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Abstract

In this paper, we present a novel unpaired point cloud
completion network, named Cycle4Completion, to infer the
complete geometries from a partial 3D object. Previous
unpaired completion methods merely focus on the learn-
ing of geometric correspondence from incomplete shapes
to complete shapes, and ignore the learning in the reverse
direction, which makes them suffer from low completion
accuracy due to the limited 3D shape understanding abil-
ity. To address this problem, we propose two simultaneous
cycle transformations between the latent spaces of com-
plete shapes and incomplete ones. Specifically, the first
cycle transforms shapes from incomplete domain to com-
plete domain, and then projects them back to the incom-
plete domain. This process learns the geometric character-
istic of complete shapes, and maintains the shape consis-
tency between the complete prediction and the incomplete
input. Similarly, the inverse cycle transformation starts
from complete domain to incomplete domain, and goes back
to complete domain to learn the characteristic of incom-
plete shapes. We experimentally show that our model with
the learned bidirectional geometry correspondence outper-
forms state-of-the-art unpaired completion methods.

1. Introduction

Point clouds, as a popular 3D representation, can be
easily produced by 3D scanning devices and depth cam-
eras. However, due to the limitations of the view angles
of camera/scanning devices and self-occlusion, raw point
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R&D Program of China (2018YFB0505400), in part by the NSFC
(61672307), National Key R&D Program of China (2019YFB1405703)
and TC190A4DA/3, and in part by Tsinghua-Kuaishou Institute of Future
Media Data.

clouds are often sparse, noisy and partial, which usually
require shape completion before being analyzed in further
applications such as shape classification [25, 17], retrieval
[14, 8, 15], semantic/instance segmentation [22, 35]. Al-
though the recent data-driven supervised completion meth-
ods [31, 40, 37, 39, 19, 21] have achieved impressive perfor-
mance, they heavily rely on the paired training data, which
consists of incomplete shapes and their corresponding com-
plete ground truth. In real-world applications, however,
such high quality and large-scale paired training dataset is
not easy to access, which makes it hard to directly train a
supervised completion network.

A promising but challenging solution to this problem is
to learn a completion network in an unpaired way, where the
common practice is to establish the shape correspondence
between the incomplete shapes and complete ones from the
unpaired training data without requiring the incomplete and
complete correspondence. The latest work like Pcl2Pcl [3]
introduced an adversarial framework to merge the geomet-
ric gap between the complete shape distribution and incom-
plete one in the latent representation space. Although many
efforts have been made to learn the geometric correspon-
dence from incomplete shapes to complete ones, previous
methods ignore the inverse correspondence from complete
shapes to incomplete ones, which leads to low completion
accuracy due to the limited 3D shape understanding ability.

To address this problem, we propose a novel un-
paired point cloud completion network, named Cy-
cle4Completion, to establish the geometric correspondence
between incomplete and complete shapes in both directions.
We achieve this by designing two cycle transformations,
i.e. the incomplete cycle transformation (incomplete-cycle)
and the complete cycle transformation (complete-cycle), as
shown in Figure 1. The incomplete-cycle in Figure 1(a)
learns the mapping from the incomplete domain to the com-
plete one, which is then projected back to the incomplete
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Figure 1. Illustration of cycle transformation, which consists of two inverse cycles, as shown in (a) and (b). The cycle transformation
promotes network to understand 3D shapes by learning to generate complete or incomplete shapes from their complementary ones.
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(a) Problem of target confusion. The neural network based

transformation FX can learn to project multiple incomplete input (A1,

A2, A3) into one complete target (A), but its inverse transformation FY

cannot learn to project one complete input into multiple incomplete

target.

(b) Solution of missing region coding. We propose to use a learnable 
code Z (denoted as Z1, Z2, Z3 in the above figure) to encode the missing 
regions.

FY FX

Figure 2. Illustration of target confusion and the solution of miss-
ing region coding.

domain. On the other hand, the complete-cycle in Figure
1(b) provides the completion knowledge on the inverse di-
rection with incomplete input, which can be used to fur-
ther enhance the incompletion quality for incomplete-cycle.
However, as shown in Figure 2(a), directly applying a cy-
cle transformation in the latent space will encounter a new
problem which we name it as the target confusion problem.
This problem is raised when establishing shape correspon-
dence from multiple incomplete shapes (e.g. A1, A2 and
A3) to one complete shape (e.g. A). This is because one
of the cycle requires the network to predict the incomplete
shape based on the complete input, and the corresponding
transformation network FY cannot fully map one complete
input into multiple different incomplete targets only through
a deep neural network. To solve this problem, we propose
the learnable missing region coding (MRC) to transform
incomplete shapes to complete ones, as shown in Figure
2(b). The representations of incomplete shapes can be de-
composed into two parts: one is the representation A of
their corresponding complete shape, and the other one is
the code Z to encode their missing regions. When predict-
ing the complete shapes from the incomplete ones, only the
representation A is considered, and when predicting the in-
complete shapes from the complete ones, both the repre-
sentation A and code Z are considered. Thus, the transfor-
mation network FY will relieve the confusion by learning
to project one complete input to several incomplete targets.
Instead, the learnable missing region code Z can help the

network clarify which incomplete shape is the current target
for transformation, and relieve the target confusion prob-
lem. Our main contributions are summarized as follows.

• We propose a novel unpaired point cloud comple-
tion network, named Cycle4Completion. Compared
with previous unpaired completion methods which
only consider the single-side correspondence from in-
complete shapes to complete ones, Cycle4Completion
can enhance the completion performance by establish-
ing the geometric correspondence between complete
shapes and incomplete shapes from both directions.

• We propose the partial matching loss and cycle match-
ing loss, and combine them with the cycle transfor-
mations to establish the bidirectional geometric cor-
respondence between the complete and incomplete
shapes, and maintain the shape consistency throughout
the whole transformation process.

• We propose the missing region coding to decompose
the incomplete shape representation into a representa-
tion of its corresponding complete shape, and a miss-
ing region code to encode the missing regions of the
incomplete shapes, respectively. This solves the target
confusion when the network tries to predict multiple
incomplete shapes based on a single complete shape.

2. Related Work
3D shape completion has drawn an increasing atten-

tion in recent years. Previous completion methods can be
roughly divided into two categories, i.e. traditional ap-
proaches and deep learning based approaches, which we
will detail below.
Traditional approaches for 3D shape completion. The
traditional geometry/statistic based methods [30, 1, 34, 27,
24, 28] exploit the geometric features of surface on the
partial input to generate the missing regions of 3D shapes
[30, 1, 32, 34], or exploit the large-scale shape database
to search for the similar shapes/patches to fill the missing
regions of 3D shapes [27, 20, 24, 28]. For example, Hu
et al.[34] proposed to exploit both the local smoothness
and the non-local self-similarity in point clouds, by defin-
ing the smoothing and denoising properties of point clouds
and globally searching the similar area for the missing re-
gion. On the other hand, the data-driven shape completion

2



methods like Shen et al.[28] formulate the completion of
3D shapes as a bottom up part assembling process, where a
3D shape repository is adopted as the reference to recover a
variety of high-level complete structures. In all, these tradi-
tional shape completion approaches are mainly based on the
hand-crafted rules to describe the characteristics of miss-
ing region, and the similarities between the missing region
and complete shape. Therefore, the generalization ability
of such kind of methods is usually limited. For example,
the method proposed by Sung et al.[30] predefines several
categories of semantic parts of 3D shapes, and uses geomet-
ric characteristics such as part positions, scales, and orien-
tations to find similar parts for missing regions from shape
database. Such kind of methods usually fails in the situation
of more complicated shapes, which are beyond the descrip-
tion of the predefined semantic part categories or geometric
characteristics. In contrast, deep learning based completion
methods can learn more flexible features to predict a com-
plete shape from an incomplete input. This kind of methods
will be detailed in the subsection below.

Deep learning approaches for 3D shape completion. The
second category includes neural networks based methods,
which take advantage of deep learning to learn the represen-
tation from the input shape [15, 10, 9, 11, 22] and predict
the complete shape according to the representation, using an
encoder-decoder framework. This category can be further
classified according to different input shape forms includ-
ing: volumetric shape completion [4, 6, 29] and point cloud
completion [40, 31, 26, 18, 33]. Our Cycle4Completion
also falls into this category, which completes 3D shapes rep-
resented by point clouds. Notable recent studies like MAP-
VAE [16], TopNet [31] and SA-Net [36] have achieved im-
pressive results on supervised point cloud completion task.
Moreover, RL-GAN-Net [26] introduced the reinforcement
learning with the adversarial training to further improve
the reality and consistency of the generated complete point
clouds. However, although great improvements have been
made in supervised point cloud completion task, this task
strongly depends on the paired training data, but the paired
ground truth for incomplete real-world scan is rarely avail-
able. On the other hand, there is very few studies concern-
ing the unpaired point cloud completion task. As one of
the pioneering work, AML [29] directly measured the maxi-
mum likelihood between the latent representation of incom-
plete and complete shapes. Following the similar practice,
Pcl2Pcl [3] introduced the GAN framework to bridge the
semantic gap between incomplete and complete shapes.

Compared with the above-mentioned unpaired meth-
ods, our Cycle4Completion further establishes the self-
supervision by cycle transformations in the latent space
from both directions, which can provide a better guidance to
learn the bidirectional geometric correspondence between
incomplete shape and complete ones.

Relationships with GANs. Our work is also related to
the generative adversarial networks (GAN). Especially, our
work is inspired by the unpaired style transferring network
CycleGAN [41] in 2D domain. However, it is usually diffi-
cult to directly apply a framework like CycleGAN to point
cloud completion, where the simple cycle-consistency loss
often fails to guide the generator to infer the missing shapes,
because conceiving a consistent missing shape for the in-
complete input is more complicated than transferring styles.
Therefore, we propose to perform the cycle transformation
in the latent space, where the partial and cycle matching
losses are proposed for maintaining the transferred shapes
consistency. Considering that 3D completion is essentially
a reconstruction process from 3D shape to 3D shapes, the
reconstruction of 3D shapes from 2D images [12, 7, 13] is
also a notable research direction, which is closely related to
3D completion. The difference between the two tasks is that
3D reconstruction from 2D images does not require 3D in-
formation as input, while the completion task based on 3D
shapes requires 3D shape information as input.

3. The Architecture of Cycle4Completion
3.1. Formulation

We first describe the basic formulations in our method.
As shown in Figure 3(a), let PX={px

i } denote the point
cloud of an incomplete shape, and PY ={py

i } denote the
point cloud of complete one. Our goal is to learn two
mappings FX and FY between the latent representations
{x} of incomplete shapes and the latent representations
{y} of complete shapes. These representations are gen-
erated by the point cloud encoders EX : PX → x and
EY : PY → y, respectively, which are trained under the
auto-encoder framework with the point cloud generators
GX and GY , respectively. In addition, two adversarial dis-
criminatorsDX andDY are introduced. DX aims to distin-
guish between {x} and {yx}, where yx=FY (y). DY aims
to distinguish between {y} and {xy}, where xy=FX(x).
We denote the compound operation of two functions FX

and FY as FXFY .

3.2. Encoder-decoder for Learning Latent Space

The two auto-encoders learn the latent representation
spaces for incomplete and complete shapes, respectively.
We define the full Chamfer distance (CD) between two
point clouds P1 and P2 as

LCD(P1 � P2)=
∑

p1
i∈P1

min
p2
i∈P2

‖p1
i−p2

i ‖+
∑

p2
i∈P2

min
p1
i∈P1

‖p2
i−p1

i ‖.

(1)
The reconstruction loss LAE for training the auto-encoder
framework is formulated as:

LAE = LCD(PX � GX(x)) + LCD(PY � GY (y)). (2)
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Figure 3. Illustration of Cycle4Completion. The overall structure in (a) consists of the incomplete cycle transformation in (b), which
produces the complete prediction (green) from the incomplete input (red), and the complete cycle transformation in (c), which produces
the incomplete prediction (yellow) from the complete input (blue). Both of the two cycles use self-reconstruction to learn the shape
consistency.

3.3. Cycle Transformation

Transformation with missing region coding. For the in-
complete cycle transformation in Figure 3(b), the missing
region code xz

y and the complete shape representation xr
y

are generated by FX when transferring x from the incom-
plete domain into the complete domain as xy . Therefore,
xy can be further denoted as xy = [xr

y : xz
y]. The remark

“:” indicates the concatenation of two feature vectors. The
complete shape is then predicted based on xr

y by GY as
GY (xr

y). And the discriminator DY only discriminates be-
tween xr

y and y. In order to establish the shape consistency
during the transformation process, xy is projected back into
the incomplete domain again by FY , denoted as x̂. The
cycle reconstructed shape is predicted by GX , denoted as
GX(x̂).

For the complete cycle transformation in Figure 3(c), the
encoder EY directly predicts a complete shape representa-
tion yr. In order to predict an incomplete shape, we ran-
domly sample a missing region code from an uniform distri-
bution between [0, 1], denoted as yz , and concatenate it with
yr, denoted as y = [yr : yz]. Then, the transformation net-
work FY transforms y into the incomplete domain, denoted
as yx. Similar to the incomplete cycle transformation, the
incomplete shape is predicted based on yx by GX , denoted
as GX(yx). And the discriminator DX discriminates be-
tween yx and x. Following the inverse direction of incom-
plete cycle transformation, the shape consistency during the
complete cycle transformation is established by predicting
the reconstructed shape GY (ŷ), where ŷ = FX(yx). Note
that same as y, ŷ also consists of a complete representation
ŷr and a missing region code ŷz .
Code matching Loss. In the complete cycle transformation
in Figure 3(c), a missing region code yz is sampled from a
uniform distribution in order to create missing regions from
the current complete input PY . After the shape PY is cy-
cled through FY and FX , a new missing region code ŷz is
predicted by the transformation network FY FX . Because
both yz and ŷz correspond to the same incomplete shape,

the two codes should be equal. Therefore, we propose to
use the Euclidean distance between yz and ŷz as the code
matching loss, which can be formulated as:

Lcode = ‖yz − ŷz‖2. (3)

Cycle matching loss. The cycle matching loss aims to
match the shapes of cycle reconstruction GY (ŷ)/GX(x̂) to
their corresponding input PY /PX , which should keep the
shape consistency throughout the whole transformation pro-
cess. Specifically, we define the cycle matching loss as the
full Chamfer distance between the input PY /PX and the
reconstructed point cloud GY (ŷ)/GX(x̂) as LCD(PX �
GX(x̂)) and LCD(PY � GY (ŷ)), respectively. Then we
indicate the full cycle matching loss for transferring network
FX and FY as:

Lcycle = LCD(PX � GX(x̂)) + LCD(PY � GY (ŷ)). (4)

Partial matching loss. The partial matching loss is a direc-
tional constraint, which aims to match one shape to another
without the matching in the inverse direction. Similar prac-
tice can be found in previous work [3], which adopted the
directional Hausdoff distance to partially match the com-
plete prediction to the incomplete input. However, the par-
tial matching on the single direction cannot provide further
guidance for the inference of missing regions, so we inte-
grate the partial matching into the cycle transformation to
establish a more comprehensive geometric correspondence
on both directions. We define the partial Chamfer distance
between two point clouds P1 and P2 as:

LCD′(P1 → P2) =
∑

p1
i∈P1

min
p2
i∈P2

‖p1
i − p2

i ‖. (5)

It is a constraint that only requires that the shape of
P2 partially matches the shape of P1. For incomplete-
cycle in Figure 3(b), the partial matching loss is formu-
lated as LCD′(PX → GY (xr

y)), and for complete-cycle
in Figure 3(c), the partial matching loss is formulated as
LCD′(GX(yx) → PY ). Note that the directions of above
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two partial Chamfer distances are always pointed from in-
complete shapes to complete ones, which guarantees the in-
complete shape partially matches the complete one, no mat-
ter whether it is predicted or real. The full partial matching
loss is defined as:

Lpartial = LCD′(PX → GY (xr
y)) + LCD′(GX(yx)→ PY ).

(6)
Adversarial loss. To further bridge the geometric gap be-
tween the latent representations of complete and incomplete
shapes, the adversarial learning framework is adopted as an
unpaired constraint. Specifically, two discriminators DX

andDY are used to distinguish the real and fake representa-
tions in the incomplete and complete domains, respectively.
The DX in incomplete domain discriminates between the
real latent representations {x} and the fake latent represen-
tations {yx}; in the same way, the DY in complete domain
discriminates between {y} and {xy}. In order to stabilize
the training, we formulate the objective loss for discrimina-
tor under the WGAN-GP [5] framework. For simplicity, we
formulate the loss for DX as:

LDX = ExDX(x)− EyxDX(yx) + λgpTDX , (7)

where λgp is a pre-defined weight factor and TDX
is gradi-

ent penalty term, denoted as:

TDX = Ex[(‖∇xDX(x)‖2 − 1)2]. (8)

The discriminator loss LDY
for DY can be formulated in

the same way. The final adversarial losses for generator
{FX , FY } and discriminator {DX , DY } are given as

LD = LDX + LDY , (9)

LG = EyxDX(yx) + ExyDY (xr
y). (10)

3.4. Training Strategy

In our model, there are four sets of losses in total. We use
ΘD to denote the trainable parameters in {DX , DY }, ΘAE

to denote the trainable parameters in {EX , GX , EY , GY },
and ΘF to denote the trainable parameters in {FX , FY }.
We use LG(ΘAE ,ΘF ,ΘD) to denote that there are three
parts of network (i.e. auto-encoder, transferring network,
and discriminator) involved in calculating LG.

Given the learning rate γ, the encoder-decoder loss reg-
ularizes the parameters ΘAE , where the gradient optimiza-
tion step is expressed as

ΘAE ← ΘAE − γ
∂LAE(ΘAE)

∂ΘAE
. (11)

The cycle matching loss and partial matching loss along
with the adversarial loss regularize the transferring network.
The gradient descent step for ΘF is given as

ΘF ←ΘF − γ[λg
∂LG(ΘAE ,ΘF ,ΘD)

∂ΘF
+

λp
∂Lpartial(ΘAE ,ΘF )

∂ΘF
+ λc

∂Lcycle(ΘAE ,ΘF )

∂ΘF
],

(12)

where {λg, λc, λp} are weight factors. Note that although
LG and Lpartial involve the parameter ΘAE , we fix the pa-
rameter ΘAE when training LG and Lpartial. The reason
is that both LG and Lpartial are constraints for the transfor-
mation process, while the two auto-encoders aim to learn a
latent representation space instead of transferring features
between complete and incomplete domains. The weight
factors are fixed to λg=1, λc=0.01 and λp=1 in our experi-
ments. Finally, the discriminators DX and DY are regular-
ized by the discriminator loss LD

ΘD ← ΘD − γ
∂LD(ΘAE ,ΘF ,ΘD)

∂ΘD
. (13)

The pseudo code for training is given in Algorithm 1.

Algorithm 1 Pseudo code for training Cycle4Completion.
The critic step nD is fixed to 3 during training.

1: while model has not converged do
2: Update ΘAE following Eq.11
3: for t = 0, ..., nD do
4: Update ΘD following Eq.13
5: end for
6: Update ΘF following Eq.12
7: end while

4. Experiments
4.1. Evaluation on ShapeNet Dataset

Dataset. Following the previous studies [4, 3], we evaluate
our methods on ShapeNet dataset [2], in order to fairly com-
pare Cycle4Completion with the previous unpaired point
cloud completion methods. For each 3D object, 8 partial
point clouds are generated by back-projecting 2.5D depth
images from 8 views into 3D. We uniformly sample only
2,048 points on the mesh surfaces for both the complete and
partial shapes. We specially note that, the ShapeNet dataset
has been widely used for 3D shape completion in many pre-
vious papers [4, 3, 26, 31], and for fair comparison we also
conduct our experiments on the same dataset. Moreover,
the reason to generate incomplete shapes from partial view
of 3D objects is to simulate the incomplete pattern in real-
world 3D scans.
Quantitative and qualitative evaluation. We use the per
point Chamfer distance as the evaluation metric. In Table
1, we compare Cycle4Completion with some state-of-the-
art supervised and unpaired point cloud completion meth-
ods. Since the training and testing split of Pcl2Pcl and 3D-
EPN is different at ShapeNet dataset, we report our results
on both of the two splittings for fair comparison. In Table
1, the Cycle4Completion is the results of 3D-EPN splitting
and the Cycle4Completion* is the results of Pcl2Pcl split-
ting. Moreover, we also quote the results of the baseline
auto-encoder from [3] for comparison. The experimental
results show that our method achieves the best completion
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Table 1. Point cloud completion comparison on ShapeNet dataset in terms of per point Chamfer distance ×104 (lower is better).

Methods Supervised Average Plane Cabinet Car Chair Lamp Sofa Table Boat

3D-EPN [4] Yes 29.1 60.0 27.0 24.0 16.0 38.0 45.0 14.0 9.0
FoldingNet [38] Yes 9.2 2.4 8.5 7.2 10.3 14.1 9.1 13.6 8.8
PCN [40] Yes 7.6 2.0 8.0 5.0 9.0 13.0 8.0 10.0 6.0
TopNet [31] Yes 8.4 2.5 8.8 5.9 9.3 12.0 8.4 13.5 7.1
SA-Net [36] Yes 7.7 2.2 9.1 5.6 8.9 10.0 7.8 9.9 7.2

AE (baseline)[3] No 25.4 4.0 37.0 19.0 31.0 26.0 30.0 44.0 12.0
Pcl2Pcl [3] No 17.4 4.0 19.0 10.0 20.0 23.0 26.0 26.0 11.0
Cycle4Completion (Ours) No 14.1 3.1 10.9 7.5 14.6 16.7 26.7 24.5 9.1
Cycle4Completion* (Ours) No 14.3 3.7 12.6 8.1 14.6 18.2 26.2 22.5 8.7
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Figure 4. Visual comparison with the state-of-the-art completion
methods on ShapeNet dataset.
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Figure 5. Visualizing the completion results of more similar car
objects acquired from the KITTI dataset.

performance on all categories compared with the unpaired
counterpart method Pcl2Pcl [3]. And even comparing with
the supervised methods, our Cycle4Completion still out-
performs 3D-EPN [4] and yields a comparable results to
PCN [40] and TopNet [31]. In Figure 4, we show the
visualization results of point cloud completion using Cy-
cle4Completion and compare it with other methods, from
which we can find that our model predicts the complete
shapes with higher accuracy than the unpaired Pcl2Pcl, es-
pecially on the regions highlighted by red rectangles. And
the completion quality of our method is also comparable
to the results of supervised methods including TopNet and
PCN.

4.2. Evaluation on KITTI Dataset

We supplement the following qualitative results on
the KITTI dataset, which contains car objects in real-

(a) Original point clouds of street scene in KITTI, with cars colored by blue.

(b) The completion results of street scene in KITTI, with complete prediction colored by red.

Figure 6. Visualizing the KITTI dataset with multiple completion
cars.

world auto-navigation dataset scanned by LIDAR sen-
sor in streets. The Cycle4Completion is first trained on
ShapeNet dataset under car category, and then the trained
Cycle4Completion is directly used to predict complete
shapes on the KITTI dataset without any further fine-tuning
process. In Figure 5, we show the original incomplete
point clouds of cars (highlighted with blue) directly ob-
tained by LIDAR sensor, and the complete shape (high-
lighted with red) predicted by our Cycle4Completion. In
Figure 6, we further show the completion results integrated
into the streets scene. Although there is no ground truth
(i.e. the complete shapes of cars) for the KITTI dataset, we
can still qualitatively find that Cycle4Completion predicts
complete cars very robustly on the KITTI dataset, even our
model is only trained on the ShapeNet dataset. This exper-
iment shows that our Cycle4Completion model trained on
ShapeNet dataset can achieve good completion results for
more similar objects in the real-world scenario data.

4.3. Model Analysis

For clarity, we typically analyze the performance of Cy-
cle4Completion on four categories, i.e. plane, cabinet, car
and chair.
Visual analysis of complete cycle transformation. We
visualize the results of incomplete-cycle in Figure 7(a),
and the results of complete-cycle in Figure 7(b). For
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(a.3) Incomplete cycle reconstruction
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Figure 7. Visualization of the generated shapes in each step of cy-
cle transformation.

incomplete-cycle, the input to the network is the incomplete
shape, as shown in Figure 7(a.1). The complete predic-
tion in Figure 7(a.2) demonstrates the effectiveness of Cy-
cle4Completion to produce complete shapes from incom-
plete input, and the comparison between Figure 7(a.1) and
Figure 7(a.3) proves that Cycle4Completion successfully
learns to keep shape consistency throughout the whole cy-
cle transformation. Similar conclusions can also be drawn
from Figure 7(b) for the complete-cycle.
Visual analysis of incompletion quality. In Figure 8, we
visually evaluate the quality of incomplete shapes, which
are generated by Cycle4Completion from the complete in-
put on a specific category of chair. The visual compari-
son between the incomplete prediction in Figure 8(a) and
the real incomplete shapes in Figure 8(b) proves that Cy-
cle4Completion successfully learns the geometric corre-
spondence from the complete shapes to the incomplete
ones. The similar pattern of incompleteness to the real in-
complete shapes justifies the good 3D shape understanding
ability of our model.

(a) Generated fake incomplete shape. (b) Real incomplete shape.

Figure 8. Visualization comparison of predicted incomplete shapes
in (a) with the real incomplete shapes in (b).

Visual analysis of latent space. In Figure 9(a), we use t-
SNE[23] to visualize the latent features of complete shape
and the ones of incomplete shapes that are transferred from
incomplete domain into the complete domain. The red

points stand for the latent features of incomplete shapes, and
the blue points stand for the complete ones. Note that the
incomplete shape is generated from partial views of com-
plete ones, and we have 8 partial shapes generated from 8
different views of each complete shape. In Figure 9(a), we
can find that red and blue points are arranged in a paired
pattern, and from Figure 9(a) we can find that in each lo-
cal area highlighted by black rectangles, there is a pair of
one complete shape and its 8 partial incomplete shapes,
which are exactly the geometric corresponding pattern be-
tween complete and incomplete shapes in the dataset. The
visualization of latent space shows the effectiveness of Cy-
cle4Completion to establish a well arranged latent space,
and the ability to capture the shape correspondence between
the complete and incomplete ones.

C.

B.

D.

A.

A.

B.

C.

D.

(a)Visualization of complete domain.

Incomplete shape transferred into complete domainComplete shape

(b)Visualization of shapes in highlighted areas.

8 incomplete shapes of 8 different views. Gt.

…

…

…

…

Figure 9. Visualization of the latent representation space in com-
plete domain. We randomly choose four areas in (a) and visualize
the shape represented by these points in (b).

Effect of each module to our model. In order to analyze
the effect of each module to our model, we develop three
variations by removing element from Cycle4Completion in-
cluding: (1) w/o Partial is the variation that removes the
partial matching loss; (2) w/o GAN is the variation that
removes the discriminator and its corresponding adversar-
ial loss; (3) w/o Cycle is the variation that removes the
cycle matching loss; (4) w/o Coding is the variation that
removes all the missing region codes and the correspond-
ing code matching loss. The results are shown in Table 2,
where the Full model represents the original version of Cy-
cle4Completion. In Table 2, the Full Model achieves the
best completion performance, which proves the contribu-
tions of each part to the performance of Cycle4Completion.
Moreover, w/o Partial variation yields the worst completion
performance. This is because the model loses its supervi-
sion for learning the shape consistency when transferring
representations from incomplete domain to complete one.

Effect of input point number. In order to further evaluate
the performance of Cycle4Completion on more sparse in-
put, we evaluate Cycle4Completion using the input of par-
tial point clouds with different resolutions. Specifically,
we keep the number of 2048 points on the output com-
plete shape unchanged, and evaluate the performance of Cy-
cle4Completion on the input point clouds with resolutions
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Figure 10. Visualization of completion performance under differ-
ent input point numbers.

Table 2. The effect of each part (per point CD ×104).

Methods Average Plane Cabinet Car Chair

w/o Partial 23.7 15.6 27.8 14.8 36.6
w/o GAN 12.8 4.7 18.4 9.1 19.0
w/o Cycle 10.4 3.6 12.5 8.9 15.8
w/o Coding 9.4 3.2 11.8 7.7 14.8

Full Model 9.1 3.1 10.9 7.5 14.6

ranging from 256 to 2048. The quantitative completion re-
sults are given in Table 3, and the visualization results are
shown in Figure 10. Both quantitative and qualitative results
demonstrate a robust performance of Cycle4Completion on
various input resolutions.

Table 3. The effect of input point number (CD ×104).

#Points Average Plane Cabinet Car Chair

256 14.4 3.3 15.9 9.9 28.4
512 10.0 3.2 12.1 7.9 16.9

1024 9.6 3.2 11.9 7.9 15.5

2048 9.1 3.1 10.9 7.5 14.6

Effect of different training strategies. In our model, the
generator loss LG, cycle matching loss Lcycle and partial
matching loss Lpartial involves multiple parameter sets.
We selectively update some of the parameter sets while re-
main the others unchanged when training these losses. To
evaluate the effectiveness of other potential training strate-
gies, we develop the variation of (a) ∂LG/∂(ΘAE ,ΘF )
which updates both ΘAE and ΘF when training genera-
tor loss. Similarly, we also develop the variations of (b)
∂Lpartial/∂(ΘAE ,ΘF ) and (c) ∂Lcycle/∂(ΘAE ,ΘF ) and
report the results in Table 4. We observe a severe mode col-
lapse in both variations (a) and (b), which is caused by train-
ing the auto-encoder cross different domain (both Lpartial

and LAE involve transformation from one domain to the
other). In contrast, Lcycle is a regularization considering
one domain, and only involves the reconstruction to the in-
put.

Effect of λc and λp. The cycle matching loss tends to keep
shape consistent throughout the whole cycle transformation,

Table 4. The effect of training strategies (CD ×104)..
Strategies Average Plane Cabinet Car Chair

∂LG/∂(ΘAE ,ΘF ) collapsed - - - -
∂Lpartial/∂(ΘAE ,ΘF ) collapsed - - - -
∂Lcycle/∂(ΘAE ,ΘF ) 10.1 3.3 12.5 9.4 15.1

Original 9.1 3.1 10.9 7.5 14.6
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Figure 11. Visualization comparison of completion performance
under different weight parameters λp and λc.

while the partial matching loss only keeps a single side con-
sistency. Different ratio between λc and λp will result in
different preference of model to establish the shape con-
sistency. In Table 5, we quantitatively analyze the effect
of weight factors λc and λp to our model on the specific
car class, and in Figure 11, we visually evaluate the cor-
responding completion performance. Since the completion
task is a single-side transformation, a larger weight of λp
yields better performance. However, as shown in Table 2,
totally removing partial matching loss (λp=0) will degrade
the performance of our model.

Table 5. The effect of λp and λc (CD ×104).

λp

λc 0.0 10-2 10-1 1.0

0.0 18.8 17.1 16.9 14.8
10-2 15.8 15.6 12.4 12.4
10-1 9.8 10.2 9.8 9.4
1.0 8.9 7.5 8.1 9.3

5. Conclusions

We propose the Cycle4Completion for unpaired point
cloud completion task. Our model successfully captures
the bidirectional geometric correspondence between incom-
plete and complete shapes, which enables the learning of
point cloud completion without the paired complete shapes.
Our model effectively learns to generate fake incomplete
shapes to guide the completion network. The proposed Cy-
cle4Completion is evaluated on the widely used ShapeNet
dataset, and the experimental results demonstrate the state-
of-the-art performance compared with other unpaired com-
pletion methods.

8



References
[1] Matthew Berger, Andrea Tagliasacchi, Lee Seversky, Pierre

Alliez, Joshua Levine, Andrei Sharf, and Claudio Silva. State
of the art in surface reconstruction from point clouds. In
Proceedings of the Conference of the European Association
for Computer Graphics, volume 1, pages 161–185, 2014. 2

[2] Angel X Chang, Thomas Funkhouser, Leonidas J Guibas,
Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,
Manolis Savva, Shuran Song, Hao Su, et al. ShapeNet: An
information-rich 3D model repository. arXiv:1512.03012,
2015. 5

[3] Xuelin Chen, Baoquan Chen, and Niloy J Mitra. Unpaired
point cloud completion on real scans using adversarial train-
ing. In International Conference on Learning Representa-
tions, 2019. 1, 3, 4, 5, 6

[4] Angela Dai, Charles Ruizhongtai Qi, and Matthias Nießner.
Shape completion using 3D-encoder-predictor CNNs and
shape synthesis. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 5868–
5877, 2017. 3, 5, 6

[5] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent
Dumoulin, and Aaron C Courville. Improved training of
Wasserstein GANs. In Advances in neural information pro-
cessing systems, pages 5767–5777, 2017. 5

[6] Xiaoguang Han, Zhen Li, Haibin Huang, Evangelos
Kalogerakis, and Yizhou Yu. High-resolution shape com-
pletion using deep neural networks for global structure and
local geometry inference. In Proceedings of the IEEE In-
ternational Conference on Computer Vision, pages 85–93,
2017. 3

[7] Zhizhong Han, Chao Chen, Yu-Shen Liu, and Matthias
Zwicker. DRWR: A differentiable renderer without render-
ing for unsupervised 3D structure learning from silhouette
images. In International Conference on Machine Learning
(ICML), 2020. 3

[8] Zhizhong Han, Xinhai Liu, Yu-Shen Liu, and Matthias
Zwicker. Parts4Feature: Learning 3D global features from
generally semantic parts in multiple views. In International
Joint Conference on Artificial Intelligence, 2019. 1

[9] Zhizhong Han, Zhenbao Liu, Chi-Man Vong, Yu-Shen Liu,
Shuhui Bu, et al. Deep Spatiality: Unsupervised learning
of spatially-enhanced global and local 3D features by deep
neural network with coupled softmax. IEEE Transactions on
Image Processing, 27(6):3049–3063, 2018. 3

[10] Zhizhong Han, Zhenbao Liu, Chi-Man Vong, Yu-Shen Liu,
Shuhui Bu, Junwei Han, and C.L. Philip Chen. BoSCC:
Bag of spatial context correlations for spatially enhanced 3D
shape representation. IEEE Transactions on Image Process-
ing, 26(8):3707–3720, 2017. 3

[11] Zhizhong Han, Honglei Lu, Zhenbao Liu, Chi-Man Vong,
Yu-Shen Liu, Matthias Zwicker, Junwei Han, and C.L. Philip
Chen. 3D2SeqViews: Aggregating sequential views for
3D global feature learning by CNN with hierarchical atten-
tion aggregation. IEEE Transactions on Image Processing,
28(8):3986–3999, 2019. 3

[12] Zhizhong Han, Baorui Ma, Yu-Shen Liu, and Matthias
Zwicker. Reconstructing 3D shapes from multiple sketches

using direct shape optimization. IEEE Transactions on Im-
age Processing, 2020. 3

[13] Zhizhong Han, Guanhui Qiao, Yu-Shen Liu, and Matthias
Zwicker. SeqXY2SeqZ: Structure learning for 3D shapes
by sequentially predicting 1D occupancy segments from 2D
coordinates. In European Conference on Computer Vision
(ECCV), 2020. 3

[14] Zhizhong Han, Mingyang Shang, Yu-Shen Liu, and Matthias
Zwicker. View inter-prediction GAN: Unsupervised repre-
sentation learning for 3D shapes by learning global shape
memories to support local view predictions. In 33rd AAAI
Conference on Artificial Intelligence, 2019. 1

[15] Zhizhong Han, Mingyang Shang, Zhenbao Liu, Chi-Man
Vong, Yu-Shen Liu, Junwei Han, Matthias Zwicker, and
C.L. Philip Chen. SeqViews2SeqLabels: Learning 3D global
features via aggregating sequential views by RNN with at-
tention. IEEE Transactions on Image Processing, 28(2):658–
672, 2019. 1, 3

[16] Zhizhong Han, Xiyang Wang, Yu-Shen Liu, and Matthias
Zwicker. Multi-Angle Point Cloud-VAE: Unsupervised fea-
ture learning for 3D point clouds from multiple angles by
joint self-reconstruction and half-to-half prediction. In Pro-
ceedings of the IEEE International Conference on Computer
Vision, pages 10442–10451, 2019. 3

[17] Zhizhong Han, Xiyang Wang, Chi-Man Vong, Yu-Shen Liu,
Matthias Zwicker, and CL Chen. 3DViewGraph: Learning
global features for 3D shapes from a graph of unordered
views with attention. In International Joint Conference on
Artificial Intelligence, 2019. 1

[18] Tao Hu, Zhizhong Han, Abhinav Shrivastava, and Matthias
Zwicker. Render4Completion: Synthesizing multi-view
depth maps for 3D shape completion. In Proceedings of In-
ternational Conference on Computer Vision, 2019. 3

[19] Zitian Huang, Yikuan Yu, Jiawen Xu, Feng Ni, and Xinyi Le.
Pf-net: Point fractal network for 3d point cloud completion.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 7662–7670, 2020. 1

[20] Evangelos Kalogerakis, Siddhartha Chaudhuri, Daphne
Koller, and Vladlen Koltun. A probabilistic model for
component-based shape synthesis. ACM Transactions on
Graphics, 31(4):55, 2012. 2

[21] Minghua Liu, Lu Sheng, Sheng Yang, Jing Shao, and Shi-
Min Hu. Morphing and sampling network for dense point
cloud completion. In AAAI, 2020. 1

[22] Xinhai Liu, Zhizhong Han, Yu-Shen Liu, and Matthias
Zwicker. Point2Sequence: Learning the shape representa-
tion of 3D point clouds with an attention-based sequence to
sequence network. In 33rd AAAI Conference on Artificial
Intelligence, 2019. 1, 3

[23] Laurens van der Maaten and Geoffrey Hinton. Visualiz-
ing data using t-sne. Journal of machine learning research,
9(Nov):2579–2605, 2008. 7

[24] Andelo Martinovic and Luc Van Gool. Bayesian grammar
learning for inverse procedural modeling. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 201–208. IEEE, 2013. 2

[25] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
PointNet: Deep learning on point sets for 3D classification

9



and segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2017. 1

[26] Muhammad Sarmad, Hyunjoo Jenny Lee, and Young Min
Kim. RL-GAN-Net: A reinforcement learning agent con-
trolled gan network for real-time point cloud shape comple-
tion. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 5898–5907, 2019. 3,
5

[27] Tianjia Shao, Weiwei Xu, Kun Zhou, Jingdong Wang, Dong-
ping Li, and Baining Guo. An interactive approach to seman-
tic modeling of indoor scenes with an rgbd camera. ACM
Transactions on Graphics, 31(6):136, 2012. 2

[28] Chao-Hui Shen, Hongbo Fu, Kang Chen, and Shi-Min Hu.
Structure recovery by part assembly. ACM Transactions on
Graphics, 31(6):180, 2012. 2, 3

[29] David Stutz and Andreas Geiger. Learning 3D shape com-
pletion from laser scan data with weak supervision. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1955–1964, 2018. 3

[30] Minhyuk Sung, Vladimir G Kim, Roland Angst, and
Leonidas Guibas. Data-driven structural priors for shape
completion. ACM Transactions on Graphics (TOG),
34(6):175, 2015. 2, 3

[31] Lyne P Tchapmi, Vineet Kosaraju, Hamid Rezatofighi, Ian
Reid, and Silvio Savarese. TopNet: Structural point cloud
decoder. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 383–392, 2019.
1, 3, 5, 6

[32] Duc Thanh Nguyen, Binh-Son Hua, Khoi Tran, Quang-Hieu
Pham, and Sai-Kit Yeung. A field model for repairing 3D
shapes. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 5676–5684, 2016. 2

[33] Xiaogang Wang, Marcelo H Ang Jr, and Gim Hee Lee. Cas-
caded refinement network for point cloud completion. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2020. 3

[34] Hu Wei, Fu Zeqing, and Guo Zongming. Local frequency
interpretation and non-local self-similarity on graph for point
cloud inpainting. IEEE Transactions on Image Processing,
28(8):4087–4100, 2019. 2

[35] Xin Wen, Zhizhong Han, Geunhyuk Youk, and Yu-Shen Liu.
CF-SIS: Semantic-Instance segmentation of 3D point clouds
by context fusion with self-attention. In ACM International
Conference on Multimedia (ACM MM), 2020. 1

[36] Xin Wen, Tianyang Li, Zhizhong Han, and Yu-Shen Liu.
Point cloud completion by skip-attention network with hi-
erarchical folding. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2020. 3, 6

[37] Haozhe Xie, Hongxun Yao, Shangchen Zhou, Jiageng Mao,
Shengping Zhang, and Wenxiu Sun. Grnet: Gridding resid-
ual network for dense point cloud completion. In ECCV,
2020. 1

[38] Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Fold-
ingNet: Point cloud auto-encoder via deep grid deformation.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 206–215, 2018. 6

[39] Kangxue Yin, Hui Huang, Daniel Cohen-Or, and Hao Zhang.
P2p-net: Bidirectional point displacement net for shape

transform. ACM Transactions on Graphics (TOG), 37(4):1–
13, 2018. 1

[40] Wentao Yuan, Tejas Khot, David Held, Christoph Mertz, and
Martial Hebert. PCN: Point completion network. In Inter-
national Conference on 3D Vision (3DV), pages 728–737.
IEEE, 2018. 1, 3, 6

[41] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A
Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In Proceedings of the IEEE
international conference on computer vision, pages 2223–
2232, 2017. 3

10


