
DER: Dynamically Expandable Representation for Class Incremental Learning

Shipeng Yan1,3,4* Jiangwei Xie1∗ Xuming He1,2

1School of Information Science and Technology, ShanghaiTech University
2Shanghai Engineering Research Center of Intelligent Vision and Imaging

3Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences
4University of Chinese Academy of Sciences
{yanshp, xiejw, hexm}@shanghaitech.edu.cn

Abstract

We address the problem of class incremental learning,
which is a core step towards achieving adaptive vision in-
telligence. In particular, we consider the task setting of in-
cremental learning with limited memory and aim to achieve
better stability-plasticity trade-off. To this end, we propose
a novel two-stage learning approach that utilizes a dynam-
ically expandable representation for more effective incre-
mental concept modeling. Specifically, at each incremental
step, we freeze the previously learned representation and
augment it with additional feature dimensions from a new
learnable feature extractor. This enables us to integrate new
visual concepts with retaining learned knowledge. We dy-
namically expand the representation according to the com-
plexity of novel concepts by introducing a channel-level
mask-based pruning strategy. Moreover, we introduce an
auxiliary loss to encourage the model to learn diverse and
discriminate features for novel concepts. We conduct ex-
tensive experiments on the three class incremental learning
benchmarks and our method consistently outperforms other
methods with a large margin.1

1. Introduction
Human can easily accumulate visual knowledge from

past experiences and incrementally learn novel concepts.
Inspired by this, the problem of class incremental learning
aims to design algorithms that can learn novel concepts in
a sequential manner and eventually perform well on all ob-
served classes. Such capability is indispensable for many
real-world applications such as the intelligent robot [31],
face recognition [19] and autonomous driving [25]. How-
ever, achieving human-level incremental learning remains

*Both authors contributed equally. This work was supported by Shang-
hai NSF Grant (No. 18ZR1425100)

1Code is available at https://github.com/Rhyssiyan/DER-
ClassIL.pytorch.
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Figure 1: The average incremental accuracy for different
model size. We compare our model with prior methods
(WA[39], BiC[12], RPSNet[26], iCaRL[27], UCIR[12],
PODNet[6]) and the model trained on all the data (Joint)
on the experiment CIFAR100-B0 of 10 steps.

challenging for modern visual recognition systems.
There has been much effort attempting to address the in-

cremental learning in literature [36, 23, 27, 3, 12, 33, 39].
Among them, perhaps the most effective strategy is to keep
a memory buffer that stores part of observed data for the
rehearsal [28, 29] in future. However, due to the limited
size of data memory, such the incremental learning method
still faces several typical challenges in the general continual
learning task. In particular, it requires a model to effec-
tively incorporate novel concepts without forgetting the ex-
isting knowledge, which is also known as stability-plasticity
dilemma [9]. In detail, excessive plasticity often causes
large performance degradation of the old categories, re-
ferred to as catastrophic forgetting [8]. On the contrary, ex-
cessive stability impedes the adaptation of novel concepts.

Most existing works attempt to achieve a trade-off be-
tween stability and plasticity by gradually updating data
representation and class decision boundary for increasingly
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larger label spaces. For instance, regularization methods [4]
penalize the change of important weights of previously
learned models, while knowledge distillation [27, 3, 12,
6, 34] preserves the network output with available data,
and structure-based methods [26, 1] keep old parameters
fixed when allocating more for new categories. Neverthe-
less, all those methods either sacrifice the model plasticity
for the stability, or are susceptible to forgetting due to fea-
ture degradation of old concepts. As shown in Figure 1, a
large performance gap still exists between the model (Joint)
trained on all data and previous state-of-the-art models.

In this work, we aim to address the above weaknesses
and achieve a better stability-plasticity trade-off in the class
incremental learning. To this end, we adopt a two-stage
learning strategy, decoupling the adaptation of feature rep-
resentation and final classifier head (or classifier for short)
of a deep network [15]. Within this framework, we propose
a novel data representation, referred to as super-feature, ca-
pable of increasing its dimensionality to accommodate new
classes. Our main idea is to freeze the previously learned
representation and augment it with additional feature di-
mensions from a new learnable extractor in each incremen-
tal step. This enables us to retain the existing knowledge
and provides enough flexibility to learn novel concepts.
Moreover, our super-feature is expanded dynamically based
on the complexity of novel concepts to maintain a compact
representation.

To achieve this, we develop a modular deep classifica-
tion network composed of a super-feature extractor network
and a linear classifier. Our super-feature extractor network
consists of multiple feature extractors with varying sizes,
one for each incremental step. Specifically, at a new step,
we expand the super-feature extractor network with a new
feature extractor while keeping the parameters of previous
extractors frozen. The features generated by all the extrac-
tors are concatenated together and fed into the classifier for
the class prediction.

We train the new feature extractor and the classifier on
the memory and the newly incoming data. To encourage
the new extractor to learn diverse and discriminative fea-
tures for new classes, we design an auxiliary loss on distin-
guishing new and old classes. Additionally, to remove the
model redundancy and learn the compact features for novel
classes, we apply a differentiable channel-level mask-based
pruning method that dynamically prunes the network ac-
cording to the difficulty of novel concepts. Finally, given
the updated representation, we freeze the super-feature ex-
tractor and finetune the classifier on a balanced training sub-
set to solve the class imbalance problem [33, 39].

We validate our approach on three commonly used
benchmarks, including CIFAR-100, ImageNet-100, and
ImageNet-1000 datasets. The empirical results and the ab-
lation study demonstrate the superiority of our method over

prior state-of-the-art approaches. Interestingly, we also find
that our method could achieve positive backward and for-
ward transfer between steps. The main contributions of our
work are three-fold:

• To achieve better stability-plasticity trade-off, we de-
velop a dynamically expandable representation and a
two-stage strategy for the class incremental learning.

• We propose an auxiliary loss to promote the newly
added feature module to learn novel classes effectively
and a model pruning step to learn compact features.

• Our approach achieves the new state of the art perfor-
mance on all three benchmarks under a wide range of
model complexity, as shown in Figure 1.

2. Related Work
Class incremental learning aims to learn new classes

continuously. Some works [36, 23] try to solve the problem
with no access to previously seen data. However, prevalent
approaches are based on the rehearsal strategy with limited
data memory, which can be mainly analyzed from represen-
tation learning and classifier learning.
Representation Learning Current works can be mainly
divided into the following three categories. Regularization-
based methods [16, 37, 18, 4, 2] adopt Maximum a Pos-
terior estimation to expect small changes in the important
parameters and update the posterior of model parameters
sequentially. However, its intractable computation typically
requires approximations with a strong model assumption.
For example, EWC [16] uses Laplace approximation, which
assumes weights falling into a local region of the optimal
weights of last step. This severely restricts the model ca-
pacity to adapt to novel concepts.

Distillation-based methods [27, 39, 33, 12, 3, 6, 34] use
knowledge distillation [11] to maintain the representation.
iCaRL [27] and EE2L [3] compute the distillation loss on
the network outputs. UCIR [12] uses normalized feature
vectors to apply the distillation loss instead of the predic-
tion of the network. PODNet [6] uses a spatial-based dis-
tillation loss to restrict the change of model. TPCIL [34]
makes the model preserve the topology of CNN’s feature
space. The performance of knowledge distillation depends
on the quality and quantity of saved data.

Structure-based methods [21, 13, 30, 20, 22, 7, 35, 26, 1,
20] keep the learned parameters related to previous classes
fixed and allocate new parameters in different forms such
as unused parameters, additional networks to learn novel
knowledge. CPG [13] proposes a compaction and se-
lection/expansion mechanism that prunes the deep model
and expands the architecture alternatively with selectively
weight sharing. However, most structure-based [21, 13,
30, 20, 22, 7, 35] methods are designed for task continual
learning, which needs task identity during inference. For
class incremental learning, RPSNet [26] proposes a random



path selection algorithm that progressively chooses optimal
paths as sub-network for the new classes. CCGN [1] equips
each convolutional layer with task-specific gating modules
to select filters to apply on the given input and uses a task
predictor to choose the gating modules in inference.

Classifier Learning Class-imbalance problem is the main
challenge for classifier learning due to limited memory.
Some works like LWF.MC[27], RWalk[4] train the extractor
and classifier jointly within one-stage training. By contrast,
recently, there are many works to solve the class imbalance
problem by introducing an independent classifier learning
stage after representation learning. EEIL[3] finetunes the
classifier on a balanced training subset. BiC[33] adds a bias
correction layer to correct the model’s outputs, where the
layer is trained on a separate validation set. WA[39] cor-
rects the biased weights by aligning the norms of the weight
vectors for new classes to those for old classes.

Discussion Our work is a structure-based method and the
most similar work to ours are RPSNet and CCGN. RPSNet
cannot retain the intrinsic structure of each old concept and
tends to gradually forget the learned concepts by summing
the previously learned features and the newly learned fea-
tures at each ConvNet stage. In CCGN, the learned rep-
resentation may slowly degrade over steps as only the pa-
rameters of part of layers are frozen. By contrast, we keep
the previously learned representation fixed and augment it
with novel features parameterized by a new feature extrac-
tor. This enables us to preserve the intrinsic structure of
old concepts in the subspace of previously learned repre-
sentation, and re-use the structure via the final classifier to
mitigate forgetting.

3. Methods
In this section, we present our approach to the problem of

class incremental learning, aiming to achieve a better trade-
off between stability and plasticity. To this end, we propose
a dynamically expandable representation (DER) that incre-
mentally augments previously learned representation with
novel features and a two-stage learning strategy.

Below we first present the formulation of class incre-
mental learning and an overview of our method in Sec. 3.1.
Then we introduce the expandable representation learning
and its loss function in Sec. 3.2. After this, we describe the
dynamic expansion of our representation in Sec. 3.3 and the
second stage of classifier learning in Sec. 3.4.

3.1. Problem Setup and Method Overview

Firstly, we introduce the problem setup of class incre-
mental learning. In contrast to task incremental learning,
class incremental learning does not require task id during
inference. Specifically, during the class incremental learn-
ing, the model observes a stream of class groups {Yt} and

their corresponding training data {Dt}. Particularly, the in-
coming dataset Dt at step t has a form of (xt

i, y
t
i) where xt

i

is the input image and yti ∈ Yt is the label within the label
set Yt. The label space of the model is all seen categories
Ỹt = ∪ti=1Yi and the model is expected to predict well on
all classes in Ỹt.

Our method adopts the rehearsal strategy, which saves a
part of data as the memoryMt for future training. For the
learning of step t, we decouple the learning process into two
sequential stages as follows.

1) Representation Learning Stage. To achieve better trade-
off between stability and plasticity, we fix the previous fea-
ture representation and expand it with a new feature extrac-
tor trained on the incoming and memory data. We design an
auxiliary loss on the novel extractor to promote it to learn
diverse and discriminative features. To improve the model
efficiency, we dynamically expand the representation ac-
cording to the complexity of new classes via introducing
a channel-level mask-based pruning method. The overview
of our proposed representation is shown in Figure 2.

2) Classifier Learning Stage. After the learning of represen-
tation, we retrain the classifier with currently available data
D̃t = Dt ∪Mt at step t to deal with the class imbalance
problem via adopting the balanced finetuning method in [3].

3.2. Expandable Representation Learning

We first introduce our expandable representation. At
step t, our model is composed of a super-feature extractor
Φt and the classifier Ht. The super-feature extractor Φt is
built by expanding the feature extractor Φt−1 with a newly
created feature extractor Ft. Specifically, given an image
x ∈ D̃t, the feature u extracted by Φt is obtained by con-
catenation as follows

u = Φt(x) = [Φt−1(x),Ft(x)] (1)

Here we reuse the previousF1, . . . ,Ft−1 and encourage the
new extractor Ft to learn only novel aspect of new classes.
The feature u is then fed into the classifierHt to make pre-
diction as follows

pHt
(y|x) = Softmax(Ht(u)) (2)

Then the prediction ŷ = arg max pHt(y|x), ŷ ∈ Ỹt. The
classifier is designed to match its new input and output di-
mensions for step t. The parameters of Ht for the old fea-
tures are inherited from Ht−1 to retain old knowledge and
its newly added parameters are randomly initialized.

To reduce catastrophic forgetting, we freeze the learned
function Φt−1 at step t, as it captures the intrinsic struc-
ture of previous data. In detail, the parameters of last
step super-feature extractor θΦt−1

and the statistics of Batch
Normalization[14] are not updated. Besides, we instantiate



Layer 1 Layer 2 Layer 𝐿 Feature

…

…

… Classifier

Auxiliary
Classifier

Feature Extractor ℱ%&

≈

Input Prediction

Mask 
Layer …

Φ()%
&

Feature Extractor ℱ*&

New Feature Extractor	ℱ,

Φ(

𝓗𝒕

𝓗𝒕
𝒂

Super-Feature

Mask Parameters
𝒆𝒍

Sigmoid

Layer 𝑙-1 Layer 𝑙

Sparsity Loss

Mask Layer…

Mask 𝒎𝒍

Figure 2: Dynamically Expandable Representation Learning. At step t, the model is composed of super-feature extractor Φt

and classifierHt, where Φt is built by expanding the existing super-feature extractor ΦP
t−1 with new feature extractor Ft. We

also use an auxiliary classifier to regularize the model. Besides, the layer-wise channel-level mask is jointed learned with the
representation, which is used to prune the network after the learning of model.

Ft with Ft−1 as initialization to reuse previous knowledge
for fast adaptation and forward transfer.

We can shed the light on the problem from the perspec-
tive of estimating the prior distribution p(θΦt |D1:t−1) given
the previous data D1:t−1. Unlike previous regularization
methods like EWC, we do not assume the prior distribution
for t-th step is unimodal, which restricts the model flexibil-
ity and is typically not the case in practice. For our method,
the model expands with new parameters by creating a sep-
arate feature extractor Ft for incoming data and take a
uniform distribution as the prior distribution p(θFt |D1:t−1)
which provides enough flexibility for the model to adapt to
novel concepts. Meanwhile, for simplicity, we approximate
the prior distribution p(θΦt−1

|D1:t−1) on the old parameters
θΦt−1 as the Dirac distribution, which maintains the infor-
mation learned on D1:t−1. By integrating two prior distri-
bution assumptions on p(θΦt−1

|D1:t−1) and p(θFt
|D1:t−1),

we have more flexibility in achieving a better stability-
plasticity trade-off.
Training Loss We learn the model with cross-entropy
loss on memory and incoming data as follows

LHt
= − 1

|D̃t|

|D̃t|∑
i=1

log(pHt
(y = yi|xi))) (3)

where xi is image and yi is the corresponding label.
To enforce the network to learn the diverse and discrim-

inative features for novel concepts, we further develop an
auxiliary loss operating on the novel feature Ft(x). Specif-
ically, we introduce an auxiliary classifier Ha

t , which pre-
dicts the probability pHa

t
(y|x) = Softmax(Ha

t (Ft(x)). To
encourage the network to learn features to discriminate be-
tween old and new concepts, the label space ofHa

t is |Yt|+1
including the new category set Yt and the other class by
treating all old concepts as one category. Thusly, we intro-

duce the auxiliary loss and obtain the expandable represen-
tation loss as follows

LER = LHt
+ λaLHa

t
(4)

where λa is the hyper-parameter to control the effect of the
auxiliary classifier. It is worth noting that λa=0 for first
step t = 1.

3.3. Dynamical Expansion

To remove the model redundancy and maintain a com-
pact representation, we dynamically expand the super-
feature according to the complexity of novel concepts.
Specifically, we adopt a differentiable channel-level mask-
based method to prune filters of the extractor Ft, in which
the masks are learned with the representation jointly. After
the learning of the mask, we binarize the mask and prune
the feature extractor Ft to obtain the pruned network FP

t .

Channel-level Masks Our pruning method is based on
differentiable channel-level masks, which is adapted from
HAT [30]. For the novel feature extractor Ft, the input fea-
ture map of convolutional layer l for a given image x is
denoted as fl. We introduce the channel mask ml ∈ Rcl

to control the size of layer l where mi
l ∈ [0, 1] and cl is

the number of channels of layer l. fl is modulated with the
mask as follows

f ′l = fl �ml (5)

where f ′l is the masked feature map,�means channel-level
multiplication. To make the value of ml fall into the inter-
val [0, 1], the gating function is adopted as follows

ml = σ(sel) (6)

where el means learnable mask parameters, the gating func-
tion σ(·) uses the sigmoid function in this work and s is the



scaling factor to control the sharpness of the function. With
such a mask mechanism, the super-feature ũ of step t can
be rewritten as

ũ = ΦP
t (x) = [FP

1 (x),FP
2 (x), ..., φt(x)] (7)

During training, φt(x) is Ft(x) with the soft masks. For
inference, we assign s a large value to binarize masks and
obtain the pruned network FP

t , and φt(x) = FP
t (x)

Mask Learning During a epoch, a linear annealing
schedule is applied for s as follows

s =
1

smax
+ (smax −

1

smax
)
b− 1

B − 1
(8)

where b is the batch index, smax�1 is the hyper-parameter
to control the schedule, B is the number of batches in one
epoch. The training epoch starts with all channels activated
in a uniform way. Then the mask is progressively binarized
with the increasing of batch index within a epoch.

One of the problems of the sigmoid function is that the
gradient is unstable due to the s schedule. We compensate
the gradient gel with respect to el to remove the influence
of s as follows

g′el
=

σ(el)[1− σ(el)]

sσ(sel)[1− σ(sel)]
gel (9)

where g′el
is the compensated gradient.

Sparsity Loss At every step, we encourage the model to
maximally reduce the number of parameters with a minimal
performance drop. Motivated by this, we add a sparsity loss
based on the ratio of used weights in all available weights.

LS =

∑L
l=1Kl‖ml−1‖1‖ml‖1∑L

l=1Klcl−1cl
(10)

where L is the number of layers, Kl is the kernel size of
convolution layer l, layer l=0 refers to the input image, and
‖m0‖1=3.

After adding the sparsity loss, the final loss function is

LDER = LHt
+ λaLHa

t
+ λsLS (11)

where λs is the hyper-parameter to control the model size.

3.4. Classifier Learning

At the representation learning stage, we re-train the
classifier head in order to reduce the bias in the classifier
weight introduced by the imbalanced training. Specifically,
we first re-initialize the classifier with random weights and
then sample a class-balanced subset from currently avail-
able data D̃t. We train the classifier head only using the
cross-entropy loss with a temperature δ in the Softmax [38].
The temperature controls the smoothness of the Softmax
function to improve the margins between classes.

4. Experiments
In this section, we conduct extensive experiments to vali-

date the effectiveness of our algorithm. Especially, we eval-
uate our method on CIFAR-100[27], ImageNet-100[27] and
ImageNet-1000[27] datasets with two widely used bench-
mark protocols. We also perform a series of ablation studies
to evaluate the importance of each component and provides
more insights into our method. Below we first start with the
introduction of experiment setup and implementation de-
tails in Sec. 4.1, followed by the experimental results on the
CIFAR100 dataset in Sec. 4.2. Then we present the eval-
uation results on both ImageNet-100 and ImageNet-1000
datasets in Sec. 4.3. Finally, we introduce the ablation study
and analysis for our method in Sec. 4.4.

4.1. Experiment Setup and Implementation Details

Datasets CIFAR-100 [17] consists of 32x32 pixel color
images with 100 classes. It contains 50,000 images for
training with 500 images per class, and 10,000 images for
evaluation with 100 images per class. ImageNet-1000 [5]
is a large-scale dataset from 1,000 classes which includes
about 1.2 million RGB images for training and 50,000 im-
ages for validation. ImageNet-100 [27, 12] is built by se-
lecting 100 classes from the ImageNet-1000 dataset.

Benchmark Protocols For the CIFAR-100 benchmark,
we test our methods on two popular protocols including
1)CIFAR100-B0: we follow the protocol proposed in [27],
which trains all 100 classes in several splits including 5,
10, 20, 50 incremental steps with fixed memory size of
2,000 exemplars over batches; 2)CIFAR100-B50: we follow
the protocol introduced in [12], which starts from a model
trained on 50 classes, and the remaining 50 classes are di-
vided into splits of 2, 5, and 10 steps with 20 examples as
memory per class. We compare the top-1 average incre-
mental accuracy which takes the average of the accuracy
for each step.

We also evaluate our method on ImageNet-100 with two
protocols that are 1)ImageNet100-B0: the protocol [27]
trains the model in batches of 10 classes from scratch with
fixed memory size 2,000 over batches; 2)ImageNet100-
B50: the protocol [12] starts from a model trained on 50
classes, and the remaining 50 classes come in 10 steps with
20 examples per class as memory. For the sake of fairness,
we use the same ImageNet subset and class order following
the protocols [27, 12]. For ImageNet-1000, we evaluate our
method on the protocol [27], known as ImageNet1000-B0
benchmark, that trains the model in batches of 100 classes
with 10 steps in total and set the fixed memory size as
20,000. Detailedly, we use the same class order as [27] for
ImageNet-1000. Moreover, we compare the top-1 and top-5
average incremental accuracy and the last step accuracy on
ImageNet-100 and ImageNet-1000 datasets.



Methods 5 steps 10 steps 20 steps 50 steps
#Paras Avg #Paras Avg #Paras Avg #Paras Avg

Bound 11.2 80.40 11.2 80.41 11.2 81.49 11.2 81.74

iCaRL[27] 11.2 71.14±0.34 11.2 65.27±1.02 11.2 61.20±0.83 11.2 56.08±0.83

UCIR[12] 11.2 62.77±0.82 11.2 58.66±0.71 11.2 58.17±0.30 11.2 56.86±3.74

BiC[12] 11.2 73.10±0.55 11.2 68.80±1.20 11.2 66.48±0.32 11.2 62.09±0.85

WA[39] 11.2 72.81±0.28 11.2 69.46±0.29 11.2 67.33±0.15 11.2 64.32±0.28

PODNet[6] 11.2 66.70±0.64 11.2 58.03±1.27 11.2 53.97±0.85 11.2 51.19±1.02

RPSNet[26] 60.6 70.5 56.5 68.6 - - - -

Ours(w/o P) 33.6 76.80±0.79(+3.7) 61.6 75.36±0.36(+5.9) 117.6 74.09±0.33(+6.76) 285.6 72.41±0.36(+8.09)
Ours 2.89 75.55±0.65(+2.45) 4.96 74.64±0.28(+5.18) 7.21 73.98±0.36(+6.65) 10.15 72.05±0.55(+7.73)

Table 1: Results on CIFAR100-B0 benchmark which is averaged over three runs. #Paras means the average number of
parameters used during inference over steps, which is counted by million. Avg means the average accuracy (%) over steps.
Ours(w/o P) means our method without pruning.

Methods 2Steps 5Steps 10Steps

#Paras Avg #Paras Avg #Paras Avg

Bound 11.2 77.22 11.2 79.89 11.2 79.91

iCaRL[27] 11.2 71.33±0.35 11.2 65.06±0.53 11.2 58.59±0.95

UCIR[12] 11.2 67.21±0.35 11.2 64.28±0.19 11.2 59.92±2.4

BiC[12] 11.2 72.47±0.99 11.2 66.62±0.45 11.2 60.25±0.34

WA[39] 11.2 71.43±0.65 11.2 64.01±1.62 11.2 57.86±0.81

PODNet[6] 11.2 71.30±0.46 11.2 67.25±0.27 11.2 64.04±0.43

Ours(w/o P) 22.4 74.61±0.52(+2.14) 39.2 73.21±0.78(+5.96) 67.2 72.81±0.88(+8.77)
Ours 3.90 74.57±0.42(+2.10) 6.13 72.60±0.78(+5.35) 8.79 72.45±0.76(+8.41)

Table 2: Results on CIFAR100-B50 (average over 3 runs). #Paras means the average number of parameters used during
inference over steps, which is counted by million. Avg means the average accuracy (%) over steps. Ours(w/o P) means our
method without pruning.

Implementation Details Our method is implemented
with PyTorch [24]. For CIFAR-100, we adopt ResNet-18 as
feature extractor Ft following RPSNet [26]. We note that
most previous works use a modified 32-layers ResNet[27],
which has fewer channels and residual blocks compared to
standard ResNet-32. We argue that such a small network is
not suitable because it cannot achieve competitive results on
CIFAR100 compared with standard 18-layers ResNet[10]
and may underestimate the performance of methods. We
run these methods with standard ResNet-18 on the same
class orders based on their code implementation. For those
without releasing the codes, we report the results based on
our implementation. For RPSNet, we use the results in
their paper directly. For ImageNet-100 and ImageNet-1000
benchmarks, we use 18-layers ResNet as the basic network.
In these experiemnts, we select exemplars as memory based
on the herding selection strategy[32] following the previ-
ous works[27]. Furthermore, we run experiments on three
different class orders and report average±standard devia-
tions in the results. We also provide the experimental results
on CIFAR-100 based on modified 32-layers ResNet [27] in
the appendix, which proves the superiority of our method
again. We follow the protocol in [6, 30] and tune the hyper-

parameters on a validation set created by holding out a part
of original training data. The details of the hyperparameters
are added to the appendix.

4.2. Evaluation on CIFAR100

Quantitative Results Table 1 summarizes the results of
CIFAR100-B0 benchmark. We can see that our method
consistently outperforms other methods by a sizable mar-
gin at different incremental splits. As the number of
steps increases in the split, it is observed that the margin
between our method and other methods continuously in-
creases which indicates that our method performs better on
the difficult splits with longer steps. Particularly, under the
incremental setting of 50 steps, we improve the average in-
cremental accuracy from 64.32% to 72.05%(+7.73%) of
ours with fewer parameters. It is worth noting that although
huge model parameters are reduced, the performance degra-
dation of our method caused by pruning can be ignored,
which demonstrates that the success of our pruning method.
As shown in the left panel of Figure 3, it is observed that our
method consistently surpasses other methods at every step
for different splits. Moreover, the gap between our method
and other methods increases with the continuous adding of



Methods
ImageNet100-B0 ImageNet1000-B0

#Paras top-1 top-5
#Paras top-1 top-5

Avg Last Avg Last Avg Last Avg Last
Bound 11.2 - - - 95.1 11.2 89.27 - - -

iCaRL[27] 11.2 - - 83.6 63.8 11.2 38.4 22.7 63.7 44.0
BiC[12] 11.2 - - 90.6 84.4 11.2 - - 84.0 73.2
WA[39] 11.2 - - 91.0 84.1 11.2 65.67 55.6 86.6 81.1
RPSNet[26] - - - 87.9 74.0 - - - - -

Ours(w/o P) 61.6 77.18 66.70 93.23 87.52 61.6 68.84 60.16 88.17 82.86
Ours 7.67 76.12 66.06 92.79 88.38 14.52 66.73 58.62 87.08 81.89

Methods
ImageNet100-B50

#Paras top-1 top-5

Avg Last Avg Last

Bound 11.2 81.20 81.5 - -

UCIR[12] 11.2 68.09 57.3 - -
PODNet[6] 11.2 74.33 - - -
TPCIL[34] 11.2 74.81 66.91 - -

Ours(w/o P) 67.20 78.20 74.92 94.20 91.30
Ours 8.87 77.73 72.06 94.01 91.64

Table 3: Results on ImageNet-100 and ImageNet-1000 datasets.Left: The results on ImageNet100-B0 and ImageNet1000-B0
benchmark. Right: The results on ImageNet100-B50 benchmark. #Paras means the average number of parameters during
inference over steps, which is counted by million. Avg means the average accuracy (%) over steps. Last is the accuracy (%)
of the last step. Ours(w/o P) means our method without pruning.
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Figure 3: The performance for each step. Left is evaluated on CIFAR100-B0 of 20 and 50 steps and Right is evaluated on
CIFAR100-B50 of 5 and 10 steps.

novel classes. Specifically, under the incremental split of
50 steps, the last step accuracy is boosted from 42.75% to
58.66%(+15.91%), which further proves that the effective-
ness of our method.

We also compare the performance of our method with
previous methods in Table 2 on the CIFAR100-B50 bench-
mark, which shows our method improves the performance
with a significant gain in all splits. In particular, under the
incremental setting of 10 steps, our method outperforms
PODNet by 8.41% average incremental accuracy. As the
right panel of Figure 3 shows, our method performs better
than other methods at each step for all splits. Especially,
our method improves from 52.56% to 65.58%(+13.02%)
for the last step accuracy in the split of 10 steps. Moreover,
our method achieves similar performance with much fewer
parameters compared to our method without pruning.

It is worth noting that previous methods often perform
well only on one of the protocols where WA is the state-
of-the-art on CIFAR100-B0 and PODNet is state-of-the-art
on CIFAR100-B50. By contrast, our method consistently
surpasses other methods on both protocols.

The effects of model size We conduct extensive experi-
ments to study the effect of model size on performance. As

shown in Figure 1, we can see that our method consistently
and significantly performs better than other methods at var-
ious model sizes.We also note that the improvement of our
method compared to most other methods becomes more sig-
nificant with the increasing of model size, which illustrates
that our method can exploit the potential of a large model.

4.3. Evaluation on ImageNet

Table 3 summarizes the experimental results for the
ImageNet-100 and ImageNet-1000 datasets. We can see
that our method consistently surpasses other methods with
a considerable margin for all splits on ImageNet-100 and
ImageNet-1000 datasets, especially the last step accu-
racy. Specifically, our method outperforms the state-of-
the-art with about 1.79% for the average top-5 accuracy
on the ImageNet100-B0 benchmark. For ImageNet100-
B50 benchmark, the last step top-1 accuracy is improved
from 66.91% to 72.06%(+5.15%). Furthermore, our
method improves the final step top-1 accuracy from 55.6%
to 58.62%(+3.02%) on ImageNet1000-B0 benchmark.
While the top-5 accuracy gap is smaller, we believe it is be-
cause top-5 accuracy is more tolerant to slightly inaccurate
predictions and thus less sensitive to forgetting.
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Figure 4: Analysis. The backward transfer of representation by observing the changes of At
Y1

for different splits.

Components Avg LastE.R. Aux.
7 7 61.84 40.81
X 7 73.26 63.07
X X 75.36 65.34

Table 4: The contribution of each component. E.R. means
expandable representation. Aux. means using auxiliary loss.

4.4. Ablation Study and Analysis

We conduct exhaustive ablation study to evaluate the
contribution of each component for our method. We also
conduct sensitive study for hyper-parameters stated in the
appendix. Moreover, we study the backward transfer and
forward transfer of the representation for each method.

The effect of each component Table 4 summarizes the
results of our ablative experiments on CIFAR100-B0 with
10 steps. We can see that the average accuracy is improved
significantly from 61.84% to 73.26% by representation ex-
pansion. We also show that the performance of the model is
further improved with 2.10% gain using auxiliary loss.

Backward Transfer for Representation To assess the
quality of representation, we introduce an ideal decision
boundary obtained by finetuning the classifier with all ob-
served data, which allows us to exclude the influence of the
classifier. We then define classification accuracyAt

Yk
at step

t as the accuracy on the test images of class set Yk, where
the prediction space of the model is restricted to Yk. By ob-
serving the At

Yk
curve over t, we can see how the represen-

tation quality evolves along the increments. Figure 4 shows
the results of CIFAR100-B0 with 10 incremental steps. We
also compute a backward transfer value for different meth-
ods as follows:

BWT =
1

T − 1

T∑
i=2

1

i

i∑
j=1

Ai
Yj
−Aj

Yj
(12)

The results are shown in Table 5. We can see that other
methods suffer from severe forgetting. In contrast, our
method even achieves positive backward transfer +1.36%
and the accuracy increases with respect to steps, which fur-
ther proves the superiority of our method.

Methods iCaRL UCIR BiC WA PODNet Ours
BWT (%) −4.14 −8.52 −3.40 −3.18 −16.27 +1.36
FWT (%) −4.91 −5.56 −0.17 +0.82 −5.58 +1.49

Table 5: Backward transfer and Forward transfer (FWT) for
representation.

Forward Transfer for Representation We also measure
the influence of existing knowledge on the performance of
subsequent concepts on CIFAR100-B0 with 10 incremental
steps, known as forward transfer. Specifically, we define a
forward transfer rate for representation as follows

FWT =
1

T − 1

T∑
i=2

Ai
Yi
− Āi

Yi
(13)

where Āi
Yi

is the test accuracy obtained by model trained
on available data D̃t with only cross-entropy loss at ran-
dom initialization. As shown in Table 5, it is observed that
most methods have negative forward transfer, which indi-
cates that they sacrifice the flexibility of adaptation to novel
concepts. By contrast, our method achieves +1.49% FWT
which implies that our method not only makes the model
highly flexible but also brings the positive forward transfer.

5. Conclusion
In this work, we propose dynamically expandable repre-

sentation to improve the representation for class incremen-
tal learning. At each step, we freeze previously learned rep-
resentation and augment it with novel parameterized fea-
ture. We also introduce channel-level mask-based prun-
ing to dynamically expand representation according to the
difficulty of novel concepts and an auxiliary loss to learn
the novel discriminative features better. We conduct ex-
haustive experiments on the three major incremental clas-
sification benchmarks. The experimental results show that
our method consistently performs better than other methods
with a sizable margin. Interestingly, we also find that our
method can even achieve positive backward and forward
transfer.



References
[1] Davide Abati, Jakub Tomczak, Tijmen Blankevoort, Simone

Calderara, Rita Cucchiara, and Babak Ehteshami Bejnordi.
Conditional channel gated networks for task-aware contin-
ual learning. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition (CVPR), 2020. 2, 3

[2] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny,
Marcus Rohrbach, and Tinne Tuytelaars. Memory aware
synapses: Learning what (not) to forget. In Proceedings
of the European Conference on Computer Vision (ECCV),
2018. 2

[3] Francisco M. Castro, Manuel J. Marı́n-Jiménez, Nicolás
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Appendices
A. Hyperparameters
Representation learning stage For CIFAR-100, we use
SGD to train the model with batch size 128, weight de-
cay 0.0005. We adopt the warmup strategy with the end-
ing learning rate 0.1 for 10 epochs. After the warmup, we
run the SGD with 160 epochs and the learning rate decays
at 100, 120 epochs with 0.1. For ImageNet100 and Im-
ageNet1000, we adopt SGD with batch size 256, weight
decay 0.0005. We also use the same warmup strategy as
in CIFAR100. After the warmup, model is trained for 120
epochs. Learning rate starts from 0.1 and decays by 0.1
rates after 30, 60, 80, and 90 epochs.

For the coefficients in the loss function, λa is set to 1
for all experiments in the paper. λs is tuned to ensure
our learned model has comparable number of parameters to
other methods for fair comparison. Moreover, for simplic-
ity, we set the same λs for every steps in each experiment.
For experiments of CIFAR100-B0, λs is set as 0.75. For
experiments of CIFAR100-B50, λs is set as 0.25. For ex-
periments on ImageNet100 and ImageNet, λs is set as 0.75
for ImageNet100-B0, 0.5 for ImageNet100-B50 and 0.75
for ImageNet.

Classifier learning stage We adopt SGD optimizer with
weight decay 0.0005 to update the classifier only for 30
epochs with SGD optimizer. Learning rate is 0.1 and de-
cays with 0.1 rate at 15 epochs. The temperature of cross-
entropy loss are set as δ = 5 for CIFAR-100 and δ = 1 for
ImageNet-100 and ImageNet-1000.

B. Sensitive Study of Hyper-parameters
We conduct a sensitive study of our method on

CVIFAR100-B0 10 steps with different λa. The results are
shown in Table 6, which demonstrates our method is robust
to λa. We also conduct experiments for different λs, which
is shown in the Figure 1 in the main body.

λa 0.1 0.5 1 5 10
Avg 74.12±0.06 74.41±0.16 74.64±0.28 74.52±0.33 73.54±0.22

Table 6: Sensitive study on effects of λa

C. The Quality of Decision Boundary
In this section, our goal is to verify that the high-quality

linear classifier can be obtained even re-learning the old
classes’ decision boundary with memoryM. Specifically,
we compare our method with an ‘ideal’ strategy that uses
all the previous data to train the classifier in the second

stage. Such an upper bound achieves 76.14± 0.80% on the
CIFAR100-B0 10 steps, which is only slightly higher than
our method (74.64± 0.28%). We also observed similar re-
sults on the other benchmarks, which show the efficacy of
our second-stage learning.

D. Latency
Regarding inference latency, we conduct an experimen-

tal comparison on the ImageNet with GTX 1080Ti. Our
method achieves 1.07ms/image, which is comparable to
other baseline methods, such as BiC and WA, which are
0.99ms/image.

E. Results for modified 32-layer ResNet
Most works use a modified 32-layer ResNet following

iCaRL[27]. We also compare the results of our method
with other methods based on the modified 32-layer ResNet.
The results on CIFAR100-B0 are shown in Table 7 and the
results on CIFAR100-B50 are shown in Table 8. The re-
sults of other methods are reported in their papers. It can be
found that our method still outperforms other methods on
both CIFAR100-B0 and CIFAR100-B50 even with a small
network like modified ResNet-32.

F. More detailed results on CIFAR100
Figure 5 shows the performance with respect to steps on

CIFAR100-B0 with 5 incremental steps and 10 incremental
steps and CIFAR100-B0 with 2 incremental steps. This also
illustrates the superiority of our method.

G. Detailed results on ImageNet
We also show the curves of performance with re-

spect to steps on ImageNet100-B0, ImageNet100-B50 and
ImageNet1000-B0 in Figure 6, which proves the effective-
ness of our method on complex datasets.



Methods 5 steps 10 steps 20 steps 50 steps
#Paras Avg #Paras Avg #Paras Avg #Paras Avg

iCaRL [27] 0.46 67.20 0.46 64.04 0.46 61.16 0.46 57.00
BiC [12] 0.46 68.92 0.46 66.15 0.46 63.80 0.46 -
WA [39] 0.46 70.00 0.46 67.25 0.46 64.33 0.46 -

Ours(w/o P) 1.38 73.00(+3.00) 2.53 71.29(+4.04) 4.83 71.07(+6.74) 11.73 70.58(+13.58)
Ours 0.42 72.31(+2.31) 0.52 69.41(+2.16) 0.45 68.82(+4.49) 0.70 67.29(+10.29)

Table 7: Results on CIFAR100-B0 benchmark using modified 32-layer ResNet. #Paras means the average number of
parameters used during inference over steps, which is counted by million. Avg means the average accuracy (%) over steps.
Ours(w/o P) means our method without pruning.

Methods 2Steps 5Steps 10Steps

#Paras Avg #Paras Avg #Paras Avg

UCIR [12] 0.46 66.76 0.46 63.42 0.46 60.18
PODNet [6] - - 0.46 64.83 0.46 64.03
TPCIL [34] - - 0.46 65.34 0.46 63.58

Ours(w/o P) 0.92 70.18(+3.42) 1.61 68.52(+3.18) 2.76 67.09(+3.06)
Ours 0.32 69.52(+2.76) 0.59 67.60(+2.26) 0.61 66.36(+2.33)

Table 8: Results on CIFAR100-B50 using modified 32-layer ResNet. #Paras means the average number of parameters used
during inference over steps, which is counted by million. Avg means the average accuracy (%) over steps. Ours(w/o P) means
our method without pruning.
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Figure 5: The performance for each step. Left is evaluated on CIFAR100-B0 of 5 steps. Middle is evaluated on CIFAR100-
B0 of 10 steps. Right is evaluated on CIFAR100-B50 of 2 steps.
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Figure 6: The performance for each step. Left is evaluated on ImageNet100-B0 of 10 steps. Middle is evaluated on
ImageNet100-B50 of 10 steps. Right is evaluated on ImageNet1000-B0 of 10 steps.


