trust region and consequently the knowledge about
this sample is reliable to the target model. In our imple-
mentation, we perform a hard filter according to the sample
importance with a pre-determined threshold value εK so as
to reduce the extra computation burden. Sample importance
wiK can be written as a binary value of:

wiK = I(H(pis) ≤ εK) (4)

The sample importance wiK = 1, only if the corresponding
entropy is lower than pre-determined threshold H(pis) ≤
εK.

3.3. Adaptive Representation Consistency

In this part, we introduce another imposed regularizer
named adaptive representation (distribution) consistency,
by which we intend to tackle the problem of over-fitting
the insufficient labeled target samples. Motivated by the
fact that unlabeled samples themselves contain potential
information about the data structure, we utilize unlabeled
target samples to help labeled samples learn representa-
tions with stronger generalization ability. Different from
knowledge distillation incorporating the alignment at the
sample level, the representation consistency affects train-
ing at the distribution level. Specifically, we use the clas-
sical metric Maximum Mean Discrepancies (MMD) [3] to
measure the distance between the representations of labeled
and unlabeled data. Denoting V = {v1,v2, ...,vn} and
U = {u1,u2, ...,um} as random variable sets with dis-
tributions Qv and Qu, an unbiased estimate of the MMD
between Qv and Qu compares the square distance between
the empirical kernel mean embeddings as

MMD(Qv, Qu) = ‖ 1

m

m∑
i=1

κ(vi)− 1

n

n∑
j=1

κ(uj)‖2,

(5)
where κ refers to the kernel, as which a Gaussian radial
basis function (RBF) is usually used in practice [13, 29].

In our case, we need to measure the MMD between la-
beled representation {Fθ(xil)|xil ∈ L} distribution and un-
labeled representation {Fθ(xiu)|xiu ∈ U} distribution. Nev-
ertheless, this restrain raises a severe risk because the tar-
get model is progressively learned. Thus even the repre-
sentation distribution obtained by sufficient unlabeled ex-
amples is inaccurate at earlier stages of the training pro-
cedure. To overcome this kind of problem, we involve an
adaptive sample selection method similar to that in adap-
tive knowledge consistency. Specifically, we compute the
entropy of the softmax output given a sample as the input
and regard the entropy as the target model’s confidence on

this sample. Only confident samples will be employed to
regularize the representation of labeled data. In detail, a
labeled example xil (and an unlabeled example xiu) is fed
forward the target model and we obtain the final output as
pil = Gφ(Fθ(x

i
l)) (and piu = Gφ(Fθ(x

i
u))), then we get

the gate state (whether selection or not) of the example by
calculating the entropy of prediction as H(pil) (and H(piu))
considering predefined threshold value εR. Denoting set of
selected labeled representation as Fl and set of selected un-
labeled representation as Fu:

Fl = {Fθ(xil)|xil ∈ L and H(pil) ≤ εR}
Fu = {Fθ(xiu)|xiu ∈ U and H(piu) ≤ εR}

(6)

Note that the sample selection result is adaptively chang-
ing as the target model progressively fits more training ex-
amples. Considering that the number of selected samples in
a mini-batch may not be adequate to calculate a convinced
distribution, we impose a replay buffer to save recent se-
lected confident examples. The replay buffer enables us to
calculate MMD with more data, and which is helpful to ap-
proximate full representation distribution with recent some
mini-batches representation distribution. The pseudo-code
of the replay buffer is quite straightforward, as following:

Labeled Buffer.update(Fl)
Unlabeled Buffer.update(Fu)

F?l = Labeled Buffer.get last k()

F?u = Unlabeled Buffer.get last k()

(7)

Denoting QF?
l

and QF?
u

as the representation distribu-
tion generated from F?l and F?u , we give the adaptive rep-
resentation consistency as the following form:

RR = MMD(QF?
l
, QF?

u
). (8)

3.4. Summarization of the Framework

We finally present the complete adaptive consistency
regularization consisting of AKC and ARC as

R(θ) = λKRK + λRRR. (9)

Where λK and λR are weighted factors for AKC and ARC.
If we incorporate cross-entropy loss LCE for labeled data
and semi-supervised consistency loss LS for unlabeled data
(just like MixMatch, FixMatch, Pseudo-labeling ...), then
the final loss function would become:

L(θ, φ) =
1

n

n∑
i=1

LCE(θ, φ;xil) + λSLS({xiu})+

λKRK({xil}, {xiu}) + λRRR({xil}, {xiu})
(10)

Where λS is a weighted factor for semi-supervised consis-
tency loss. After initializing with the pre-trained source
model and imprinting, the remaining fine-tuning is per-
formed in an end-to-end manner.
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4. Experiments
4.1. Experimental setup

4.1.1 Dataset configuration

We evaluate our proposed adaptive consistency regular-
ization methods and compare with state-of-the-art semi-
supervised learning methods on several public datasets
including the commonly used semi-supervised learning
dataset CIFAR-10 [20] and transfer learning benchmarks
CUB-200-2011[45], MIT Indoor-67[36] and musculoskele-
tal radiographs dataset MURA[37]. ImageNet[6] is used as
the source task. Note that CIFAR-10, Indoor-67 and CUB-
200-2011 have some classes semantically overlaps with Im-
ageNet, while MURA is a medical image dataset with a
large domain mismatch from ImageNet. Detailed descrip-
tions about these datasets are listed in Appendix B.1.

4.1.2 Baseline

We compare proposed adaptive consistency regularization
methods with the following state-of-the-art semi-supervised
learning methods. In order to make a fair comparison
in semi-supervised transfer learning tasks, we incorpo-
rate these semi-supervised learning methods with the same
strategies including initialization with imprinting and fine-
tuning all layers.

• Standard fine-tuning on labeled dataset: This is equiv-
alent to a pure supervised manner where unlabeled ex-
amples are not used.

• Pseudo-labeling [23]: It proceeds by producing
“pseudo-labels” for unlabeled training set using the
prediction function itself over the course of training.

• Mean-teacher [42]: It obtains more stable target pre-
dictions for unlabeled training set. Specifically, it sets
the target labels using an exponential moving average
of parameters from previous training steps. The rep-
resentation consistency between the original and per-
turbed unlabeled samples is encouraged, as well as the
standard cross-entropy minimization for labeled sam-
ples.

• MixMatch [2]: In addition to the consistency regu-
larization, it proposes artificial label sharpening for
pseudo-labeling on unlabeled data and mixing both la-
beled and unlabeled data in Mixup during the process
of fine-tuning.

• FixMatch [41]: FixMatch further improves on top of
the above techniques. It computes an artificial label
given a weakly augmented version of a given unla-
beled image. Then it uses the pseudo-label to enforce
the cross-entropy loss against the model’s output for a
strongly-augmented version of the unlabeled image.

It should be noted that our proposed adaptive consis-
tency regularization techniques are theoretically compatible
with other semi-supervised methods. Thus, we also evalu-
ate our proposed regularization techniques integrated with
MixMatch or FixMatch.

4.1.3 Training strategy

On the transfer learning benchmarks, we use ImageNet as
our source dataset and use ResNet-50[15] pre-trained model
as our source model by default unless explicitly specified.
We fine-tune the ImageNet pre-trained model on CUB-200-
2011, Indoor-67, and MURA datasets with labeled and un-
labeled samples. We use SGD with momentum as the opti-
mizer to train the target model 200 epochs. The momentum
rate is set to be 0.9, the initial learning rate is 0.001 (ex-
cept that the initial learning rate is 0.01 for CUB-200-2011)
and the mini-batch size is 64 for both labeled and unlabeled
dataset. For a learning rate schedule, we use a cosine learn-
ing rate decay[30] which sets the learning rate to

ηt = η0cos(
7πt

16T
) (11)

where η0 is the initial learning rate, t is the current train-
ing step, and T is the total number of training steps. For
our semi-supervised fine-tuning method, we set the param-
eters of AKC and ARC as follows. We set the regulariza-
tion weight factors as λK = 1 and λR = 30, and adaptive
thresholds as εK = 0.7 · log(Cs) and εR = 0.7 · log(Ct).
WhereCs andCt refer to the class number of source dataset
and target dataset.

On the CIFAR-10 experiment, following the experiment
setting by [41], we use the same network architecture Wide
ResNet-28-2 [52] and training protocol, including the op-
timizer, learning rate schedule, data preprocessing, across
all SSL methods. In the pre-training procedure, we train
our Wide ResNet-28-2 model on ImageNet downsampled
to 32 × 32 [4] (the native image size of CIFAR-10). The
top-1 classification error rate is reported for clear demon-
stration.

4.2. Results

4.2.1 Results on CUB-200-2011

The results of adaptive knowledge consistency (AKC),
adaptive representation consistency (ARC), and baseline
methods on CUB-200-2011 dataset are listed in Table 1.
The method of combining AKC with ARC achieved best
or comparable performance among previous-best baseline
methods, especially in the case that labeled samples are
fewer. For example, when the size of the labeled dataset
is 200, the AKC+ARC method relatively improves the ac-
curacy by 27.8% compared to MixMatch. One of the advan-
tages of our proposed method is its compatibility. AKC and
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Methods \#label 2000 1000 400 200
Supervised labeled 68.29 53.26 28.82 17.90

Pseudo label 71.38 49.50 25.65 10.42
Mean teacher 70.19 51.78 27.01 13.79

MixMatch 73.84 60.56 32.79 22.66
FixMatch 72.76 58.30 31.03 21.86

AKC 71.33 58.42 38.71 28.57
ARC 72.95 61.01 41.13 28.47

AKC+ARC 73.65 62.01 41.69 28.96
MixMatch+AKC+ARC 77.51 67.26 43.80 29.55
FixMatch+AKC+ARC 75.59 63.36 40.83 28.25

Table 1. Classification accuracy of proposed AKC, ARC, and
baselines on CUB-200-2011 dataset.

ARC regularization terms could be combined with other
semi-supervised learning methods, like MixMatch and Fix-
Match. By utilizing AKC and ARC regularization tech-
niques in MixMatch, the performance increased notably.
For the fine-tuning with 2000 (and 200) labeled sample,
the performance of MixMatch is increased by 5.0% (and
30.40%) than vanilla MixMatch. We speculate that one ma-
jor reason for the effectiveness of AKC and ARC is that
AKC and ARC could effectively prevent severe over-fitting
when the number of labeled examples is small. †

Results on Indoor-67 are presented in Appendix B.2.

4.2.2 Results on MURA

The results of MURA dataset are listed in Table 2. Al-
though MURA is a medical image dataset with a large do-
main mismatch from ImageNet, the AKC and ARC can
also improve the performance. By utilizing AKC and ARC
regularization techniques in FixMatch, the method of Fix-
Match+AKC+ARC achieves the best performance in both
cases of 1000 and 400 labeled samples.

Methods \#label 1000 400
Supervised labeled 71.95 67.54

Pseudo label 73.99 67.56
Mean teacher 72.20 65.53

MixMatch 73.85 68.94
FixMatch 75.10 69.43

AKC 73.78 70.44
ARC 73.91 71.19

AKC+ARC 73.94 71.34
MixMatch +AKC+ARC 74.72 70.94
FixMatch +AKC+ARC 76.60 72.14

Table 2. Classification accuracy of proposed AKC, ARC, and
baselines on MURA dataset.

†We notice that FixMatch [41] is not superior to MixMatch on CUB-
200-2011 and Indoor-67. This observation is partially consistent with the
empirical investigation by [55] that the benefit of SSL algorithms may be
marginal when we transfer the source model to a similar target task.

4.2.3 Results on CIFAR-10

Method \#label 4000 250 40
Supervised labeled 7.85 15.92 27.75

Pseudo label 7.04 12.92 25.62
Mean teacher 6.43 14.03 24.67

MixMatch 5.52 10.01 21.50
FixMatch 4.24 5.04 9.05

AKC 6.72 14.49 24.51
ARC 7.07 15.19 25.13

AKC+ARC 6.55 13.93 24.17
MixMatch +AKC+ARC 4.92 8.95 18.90
FixMatch +AKC+ARC 4.19 4.99 7.62

Table 3. Comparison of error rate using proposed AKC, ARC, and
baselines on CIFAR-10 dataset.

The results of adaptive knowledge consistency (AKC),
adaptive representation consistency (ARC), and baseline
methods on CIFAR-10 dataset are listed in Table 3. By
utilizing AKC and ARC regularization techniques in Fix-
Match, the method of FixMatch+AKC+ARC achieves the
best performance in both cases of 4000, 250, and 40 labeled
samples. By utilizing AKC and ARC regularization tech-
niques in MixMatch, the performance increases notably.
When fine-tuning with 250 labeled samples, the error rate
of MixMatch is decreased by 10.59% if we impose AKC
and ARC in it. For the previous-best method FixMatch, the
proposed method still improves the performance, especially
in very few labeled data training.

Note that when 4000 examples (only 8% of labeled data)
are labeled, FixMatch achieves even lower top-1 error rate
(4.24%) than fully supervised learning from scratch using
all 50000 examples (5.01%), indicating that FixMatch em-
ploys advanced techniques beyond the mere utilization of
unlabeled data. Therefore, it’s reasonable that additional
improvements will not be remarkable on top of such a com-
petitive baseline. ‡

4.2.4 Ablation Study

Adaptiveness of our proposed AKC and ARC regulariza-
tion methods is affected by threshold value εK and εR. If
εK = 0 (and εR = 0), the AKC (and ARC) equals to being
removed since non of the sample was selected to calculate
the regularization term. If εK = max(H(ps)) = log(Cs)
(and εR = max(H(pt)) = log(Ct)), the AKC (and ARC)
degenerates to non-adaptive regularization terms with cal-
culating consistency on all samples.

We investigate the performance of AKC under differ-
ent εK on CUB-200-2011 dataset, as shown in Table 4.
As can be seen, AKC achieves better performance with

‡We presented the effectiveness of transfer learning in low-data semi-
supervised learning on CIFAR-10 in Appendix B.5
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εK/log(Cs) 0 0.3 0.5 0.7 1.0
2000 labels 68.29 70.33 70.74 71.33 70.70
400 labels 28.82 31.27 33.51 38.71 34.62

Table 4. Performance of proposed AKC under different εK on
CUB-200-2011 dataset with 2000 and 400 labeled samples.

εK = 0.7 · log(Cs). This shows the effectiveness of ”adap-
tive” method , especially for the case of 400 labeled sample,
adaptive knowledge consistency (with εK = 0.7 · log(Cs)
) outperformed standard ”non-adaptive” knowledge consis-
tency (with εK = log(Cs) ) by 11.8%.

We also investigate the performance of ARC under dif-
ferent εR on CUB-200-2011 dataset and get similar obser-
vations as AKC, as shown in Table 5. Thanks to adap-
tiveness, adaptive representation consistency performs bet-
ter than non-adaptive representation consistency which uses
all samples. In the case of 400 labeled sample, ARC with
εR = 0.5 · log(Ct) outperforms non-adaptive representation
consistency by 5.7%.

εR/log(Ct) 0 0.3 0.5 0.7 1.0
2000 labels 68.29 69.57 71.73 72.95 71.77
400 labels 28.82 34.01 41.88 41.13 39.63

Table 5. Performance of proposed ARC under different εR on
CUB-200-2011 dataset with 2000 and 400 labeled samples.

The actual sample selected ratio in ARC and AKC is
shown in Figure 2 on CUB-200-2011 dataset experiment
with 2000 labeled samples. As can be seen, the sample se-
lected ratio for ARC is gradually increasing in the first 10
epochs from 0.3 to 0.9. Which can be regarded as a kind
of curriculum learning[1]. In the earlier stage of training,
only a few high confident samples were used for labeled
and unlabeled distribution consistency regularization. Af-
ter 10 epochs of training, the sample ratio converges to near
0.9, indicating that some of the low-confident samples are
never used for ARC regularization. This process would be
beneficial for training since some ”very hard” or abnormal
samples might be harmful for generalization. The sample
selected rate of AKC is stable during training as the source
model is frozen during fine-tuning.

Additional experiments on increased accuracy after in-
troducing AKC and ARC are presented in Appendix B.3,
and the experimental time efficiency of AKC and ARC are
reported in Appendix B.4.

4.3. Beyond semi-supervised transfer learning

Albeit the proposed Adaptive Knowledge Consistency
(AKC) and Adaptive Representation Consistency (ARC)
regularization methods are targeted at the semi-supervised
transfer learning scenario, the application of those two regu-
larization methods is not merely limited to semi-supervised
transfer learning tasks.
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Figure 2. Effective sample ratio used in calculating ARC and
AKC.

Method Standard AKC ARC ARC+AKC
Accuracy 81.77 82.79 82.54 83.52

Table 6. Results of AKC and ARC on CUB-200-2011 supervised
transfer learning.

The AKC regularization can be incorporated with other
supervised or unsupervised transfer learning methods since
it does not require any label of the target data. Additionally,
it is also suitable for tasks which involves multiple models,
such as knowledge distillation from a big teacher model to
a small student model.

The ARC regularization is also applicable for semi-
supervised learning tasks training from scratch. Addition-
ally, it can also be used in fully supervised learning, where
we can easily regard the labeled set as the unlabeled set.
Table 6 shows the result of the AKC and ARC regulariza-
tion methods in fully supervised transfer learning in CUB-
200-2011 dataset. Both AKC and ARC improve the perfor-
mance of standard transfer learning.

5. Conclusion
In this paper, we propose two regularization meth-

ods: Adaptive Knowledge Consistency (AKC) between the
source and target model and Adaptive Representation Con-
sistency (ARC) between labeled and unlabeled examples.
We show that AKC and ARC are competitive among state-
of-the-art SSL methods. Furthermore, by incorporating
AKC and ARC with other SSL methods, we achieve the
best performance among several baseline methods on vari-
ous transfer learning benchmarks. Additionally, our adap-
tive consistency regularization methods could be used for
more general transfer learning and (semi-) supervised learn-
ing frameworks.
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Appendix A. Additional Information of Pro-
posed Method

In this paper, we propose two regularization meth-
ods: Adaptive Knowledge Consistency (AKC) between the
source and target model and Adaptive Representation Con-
sistency (ARC) between labeled and unlabeled examples.

A.1. Adaptive Knowledge Consistency

The AKC regularization can be incorporated with super-
vised or unsupervised transfer learning methods. As shown
in Figure 4, we constrain the weighted sample-level consis-
tency (Kullback–Leibler divergence or mean square error)
of feature-representation between the pre-trained source
feature extractor and the target feature extractor using both
the labeled and unlabeled samples. The weight of each sam-
ple was determined by the entropy of the pre-trained source
model’s prediction.

A.2. Adaptive Representation Consistency

The ARC regularization can be used to transfer or learn-
ing from scratch semi-supervised methods. As shown in
Figure 5, we constrain Maximum Mean Discrepancies be-
tween representations’ distribution of selected labeled and
selected unlabeled samples. Only confident (labeled and
unlabeled) samples with high confidence scores will be se-
lected to regularize the distribution of (labeled and unla-
beled) data representation. A high confident sample means
that the input sample is more likely to fall into the target
model’s trust region with low entropy of the prediction. To
maintain a sufficient number of samples used in ARC regu-
larization, we impose a replay buffer to save recent selected
confident samples.

A.3. Intuitive Explanation of ARC

As shown in Figure 3, although there’s no systematic
bias between labeled and unlabeled samples, the risk of
sampling bias can be severe when labeled samples are
scarce. Without ARC, features learned by unlabeled and
labeled data may deviate from each other, but still simulta-
neously satisfy their constrains due to DNN’s great mem-
orizing capacity. As observed in the plots, this hurts dis-
crimination as misclassification increase even among seen
unlabeled samples (left plot), while learned representations
induce better decision boundary if labeled samples match
the population (right plot).

Appendix B. Additional Experiments
B.1. Descriptions about Datasets

• CUB-200-2011: The CUB-200-2011 dataset contains
200 fine-grained classes of birds with 11,788 images in
total (about 30 images per class for training set and 30
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Figure 3. Illustration of why enforcing representation consistency
helps the model generalize when labeled samples are scarce. Red
and black spots denote unlabeled samples.

images per class for validation set). In our experiment,
we construct the labeled training set with the sample
size of n ∈ {2000, 1000, 400, 200}, and use the rest
images as unlabeled training set.

• MIT Indoor-67: Indoor-67 has 67 scene categories. In
each category, there are 80 images for training and 20
images for testing. In our experiment, we construct
the labeled training set with the sample size of n ∈
{1340, 670, 134}, and use the rest images as unlabeled
training set.

• MURA: MURA is a dataset of musculoskeletal radio-
graphs, which contains 40,561 images from 14,863 pa-
tient studies. X-ray images are collected from seven
parts of human body: elbow, finger, forearm, hand,
humerus, shoulder, and wrist. The goal of this dataset
is to distinguish normal musculoskeletal studies from
abnormal ones (a study often contains more than one
image). This paper follows the experiment setting of
[55]: to simply classify normal and abnormal radio-
graphs (one image). For the MURA dataset, We con-
struct the labeled training set with the sample size of
n ∈ {1000, 400}, and use the rest images as unlabeled
training set.

• CIFAR-10: The CIFAR-10 dataset is composed of
60,000 images of 10 classes with the size of 32x32.
50,000 images are used for training and 10,000 are
used for testing.

B.2. Results on Indoor-67

The experimental results on Indoor-67 dataset are listed
in Table 8. Similar to the results of CUB-200-2011 dataset,
the method of combining AKC with ARC achieves the best
or comparable performance among previous-best baseline
methods. In the case of 1340 (and 134) labeled sample
size, by utilizing AKC and ARC regularization techniques
in FixMatch, the performance is increased by 3.2% (and
9.54%) than vanilla FixMatch.
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B.3. Empirical study about balancing AKC and
ARC

We measure the increased accuracy after introducing
AKC or ARC on three different Office-Home datasets§.
Generally, as observed in Fig 6, AKC is relatively more use-

§https://www.hemanthdv.org/officeHomeDataset.html

ful as the discrepancy between the source and target dataset
reduces¶, while ARC contributes more with more unlabeled
samples provided.

¶Art is the most dissimilar with ImageNet due to its particular textures.
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#label 4000 250 40
Method From Scratch Transfer From Scratch Transfer From Scratch Transfer

Pseudo label 16.09 7.04 49.78 12.92 79.51 25.62
Mean teacher 9.19 6.43 32.32 14.03 74.43 24.67

MixMatch 6.42 5.52 11.05 10.01 47.54 21.50
FixMatch 4.26 4.24 5.07 5.04 13.81 9.05

Table 7. Comparison of error rate using SSL methods with and without transfer learning.

Methods \#label 1340 670 134
Supervised labeled 68.94 63.35 44.28

Pseudo label 71.68 63.77 39.28
Mean teacher 71.34 64.37 43.05

MixMatch 73.14 68.58 44.65
FixMatch 74.27 68.31 44.13

AKC 71.93 66.64 46.79
ARC 72.72 66.94 46.67

AKC+ARC 73.31 67.44 47.11
MixMatch +AKC+ARC 75.54 70.30 48.54
FixMatch +AKC+ARC 76.64 70.61 48.34

Table 8. Classification accuracy of proposed AKC, ARC, and
baselines on Indoor-67 dataset.
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Figure 6. Comparison of AKC and ARC gain on Office-Home.

B.4. The time efficiency of our method

The proposed AKC and ARC involves almost only ex-
tra computation for knowledge distillation in the standard

Method MM FM AKC ARC AC FMAC
Time(s) 0.629 0.563 0.531 0.513 0.562 0.580

Table 9. Running time per iteration for the CUB-200 experiment
evaluated with Tesla V100 GPU. MM: MixMatch, FM: FixMatch,
AC: AKC+ARC, FMAC: FM+AC.

semi-supervised learning framework, which is much more
computational efficient than complex operations used in
modern SSL methods like MixMatch and FixMatch. More-
over, adding AKC+ARC on top of these competitive meth-
ods requires little additional cost as most operations can be
reused. For example, combining AKC+ARC and FixMatch
only increase 3% running time compared with the original
FixMatch. The actual running time per iteration (in sec-
onds) is measured on CUB-200, as shown in Table 9.

B.5. Effectiveness of transfer learning in semi-
supervised setting

We studied the effectiveness of transfer learning in some
SSL methods on CIFAR-10 dataset, as shown in table 7.
As can be seen, transfer learning could considerably im-
prove the performance of SSL methods compared to learn-
ing from scratch, especially when labeled examples are in-
sufficient. For example, given only 40 labels, transfer learn-
ing improves the performance of the leading SSL method
FixMatch by 34.5% on CIFAR-10. Thus, the effectiveness
of transfer learning in semi-supervised settings is underes-
timated. With the Imprinting technique and proper train-
ing strategy, transfer learning could lead to a noticeable im-
provement.
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