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Abstract

Weakly-supervised temporal action localization (WS-
TAL) aims to localize actions in untrimmed videos with
only video-level labels. Most existing models follow the
“localization by classification” procedure: locate temporal
regions contributing most to the video-level classification.
Generally, they process each snippet (or frame) individu-
ally and thus overlook the fruitful temporal context relation.
Here arises the single snippet cheating issue: “hard” snip-
pets are too vague to be classified. In this paper, we argue
that learning by comparing helps identify these hard snip-
pets and we propose to utilize snippet Contrastive learn-
ing to Localize Actions, CoLA for short. Specifically, we
propose a Snippet Contrast (SniCo) Loss to refine the hard
snippet representation in feature space, which guides the
network to perceive precise temporal boundaries and avoid
the temporal interval interruption. Besides, since it is in-
feasible to access frame-level annotations, we introduce a
Hard Snippet Mining algorithm to locate the potential hard
snippets. Substantial analyses verify that this mining strat-
egy efficaciously captures the hard snippets and SniCo Loss
leads to more informative feature representation. Extensive
experiments show that CoLA achieves state-of-the-art re-
sults on THUMOS’14 and ActivityNet v1.2 datasets.

1. Introduction

Temporal action localization (TAL) aims at finding and
classifying action intervals in untrimmed videos. It has been
extensively studied in both industry and academia, due to
its wide applications in surveillance analysis, video summa-
rization and retrieval [38, 15, 23], etc. Traditionally, fully-
supervised TAL is labor-demanding in its manual labeling
procedure, thus weakly-supervised TAL (WS-TAL) which
only needs video-level labels has gain popularity.

Most existing WS-TAL methods [39, 27, 30, 26, 14] em-
ploy the common attention mechanism or multiple instance
learning formulation. Specifically, each input video is di-
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Figure 1. Which category do the two selected snippets (#2, #3)
belong to? It is difficult to tell when evaluating independently
and they are actually misclassified in baseline (We plot the one-
dimensional T-CAS for CliffDiving and the thresholded results).
By contrast, learning by comparing helps identify them: #2 snippet
(person falling down) is inferred to be the action snippet by mak-
ing a comparison with #1 “easy action” (different camera views of
the CliffDiving action); The inference of #3 snippet is also rectified
after the comparison with #4 “easy background” snippet.

vided into multiple fixed-size non-overlapping snippets and
the snippet-wise classifications are performed over time to
generate the Temporal Class Activation Map/Sequence (T-
CAM/T-CAS)[27, 34]. The final localization results are
generated by thresholding and merging the class activations.
For illustration, we consider the naı̈ve case where the whole
process is optimized with a single video-level classification
loss and we treat this pipeline as baseline in our paper.

In absence of frame-wise labels, WS-TAL suffers from
the single snippet cheating issue: indistinguishable snip-
pets are easily misclassified and hurt the localization per-
formance. To illustrate it, we take CliffDiving in Figure 1
as an example. When evaluated individually, two selected
snippets (#2, #3) seem ambiguous and are misclassified: 1)
the #2 snippet is incorrectly categorized, thus breaking the
time intervals; 2) the #3 snippet is misidentified as an action
in baseline, resulting in inaccurately extended action inter-
val boundaries. How to address the single snippet cheating
issue? Let’s revisit the case in Figure 1. By comparing
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snippets of interest with those “easy snippets” which can
be classified effortlessly, action and background can be dis-
tinguished more easily. For example, the #2 snippet and
the #1 easy action snippet are two different views of a man
falling-down process in “CliffDiving”. The #3 snippet is
similar to the #4 easy background snippet and can be eas-
ily classified as the background class. In light of this, we
contend that localizing actions by contextually comparing
offers a powerful inductive bias that helps distinguish hard
snippets. Based on the above analysis, we propose an al-
ternative, rather intuitive way to address the single snippet
cheating issue – by conducting Contrastive learning on hard
snippets to Localize Actions, CoLA for short. To this end,
we introduce a new Snippet Contrast (SniCo) Loss to re-
fine the feature representations of hard snippets under the
guidance of those more discriminative easy snippets. Here
these “cheating” snippets are named hard snippets due to
their ambiguity.

This solution, however, faces one crucial challenge on
how to identify reasonable snippets under our weakly-
supervised setting. The selection of hard snippets is non-
trivial as there is no specific attention distribution pattern
for them. For example, in Figure 1 baseline, #3 hard
snippet has a high response value while #2 remains low.
Noticing that ambiguous hard snippets are commonly found
around boundary areas of the action instances, we propose a
boundary-aware Hard Snippet Mining algorithm – a simple
yet effective importance sampling technique. Specifically,
we first threshold T-CAS and then employ dilation and ero-
sion operations temporally to mine the potential hard snip-
pets. Since the hard snippets may either be action or back-
ground, we opt to distinguish them by their relative posi-
tion. For easy snippets, they locate in the most discrimi-
native parts, so snippets with top-k/bottom-k T-CAS scores
are selected as easy action/background respectively. More-
over, we form two hard-easy contrastive pairs and conduct
the feature refinement via the proposed SniCo Loss.

In a nutshell, the main contributions of this work are as
follows: (1) Pioneeringly, we introduce the contrastive rep-
resentation learning paradigm to WS-TAL and propose a
SniCo Loss which effectively refines the feature representa-
tion of hard snippets. (2) A Hard Snippet Mining algorithm
is proposed to locate potential hard snippets around bound-
aries, which serves as an efficient sampling strategy under
our weakly-supervised setting. (3) Extensive experiments
on THUMOS’14 and ActivityNet v1.2 datasets demonstrate
the effectiveness of our proposed CoLA.

2. Related Work
Fully-supervised Action Localization utilizes frame-

level annotations to locate and classify the temporal in-
tervals of action instances from long untrimmed videos.
Most existing works may be classified into two cate-

gories: proposal-based (top-down) and frame-based meth-
ods (bottom-up). Proposal-based methods [35, 47, 40, 7, 5,
33, 19, 17, 44, 16] first generate action proposals and then
classify them as well as conduct temporal boundary regres-
sion. On the contrary, frame-based methods [18, 2, 22, 46]
directly predict frame-level action category and location fol-
lowed by some post-processing techniques.

Weakly-Supervised Action Localization only requires
video-level annotations and has drawn extensive attention.
UntrimmedNets [39] address this problem by conducting
the clip proposal classification first and then select relevant
segments in a soft or hard manner. STPN [27] imposes a
sparsity constraint to enforce the sparsity of the selected
segments. Hide-and-seek [36] and MAAN [43] try to ex-
tend the discriminative regions via randomly hiding patches
or suppressing the dominant response, respectively. Zhong
et al. [48] introduce a progressive generation procedure to
achieve similar ends. W-TALC [30] applies the deep met-
ric learning to be complementary with the Multiple Instance
Learning formulation.

Discussion. The single snippet cheating problem has not
been fully studied though it is common in WS-TAL. Liu et
al. [20] pinpoint the action completeness modeling prob-
lem and the action-context separation problem. They de-
velop a parallel multi-branch classification architecture with
the help of the generated hard negative data. In contrast,
our CoLA unifies these two problems and settles them in a
lighter way with the proposed SniCo Loss. DGAM [32]
mentions the action-context confusion issue, i.e., context
snippets near action snippets tend to be misclassified, which
can be considered as a sub-problem of our single snip-
pet cheating issue. Besides, several background modeling
works [28, 14, 32] can also be seen as one solution to this
problem. Nguyen et al. [28] utilizes an attention mechanism
to model both foreground and background frame appear-
ances and guide the generation of the class activation map.
BaS-Net [14] introduces an auxiliary class for background
and applies an asymmetrical training strategy to suppress
the background snippet activation. However, these meth-
ods have inherent drawbacks as background snippets are not
necessarily motionless and it is difficult to include them into
one specific class. By contrast, our CoLA is a more adaptive
and explainable solution to tackle these issues.

Contrastive Representation Learning uses data inter-
nal patterns to learn an embedding space where associated
signals are brought together while unassociated ones are
distinguished via Noise Contrastive Estimation (NCE) [8].
CMC [37] presents a contrastive learning framework that
maximize mutual information between different views of
the same scene to achieve a view-invariant representation.
SimCLR [6] selects the negative samples by using aug-
mented views of other items in a minibatch. MoCo [9] uses
a momentum updated memory bank of old negative repre-



(a) Feature Extraction and Embedding (b) Actionness Modeling

(c) Hard & Easy Snippet Mining(d) Network Training
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Figure 2. Illustration of the proposed CoLA, which consists of four parts: (a) Feature Extraction and Embedding to obtain the embedded
feature XE

n ; (b) Actionness Modeling to gather class-agnostic action likelihood Aness
n ; (c) Hard & Easy Snippet Mining to select hard and

easy snippets. (d) Network Training driven by Action Loss and Snippet Contrast (SniCo) Loss.

sentations to get rid of the batch size restriction and enable
the consistent use of negative samples. To our best knowl-
edge, we are the first to introduce the noise contrastive es-
timation to WS-TAL task. Experiment results show that
CoLA refines the hard snippet representation, thus benefit-
ing the action localization.

3. Method

Generally, CoLA (shown in Figure 2) follows the feature
extraction (Section 3.1), actionness modeling (Section 3.2)
and hard & easy snippet mining (Section 3.3) pipeline. The
optimization loss terms and the inference process are de-
tailed in Section 3.4 and Section 3.5, respectively.

3.1. Feature Extraction and Embedding

Assume that we are given a set of N untrimmed videos
{Vn}Nn=1 and their video-level labels {yn}Nn=1, where yn ∈
RC is a multi-hot vector, and C is the number of action
categories. Following the common practice [27, 28, 14],
for each input untrimmed video Vn, we divide it into multi-
frame non-overlapping Ln snippets, i.e., Vn = {Sn,l}Ln

l=1.
A fixed number of T snippets {Sn,t}Tt=1 are sampled due
to the variation of video length. Then the RGB features
XR

n = {xRt }Tt=1 and optical flow features XO
n = {xOt }Tt=1

are extracted with pre-trained feature extractor (e.g., I3D
[4]), respectively. Here, xRt ∈ Rd and xOt ∈ Rd, d is the
feature dimension of each snippet. Afterwards, we apply an
embedding function fembed over the concatenation of XR

n

and XO
n to obtain our extracted features XE

n ∈ RT×2d.
fembed is implemented with a temporal convolution fol-
lowed by the ReLU activation function.

3.2. Actionness Modeling

We introduce the concept Actionness referring to the
likelihood of containing a general action instance for each
snippet. Before we specify the Actionness Modeling pro-
cess, let’s revisit the commonly adopted Temporal Class
Activation Sequence (T-CAS).

Given the embedded features XE
n , we apply a classifier

fcls to obtain snippet-level T-CAS. Specifically, the classi-
fier contains a temporal convolution followed by ReLU ac-
tivation and Dropout. This can be formulated as follows for
a video Vn:

An = fcls(X
E
n ;φcls), (1)

where φcls represents the learnable parameters. The ob-
tained An ∈ RT×C represents the action classification re-
sults occurring at each temporal snippets.

Then, when it comes to modeling the actionness, one
common way is to conduct the binary classification on each
snippet, which yet will inevitably bring in extra overheads.
Since the generated T-CAS An ∈ RT×C in Eqn. 1 already
contains snippet-level class-specific predictions, we simply
sum T-CAS along the channel dimension (fsum) followed
by the Sigmoid function to obtain a class-agnostic aggrega-
tion and use it to represent the actionness Aness

n ∈ RT :

Aness
n = Sigmoid(fsum(An)). (2)

3.3. Hard & Easy Snippet Mining

Recall that our aim is to use the easily spotted snippets
as a priori to disambiguate controversial snippets. We sys-
tematically study the contrastive pair construction process
for both hard and easy snippets.
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Figure 3. Illustration of the Hard Snippet Mining algorithm. Left:
Subtract the eroded sequences with different masks to get the inner
regions (green color); Right: Subtract the dilated sequences with
different masks to get the outer regions (pink color).

3.3.1 Hard Snippet Mining

Intuitively, for most snippets located inside the action or
background intervals, they are far from the temporal borders
with less noise interference and have the relatively trustwor-
thy feature representation. For boundary-adjacent snippets,
however, they are less reliable because they are in the tran-
sitional areas between action and background, thus leading
to ambiguous detection.

Base on the above observations, we argue that boundary-
adjacent snippets can serve as the potential hard snippets
under the weak supervision setting. Therefore, we build a
novel Hard Snippet Mining algorithm to exploit hard snip-
pets from the border areas. Then these mined hard snippets
are divided into hard action and hard background accord-
ing to their locations.

Firstly, we threshold the actionness scores to generate a
binary sequence (1 or 0 indicates the action or background
location, respectively):

Abin
n = ε(Aness

n − θb), (3)

where ε(·) is the Heaviside step function and θb is the
threshold value, i.e., Abin

n is 1 if Aness
n ≥ θb, 0 otherwise.

Then, as shown in Figure 3, we apply two cascaded dila-
tion or erosion operations to expand or narrow the temporal
extent of action intervals. The differential areas with the
diverse dilation or erosion degree are defined as the hard
background or hard action regions:

Rinner
n = (Abin

n ;m)− − (Abin
n ;M)−

Router
n = (Abin

n ;M)+ − (Abin
n ;m)+,

(4)

where (·; ∗)+ and (·; ∗)− represent the binary dilation and
erosion operations with mask ∗, respectively. The inner re-
gionRinner

n is defined as the different snippets between the
eroded sequences with smaller maskm and larger maskM,
as shown in Figure 3 left part (in green color). Similarly, the
outer region Router

n is calculated as the difference between
the dilated sequences with larger maskM and smaller mask
m, depicted in Figure 3 right part (in pink color). Em-
pirically, we regard the inner regions Rinner

n as hard ac-
tion snippet sets since these regions are with Abin

n = 1.
Similarly, the outer regions Router

n are considered as hard

background snippet sets. Then the hard action snippets
XHA

n ∈ Rkhard×2d are selected fromRinner
n :

XHA
n = {XE

n;t|t ∈ Iactn , Iactn ∈ Iinnern }, (5)

where Iinnern is the index set of snippets within Rinner
n .

Iactn is the subset of Iinnern with size khard (i.e., |Iactn | =
khard), and khard = max(1, b T

rhard c) is the hyper-
parameter controlling the selected number of hard snip-
pets, rhard is the sampling ratio. Considering the case that
khard > |Iinnern |, we adopt sampling with replacement
mechanism to ensure the total khard snippets can be se-
lected. Similarly, the hard background snippets XHB

n ∈
Rkhard×2d are selected fromRouter

n :

XHB
n = {XE

n;t|t ∈ Ibkgn , Ibkgn ∈ Ioutern }, (6)

where the notation definitions are similar to those in Eqn. 5
and we omit them for brevity.

3.3.2 Easy Snippet Mining

In order to form contrastive pairs, we still need to mine
the discriminative easy snippets. Based on the well-trained
fully-supervised I3D features, we hypothesize that the video
snippets with top-k and bottom-k actionness scores are ex-
actly easy action (XEA

n ∈ Rkeasy×2d) and easy background
snippets (XEB

n ∈ Rkeasy×2d), respectively. Therefore, we
conduct easy snippet mining based on the actionness scores
calculated in Eqn. 2. The specific process is as follows:

XEA
n = {XE

n;t|t ∈ Sactn , t 6∈ Iinnern , t 6∈ Ioutern ,

Sactn = SDESC
n [: keasy]}

XEB
n = {XE

n;t|t ∈ Sbkgn , t 6∈ Iinnern , t 6∈ Ioutern ,

Sbkgn = SASC
n [: keasy]},

(7)

where SDESC
n and SASC

n denotes the index of Aness
n

sorting by DESC and ASC order respectively. keasy =
max(1, b T

reasy c), reasy is a hyper-parameter representing
the selection ratio. Note that we remove the snippets in the
hard snippet areasRinner

n andRouter
n to avoid conflict.

3.4. Network Training

Based on the mined hard and easy snippets, our CoLA
introduces an additional Snippet Contrast (SniCo) Loss
(Ls) and achieves considerable improvement compared
with the baseline model. The total loss can be represented
as follows:

Ltotal = La + λLs, (8)

where La and Ls denote the Action Loss and the SniCo
Loss, respectively. λ is the balance factor. We elaborate on
these two terms as follows.



3.4.1 Action Loss

Action Loss (La) is the classification loss between the pre-
dicted video category and the ground truth. To get the
video-level predictions, we aggregate snippet-level class
scores computed in Eqn. 1. Following [39, 30, 14], we
take the top-k mean strategy: for each class c, we take
keasy terms with the largest class-specific T-CAS values
and compute their means as an;c, namely the video-level
class score for class c of video Vn. After obtaining an;c for
all the C classes, we apply a Softmax function on an along
the class dimension to get the video-level class possibilities
pn ∈ RC . Action Loss (La) is then calculated in the cross-
entropy form:

La = − 1

N

N∑
n=1

C∑
c=1

ŷn;clog(pn;c), (9)

where ŷn ∈ RC is the normalized ground-truth.

3.4.2 Snippet Contrast (SniCo) Loss

Contrastive learning has been used on image or patch lev-
els [1, 10]. For our application, given the extracted feature
embedding XE

n , the contrastive learning is applied in the
snippet level. We name it Snippet Contrast (SniCo) Loss
(Ls), which aims to refine the snippet-level feature of hard
snippets and obtain a more informative feature distribution.
Considering that the hard snippets are classified as hard ac-
tion and hard background, we form two contrastive pairs in
Ls accordingly, namely “HA refinement” and “HB refine-
ment”, where HA and HB are short for hard action and hard
background respectively. “HA refinement” aims to trans-
form the hard action snippet features by driving hard ac-
tion and easy action snippets compactly in feature space and
“HB refinement” is similar.

Formally, the query x ∈ R1×2d, positive x+ ∈ R1×2d,
and S negatives x− ∈ RS×2d are selected from pre-mined
snippets. As shown in Figure 2(d), for “HA refinement”,
x ∼ XHA

n ,x+ ∼ XEA
n , x− ∼ XEB

n ; for “HB refine-
ment”, x ∼ XHB

n ,x+ ∼ XEB
n , x− ∼ XEA

n . We project
them to a normalized unit sphere to prevent the space from
collapsing or expanding. An (S + 1) -way classification
problem using the cross-entropy loss is set up to repre-
sent the probability of the positive example being selected
over negatives. Following [9], we compute the distances
between the query and other examples with a temperature
scale τ = 0.07:

`(x,x+,x−)

=− log

[
exp

(
xT · x+/τ

)
exp (xT · x+/τ) +

∑S
s=1 exp

(
xT · x−

s /τ
)] ,
(10)

where xT is the transpose of x and the proposed SniCo Loss
is as follows:

Ls = Ex∼XHA
n ,x+∼XEA

n ,x−∼XEB
n
`
(
x,x+,x−)︸ ︷︷ ︸

HA refinement

+ Ex∼XHB
n ,x+∼XEB

n ,x−∼XEA
n
`
(
x,x+,x−)︸ ︷︷ ︸

HB refinement

,
(11)

where S represents the number of negative snippets and
x−
s ∈ R2d means the s-th negative. In this way, we max-

imize mutual information between the easy and hard snip-
pets of the same category (action or background), which
helps refine the feature representation and thereby alleviat-
ing the single snippet cheating issue.

3.5. Inference

Given an input video, we first predict its snippet-level
class activations to form T-CAS and aggregate top-keasy

scores described in Sec. 3.4.1 to get the video-level pre-
dictions. Then the categories with scores larger than θv
are selected for further localization. For each selected cate-
gory, we threshold its corresponding T-CAS with θs to ob-
tain candidate video snippets. Finally, continuous snippets
are grouped into proposals and Non-Maximum Suppression
(NMS) is applied to remove duplicated proposals.

4. Experiments
4.1. Datasets

We evaluate our CoLA on two popular action localiza-
tion benchmark datasets including THUMOS’14 [11] and
ActivityNet v1.2 [3]. We only use the video-level category
labels for network training.

THUMOS’14 includes untrimmed videos with 20 cate-
gories. The video length varies greatly and each video may
contain multiple action instances. By convention [14, 32],
we use the 200 videos in validation set for training and the
213 videos in testing set for evaluation.

ActivityNet v1.2 is a popular large-scale benchmark for
TAL with 100 categories. Following the common prac-
tice [39, 34], we train on the training set with 4,819 videos
and test on the validation set with 2,383 videos.

4.2. Implementation Details

Evaluation Metrics. We follow the standard evalua-
tion protocol by reporting mean Average Precision (mAP)
values under different intersection over union (IoU) thresh-
olds. The evaluation on both datasets are conducted using
the benchmark code provided by ActivityNet1.

1https://github.com/activitynet/ActivityNet/



Feature Extractor. We use I3D [4] network pre-
trained on Kinetics [4] for feature extraction. Note that
the I3D feature extractor is not fine-tuned for fair compari-
son. TVL1 [31] algorithm is applied to extract optical flow
stream from RGB stream in advance. Each video stream
is divided into 16-frame non-overlapping snippets and the
snippet-wise RGB and optical flow features are with 1024-
dimension.

Training Details. The number of sampled snippets T
for THUMOS’14 and ActivityNet v1.2 is set to 750 and
50, respectively. All hyper-parameters are determined by
grid search: reasy = 8, rhard = 32, S = keasy =
max(1, b T

reasy c). We set λ = 5e− 3 in Eqn. 8. θb in Eqn. 3
is set to 0.5 for both datasets. Dilation and erosion masks
M and m are set to 6 and 3 in our experiments. We utilize
Adam optimizer with a learning rate of 1e− 4. We train for
total 6k epochs with a batch size of 16 for THUMOS’14 and
for total 8k epochs with a batch size of 128 for ActivityNet
v1.2.

Testing Details. We set θv to 0.2 and 0.1 for THU-
MOS’14 and ActivityNet v1.2, respectively. For proposal
generation, we use multiple thresholds that θs is set as
[0:0.25:0.025] for THUMOS’14 and [0:0.15:0.015] for Ac-
tivityNet v1.2, then Non-Maximum Suppression (NMS) is
performed with IoU threshold 0.7.

4.3. Comparison with State-of-the-Arts

We compare our CoLA with the state-of-the-art fully-
supervised and weakly-supervised TAL approaches on
THUMOS’14 testing set. As shown in Table 1, CoLA
achieves the impressive performance, i.e., we consistently
outperform previous weakly-supervised methods at all
IoU thresholds. Specifically, our method achieves 32.2%
mAP@0.5 and 40.9% mAP@AVG, bringing the state-of-
the-art to a new level. Notably, even with a much lower
level of supervision, our method is even comparable with
several fully-supervised methods, following the latest fully-
supervised approaches with the least gap.

We also conduct experiments on ActivityNet v1.2 val-
idation set and the comparison results are summarized in
Table 2. Again, our method shows significant improve-
ments over state-of-the-art weakly-supervised TAL meth-
ods while maintaining competitive compared with other
fully-supervised methods. The consistent superior results
on both datasets signify the effectiveness of CoLA.

4.4. Ablation Studies

In this section, we conduct multiple ablation studies to
provide more insights about our design intuition. By con-
vention [28, 32, 14], all the ablation experiments are per-
formed on the THUMOS’14 testing set.

Q1: How does the proposed SniCo Loss help? To
evaluate the effectiveness of our SniCo Loss (Ls), we con-

(A) “ThrowDiscus” video

Easy Action

Hard Action

Hard Background

(B) “VolleyballSpiking” video

Figure 4. UMAP visualizations of feature embeddings XE
n . Left:

baseline; Right: CoLA. Green points represent action embeddings
and gray points denote background embeddings. CoLA achieves
a more separable feature distribution compared to baseline.

duct a comparison experiment with only the action loss
La as supervision, namely baseline in Table 3. The sta-
tistical results in Table 3 demonstrate that by introducing
Ls, the performance largely gains by 7.5% in mAP@0.5,
partially because SniCo Loss effectively guides the net-
work to achieve better feature distribution tailored for WS-
TAL. To illustrate this, we randomly select 2 videos from
THUMOS’14 testing set and calculate the feature embed-
dings XE

n for baseline and CoLA, respectively. These
embeddings are then projected to 2-dimensional space us-
ing UMAP [24], as shown in Figure 4. Notice that com-
pared with baseline, SniCo Loss helps to separate the ac-
tion and background snippets more precisely, especially for
those ambiguous hard snippets. Overall, the above analy-
ses strongly justify the significance of our proposed SniCo
Loss.

Q2: Is it necessary to consider both HA and HB re-
finements in SniCo Loss? To explore this, we conduct ab-
lated experiments with two variants of SniCo Loss, each
of which contains only one type of refinement in Eqn. 11,
namely LHA

s and LHB
s , respectively. Table 3 shows that the

performance drops dramatically with either kind of refine-
ment removed, suggesting that both refinements contribute
to the improved performance.

Q3: Are our mined hard snippets meaningful? How
to evaluate the effectiveness of the mined hard snippets is
nontrivial. As discussed in Sec. 3.3.1, indistinguishable
frames usually exist within or near the action temporal in-
tervals, so we define such temporal areas as error-prone



Table 1. Comparisons with state-of-the-art TAL methods on THUMOS’14 dataset. The mAP values at different IoU thresholds are reported.
The AVG column shows the averaged mAP under the thresholds [0.1:0.7:0.1]. UNT is the abbreviation for UntrimmedNet feature.

Supervision
(Feature) Method Publication

mAP@IoU (%)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 AVG

Full
(-)

R-C3D [40] ICCV 2017 54.5 51.5 44.8 35.6 28.9 - - -
SSN [47] ICCV 2017 66.0 59.4 51.9 41.0 29.8 - - -

TAL-Net [5] CVPR 2018 59.8 57.1 53.2 48.5 42.8 33.8 20.8 45.1
P-GCN [44] ICCV 2019 69.5 67.8 63.6 57.8 49.1 - - -
G-TAD [41] CVPR 2020 - - 66.4 60.4 51.6 37.6 22.9 -

Weak
(-)

Hide-and-Seek [36] ICCV 2017 36.4 27.8 19.5 12.7 6.8 - - -
UntrimmedNet [39] CVPR 2017 44.4 37.7 28.2 21.1 13.7 - - -

Zhong et al. [48] ACMMM 2018 45.8 39.0 31.1 22.5 15.9 - - -

Weak
(UNT)

AutoLoc [34] ECCV 2018 - - 35.8 29.0 21.2 13.4 5.8 -
CleanNet [21] ICCV 2019 - - 37.0 30.9 23.9 13.9 7.1 -
Bas-Net [14] AAAI 2020 - - 42.8 34.7 25.1 17.1 9.3 -

Weak
(I3D)

STPN [27] CVPR 2018 52.0 44.7 35.5 25.8 16.9 9.9 4.3 27.0
Liu et al. [20] CVPR 2019 57.4 50.8 41.2 32.1 23.1 15.0 7.0 32.4

Nguyen et al. [28] ICCV 2019 60.4 56.0 46.6 37.5 26.8 17.6 9.0 36.3
BaS-Net [14] AAAI 2020 58.2 52.3 44.6 36.0 27.0 18.6 10.4 35.3
DGAM [32] CVPR 2020 60.0 54.2 46.8 38.2 28.8 19.8 11.4 37.0

ActionBytes [12] CVPR 2020 - - 43.0 35.8 29.0 - 9.5 -
A2CL-PT [25] ECCV 2020 61.2 56.1 48.1 39.0 30.1 19.2 10.6 37.8

TSCN [45] ECCV 2020 63.4 57.6 47.8 37.7 28.7 19.4 10.2 37.8
CoLA (Ours) - 66.2 59.5 51.5 41.9 32.2 22.0 13.1 40.9

Table 2. Comparison results on ActivityNet v1.2 dataset. The
AVG column shows the averaged mAP under the thresholds
[0.5:0.95:0.05]. UNT and I3D are abbreviations for Untrimmed-
Net feature and I3D feature, respectively.

Sup. Method
mAP@IoU (%)

0.5 0.75 0.95 AVG

Full SSN [47] 41.3 27.0 6.1 26.6

Weak UntrimmedNet [39] 7.4 3.2 0.7 3.6
(UNT) AutoLoc [34] 27.3 15.1 3.3 16.0

Weak
(I3D)

W-TALC [30] 37.0 12.7 1.5 18.0
TSM [42] 28.3 17.0 3.5 17.1

CleanNet [21] 37.1 20.3 5.0 21.6
Liu et al. [20] 36.8 22.0 5.6 22.4
BaS-Net [14] 38.5 24.2 5.6 24.3
DGAM [32] 41.0 23.5 5.3 24.4
TSCN [45] 37.6 23.7 5.7 23.6

CoLA (Ours) 42.7 25.7 5.8 26.1

Table 3. Ablation analysis on loss terms on THUMOS’14.

Setting Loss mAP@0.5 (∆)

CoLA (Ours) La + Ls 32.2%
baseline La 24.7% (-7.5%)

CoLA w/o HB ref. La + LHA
s 29.7% (-2.5%)

CoLA w/o HA ref. La + LHB
s 30.4% (-1.8%)

regions. Specifically, given a ground-truth action instance
with interval [s, e] and duration d = e − s, we define its δ-
scale error-prone regions as [s−δ d

2 , e+δ
d
2 ], as illustrated in
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Figure 5. Effectiveness verification of Hard Snippet Mining algo-
rithm. Top: Illustration of relative distance offsets (RDO) for a
mined snippet. Bottom: The mean RDO (mRDO) vs. different
scales δ at epoch 0 (blue) and epoch 2k (green).

Figure 5 top part. Then, to evaluate the positional relation-
ship of our mined hard snippets with the error-prone areas,
relative distance offset (RDO) is defined as follows: 1) if a
mined hard snippet does not fall into any of the error-prone
regions, RDO = D

T , where D is the nearest distance be-
tween this snippet and all error-prone regions, and T is the
video length; 2) otherwise, RDO = 0. As shown in Fig-
ure 5 bottom part, the mean RDO values (mRDO) of all the
videos are evaluated under different scales δ at two training
snapshots(epoch 0 and epoch 2k). The mRDO consistently
drops at all scales δ, indicating that our mined hard snippets



Table 4. Ablation analysis on the negative sample size S.

S 1 4 16 64 125 (keasy)

mAP@0.5 28.9 30.4 31.3 31.9 32.2

Table 5. Ablation analysis on the mask size M and m.

M(m = 3) 4 5 6 7 8 9

mAP@0.5 30.9 31.8 32.2 32.0 31.8 32.1

m(M = 6) 0 1 2 3 4 5

mAP@0.5 30.3 31.7 32.0 32.2 32.0 31.9

are captured more precisely as the training goes on. Even
under the most stringent condition (δ = 0.2), the mRDO
is only 3.7%, which suggests that most of our mined hard
snippets locate in such error-prone areas and thus contribute
to the network training.

Evaluation on the negative sample size S. Table 4 re-
ports the experimental results evaluated with different neg-
ative sample sizes S. According to Eqn. 11, negative snip-
pets are randomly chosen from the mined easy snippets, so
S ≤ keasy . As shown, the mAP value is positively corre-
lated with S, indicating that contrastive power increases by
adding more negatives. This phenomenon is consistent with
many self-supervised contrastive learning works [29, 9, 6]
and a recent supervised one [13], which partially verifies the
efficacy of our hard and easy snippet mining algorithm for
weakly-supervised TAL task.

Evaluation on the mask sizeM and m. We have de-
fined two operation degrees (with largerM and smaller m)
for temporal interval erosion and dilation in Eqn. 4. Here
we seek to evaluate the effect of different mask sizes. For
simplification, we first fix m = 3 and varyM from 4 to 9,
then we fixM = 6 and change m from 0 to 5. The results
are shown in Table 5. The best result is achieved when set-
ting M = 6 and m = 3. Besides, it is quite evident that
the performance remains stable across a wide range ofM
and m, demonstrating the robustness of our proposed Hard
Snippet Mining algorithm.

4.5. Qualitative Results

We visualize T-CAS results for two actions on THU-
MOS’14 in Figure 6. Our CoLA has a more informative
T-CAS distribution compared to baseline, thus leading to
more accurate localization. Figure 6-A depicts a typical
case that all the frames in a video share the similar elements,
i.e., humans, billiard table and balls. By introducing SniCo
Loss, our method can seek the subtle differences between
action and hard background, thereby avoiding many false
positives produced by single Action Loss (baseline). Fig-
ure 6-B demonstrates a “CliffDiving” action observed from
different camera views. The baseline method fails to lo-
calize the complete interval and outputs short and sparse

GT
Baseline
Ours

Time

GT

Baseline

Ours

Time

GT
Baseline
Ours

Time

GT
Baseline
Ours

Time

(A) “Billiards” action

(B) “CliffDiving” action

(C) “SoccerPenalty” action

normal kick penalty kick

GT

Baseline

Ours

Time

(B) “CliffDiving” action

Figure 6. Qualitative comparisons with baseline on THUMOS’14.
For baseline and CoLA, we visualize the one-dimensional T-CAS
and the localized regions. For clarity, frames with green bound-
ing boxes refer to ground-truth actions and those in red refer to
ground-truth backgrounds. Red pentagrams along the time axis
denote the mined hard snippet locations (computed at epoch 2k).

prediction results. Our method successfully identifies the
entire “CliffDiving” action and suppress the false positive
detections. We also visualize the mined hard snippet loca-
tions (computed at epoch 2k) on the time axis (marked as
red pentagram). As expected, these snippets are misclas-
sified in baseline and CoLA refines their representation to
achieve better performance. This visualization also helps
explain Q3 in Section 4.4. For more visualization results,
please refer to our supplementary materials.

5. Conclusion

In this paper, we have proposed a novel framework
(CoLA) to address the single snippet cheating issue in
weakly-supervised action localization. We leverage the in-
tuition that hard snippets frequently lay in the boundary re-
gions of the action instances and propose a Hard Snippet
Mining algorithm to localize them. Then we apply a SniCo
Loss to refine the feature representation of the mined hard
snippets with the help of easy snippets which locate in the
most discriminative regions. Experiments conducted on two
benchmarks including THUMOS’14 and ActivityNet v1.2
have validated the state-of-the-art performance of CoLA.
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[31] Javier Sánchez Pérez, Enric Meinhardt-Llopis, and Gabriele
Facciolo. Tv-l1 optical flow estimation. Image Processing
On Line, 2013:137–150, 2013. 6

[32] Baifeng Shi, Qi Dai, Yadong Mu, and Jingdong Wang.
Weakly-supervised action localization by generative atten-
tion modeling. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 1009–
1019, 2020. 2, 5, 6, 7

[33] Zheng Shou, Jonathan Chan, Alireza Zareian, Kazuyuki
Miyazawa, and Shih-Fu Chang. Cdc: Convolutional-de-
convolutional networks for precise temporal action localiza-
tion in untrimmed videos. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
5734–5743, 2017. 2

[34] Zheng Shou, Hang Gao, Lei Zhang, Kazuyuki Miyazawa,
and Shih-Fu Chang. Autoloc: Weakly-supervised tempo-
ral action localization in untrimmed videos. In Proceedings
of the European Conference on Computer Vision (ECCV),
pages 154–171, 2018. 1, 5, 7

[35] Zheng Shou, Dongang Wang, and Shih-Fu Chang. Temporal
action localization in untrimmed videos via multi-stage cnns.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1049–1058, 2016. 2

[36] Krishna Kumar Singh and Yong Jae Lee. Hide-and-seek:
Forcing a network to be meticulous for weakly-supervised
object and action localization. In 2017 IEEE international
conference on computer vision (ICCV), pages 3544–3553.
IEEE, 2017. 2, 7

[37] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Con-
trastive multiview coding. arXiv preprint arXiv:1906.05849,
2019. 2

[38] Sarvesh Vishwakarma and Anupam Agrawal. A survey
on activity recognition and behavior understanding in video
surveillance. The Visual Computer, 29(10):983–1009, 2013.
1

[39] Limin Wang, Yuanjun Xiong, Dahua Lin, and Luc Van Gool.
Untrimmednets for weakly supervised action recognition

and detection. In Proceedings of the IEEE conference
on Computer Vision and Pattern Recognition, pages 4325–
4334, 2017. 1, 2, 5, 7

[40] Huijuan Xu, Abir Das, and Kate Saenko. R-c3d: Region
convolutional 3d network for temporal activity detection. In
Proceedings of the IEEE international conference on com-
puter vision, pages 5783–5792, 2017. 2, 7

[41] Mengmeng Xu, Chen Zhao, David S Rojas, Ali Thabet, and
Bernard Ghanem. G-tad: Sub-graph localization for tempo-
ral action detection. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
10156–10165, 2020. 7

[42] Tan Yu, Zhou Ren, Yuncheng Li, Enxu Yan, Ning Xu, and
Junsong Yuan. Temporal structure mining for weakly super-
vised action detection. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 5522–5531,
2019. 7

[43] Yuan Yuan, Yueming Lyu, Xi Shen, Ivor W Tsang, and
Dit-Yan Yeung. Marginalized average attentional net-
work for weakly-supervised learning. arXiv preprint
arXiv:1905.08586, 2019. 2

[44] Runhao Zeng, Wenbing Huang, Mingkui Tan, Yu Rong,
Peilin Zhao, Junzhou Huang, and Chuang Gan. Graph con-
volutional networks for temporal action localization. In Pro-
ceedings of the IEEE International Conference on Computer
Vision, pages 7094–7103, 2019. 2, 7

[45] Yuanhao Zhai, Le Wang, Wei Tang, Qilin Zhang, Jun-
song Yuan, and Gang Hua. Two-stream consensus net-
work for weakly-supervised temporal action localization. In
European Conference on Computer Vision, pages 37–54.
Springer, 2020. 7

[46] Peisen Zhao, Lingxi Xie, Chen Ju, Ya Zhang, Yanfeng Wang,
and Qi Tian. Bottom-up temporal action localization with
mutual regularization. In European Conference on Computer
Vision, pages 539–555. Springer, 2020. 2

[47] Yue Zhao, Yuanjun Xiong, Limin Wang, Zhirong Wu, Xi-
aoou Tang, and Dahua Lin. Temporal action detection with
structured segment networks. In Proceedings of the IEEE
International Conference on Computer Vision, pages 2914–
2923, 2017. 2, 7

[48] Jia-Xing Zhong, Nannan Li, Weijie Kong, Tao Zhang,
Thomas H Li, and Ge Li. Step-by-step erasion, one-by-one
collection: a weakly supervised temporal action detector. In
Proceedings of the 26th ACM international conference on
Multimedia, pages 35–44, 2018. 2, 7


