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Abstract

Tasks that involve high-resolution dense prediction re-
quire a modeling of both local and global patterns in a large
input field. Although the local and global structures of-
ten depend on each other and their simultaneous modeling
is important, many convolutional neural network (CNN)-
based approaches interchange representations in different
resolutions only a few times. In this paper, we claim the im-
portance of a dense simultaneous modeling of multiresolu-
tion representation and propose a novel CNN architecture
called densely connected multidilated DenseNet (D3Net).
D3Net involves a novel multidilated convolution that has
different dilation factors in a single layer to model differ-
ent resolutions simultaneously. By combining the multidi-
lated convolution with the DenseNet architecture, D3Net
incorporates multiresolution learning with an exponentially
growing receptive field in almost all layers, while avoiding
the aliasing problem that occurs when we naively incorpo-
rate the dilated convolution in DenseNet. Experiments on
the image semantic segmentation task using Cityscapes and
the audio source separation task using MUSDB18 show that
the proposed method has superior performance over state-
of-the-art methods.

1. Introduction

Dense prediction tasks such as semantic segmenta-
tion and audio source separation typically accept high-
dimensional input data and produce predictions with the
same (or similar) dimensions. To efficiently handle high-
dimensional data and model the dependences and the con-
text that lies in a large field, various neural network archi-
tectures have been proposed [22, 35, 44, 41]. In particular,
convolutional neural networks (CNNs) have become an es-
sential component, and a variety of advanced CNN archi-
tectures have been proposed to improve performance on the
basis of motivations such as making the networks deeper
while improving a gradient flow [12, 15, 17], multibranch
convolution [37, 36] and explicitly modeling interchannel
dependences of convolutional features [13]. One key com-
ponent of these architectures is a skip connection that cre-

ates short paths from early layers to later layers. In [15], a
simple yet powerful skip connectivity pattern that connects
all preceding layers, called DenseNet, is proposed. Such
dense connectivity allows maximum information flow, mak-
ing CNNs deeper while keeping the model size small by ef-
ficiently reusing intermediate representations of preceding
layers.

One of the benefits of a deeper CNN is its larger recep-
tive field that allows a large context to be modeled, which is
important for tasks that require the utilization of a wide-
area or long-term dependence in a high-resolution input.
For example, sufficiently large parts of objects have to be
modeled for semantic segmentation [2, 46, 1, 50, 51, 30,
44, 8, 47, 52], whereas modeling a long-term dependence is
shown to be important for various audio tasks such as audio
event recognition and source separation [40, 39, 38]. Al-
though the receptive field grows linearly with respect to the
number of layers stacked, the simple stacking of convolu-
tion layers is not the optimal way to increase it, as too many
layers are required to cover a sufficiently large input, which
makes the network training difficult. A popular approach
to incorporate a large context with a reasonable model size
is to repeatedly downsample intermediate network outputs
and apply operations in lower resolution representations. In
dense prediction tasks, the low-resolution representations
are again upsampled to recover the resolution lost while car-
rying over the global perspective from downsampled layers
[26, 27, 22, 44, 38]. Another approach is dilated convo-
lution, where dilation factors are set to grow exponentially
as layers are stacked; and therefore, the networks cover a
large receptive field with a small number of layers. Dilated
convolution is shown to be effective for many tasks that re-
quire high-resolution dense predictions [46, 3, 43]. Most
previously proposed CNN architectures interchange infor-
mation in different resolutions only a few times, e.g., once
or a few times at the end of the network [22, 50, 51], or once
at the beginning or end of each module [27, 44]. However,
since the local and global patterns can depend on each other,
i.e., a local structure can be more accurately estimated by
knowing a global structure and vice versa, a more frequent
(dense) interchange of information among representations
in multiple resolutions could be beneficial.
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(b) Multi-dilated convolution

d=1
d=2

d=4

(a) Dilated dense block

Figure 1. Illustration of D2 block. (a) The connectivity pattern is the same as that in DenseNet except that the D2 block involves the
multidilated convolution. (b) Illustration of the multidilated convolution at the third layer. The production of a single feature map involves
multiple dilation factors depending on the input channel. For clarity, we omit the normalization and nonlinearity from the illustration.

In this work, we propose a novel CNN architecture for
densely incorporating representations in multiple resolu-
tions. We combine advantages of the dense skip connec-
tions and dilated convolution, and propose a novel net-
work architecture called the multidilated dense block (D2
block). To appropriately combine them, we propose a mul-
tidilated convolution layer that has multiple dilation factors
within a single layer. A dilation factor depends on which
skip connection the feature maps come from, as shown in
Fig.1. Multidilated convolution can prevent the occurrence
of aliasing that occurs when a standard dilated convolution
is applied to feature maps whose receptive field is smaller
than the dilation factor. Furthermore, we propose a nested
architecture of multidilated dense blocks to effectively re-
peat dilation factors multiple times with dense connections
that ensure sufficient depth, which is required for model-
ing each resolution. We call the nested architecture densely
connected multidilated DenseNet (D3Net).

Although neural network architecture search (NAS) has
been actively investigated to automatically find a suitable
network architecture [19, 24], it is often difficult to identify
the key element for achieving good performance from the
learnt architecture. We believe that this work provides an-
other insight into the design of CNN architectures for dense
prediction tasks, namely, the frequent interchange of infor-
mation in multiple resolutions.

The contributions of this work are summarized below.

1. We claim the importance of the dense multiresolution
representation learning and propose the D2 block that
combines dense skip connections with dilated convo-
lution. The D2 block incorporates a novel multidilated
convolution that enables multiresolution information
interchange in most of the layers while avoiding the
aliasing problem that occurs in a naive way of incor-
porating dilation in DenseNet.

2. We further introduce a nested architecture of multidi-
lated dense blocks called the D3 block to effectively

apply different dilation factors multiple times to pro-
vide a sufficient modeling capacity in each resolution.

3. We conduct intensive experiments on two dense pre-
diction tasks in different domains (image semantic seg-
mentation and audio source separation) and show the
effectiveness of the proposed methods. The proposed
architecture exhibits superior performance over state-
of-the-art baselines in both tasks, demonstrating its
generality against the task type and data domain.

2. Related works
The motivation of our work is to combine the advantages

of dense skip connectivity and dilated convolution to enable
multiresolution modeling with an exponentially growing re-
ceptive field while appropriately avoiding the aliasing prob-
lem. Here, we review related works on these aspects.

Dense skip connection Dense skip connections from early
layers promote the reuse of feature maps, efficient parame-
ter usage, and gradient information flow. DenseNet has the
most dense connectivity pattern (i.e., all layers with same
feature-map size are connected to each other) and shows
excellent performance in image classification tasks [15].
Larsson et al. proposed another simple connectivity pattern
called FractalNet, in which layers are connected in fractal
manner [17]. Dual path networks combine DenseNet and
ResNet to enjoy the advantage of the dense connectivity
with the concatenation of feature maps and residual blocks,
which involve the addition of feature maps [5].

Large receptive field The importance of a large recep-
tive field was addressed in many tasks that involve high-
dimensional data including image super-resolution [31], se-
mantic segmentation [1, 50, 51, 2, 46], and audio source
separation [38]. The theoretical receptive field size of CNNs
does not directly represent the context size that CNNs use.
Zhou et al. showed that the empirical receptive field of
CNNs is much smaller than the theoretical one, especially
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(a)                                                                        (b) (c)
Figure 2. Strategies for multiscale representation integration. The yellow box indicates a composition of convolution layers, which operates
in a single resolution. The green box depicts a layer that integrates feature maps from different resolutions. (a) Feature maps in multiple
scales are integrated at the end [22]. (b) Feature maps in the lower scale are sequentially recover a higher scale by integrating the feature
maps from the higher scale in the early layer [27, 25]. (c) Features in different resolutions are first processed in parallel and integrated at
the end of each stage [35, 44].

in deeper layers [53]. Therefore, network architectures that
efficiently incorporate context information in a large field
attract great interest and many approaches have been pro-
posed including the incorporation of the dilated convolution
[46, 3], the aggregating of downsized feature maps [50], and
the use of the attention mechanism [51, 8, 52, 49].

Multiresolution modeling Fusing local and global infor-
mation is important especially for dense prediction tasks,
since both local and global structures have to be recovered.
In the fully convolutional network (FCN) [22], feature maps
in different resolutions from early layers are aggregated at
the end of the network (Fig. 2(a)). Another common strat-
egy used in, for instance, UNet [27] and Hourglass[25], is
the sequential upsampling of feature maps while combining
the feature maps from early downsampling paths with skip
connection, as shown in Fig. 2(b), which aggregates mul-
tiresolution information at few concatenation points. HR-
Net [35, 44] involves another strategy for the aggregation of
feature maps (Fig. 2(c)). It is composed of several stages:
in each stage, feature maps in different resolutions are first
processed by CNNs individually and then aggregated by
matching the resolution with other resolutions with up- or
downsampling at the end of each stage. In these approaches,
feature maps in different resolutions are fused only a few
times. In contrast, our method fuses feature maps with mul-
tiple resolutions in almost all layers (except the first layer
of D2 blocks and few other layers such as 1 × 1 convolu-
tion layers). Multibranch convolution can also be consid-
ered as multiresolution modeling when the convolution in
each branch operates in a different resolution. In [32, 3, 45],
dilated convolutions with different dilation factors are ap-
plied in parallel to the same feature maps and combined in a
multibranch convolution module called the inception mod-
ule. The set of dilation factors is the same for all modules.
In contrast, the dilation factors in multidilated convolution
depends on the feature map (or channel), and their range
grows exponentially as the layer goes deeper. In image clas-
sification, MSDenseNet [14] involves a frequent two reso-
lution fusion. However, the architecture is not suitable for

dense prediction tasks as there is no information flow from
low- to high-resolution feature maps.

Dilated convolution and aliasing Aliasing is a well-
known effect in signal processing, in which the signal
over the Nyquist frequency becomes indistinguishable with
lower frequency after (sub-)sampling. The aliasing causes
artifacts such as the Moiré pattern in the image domain
or audible noise in the audio domain. Therefore, a low-
pass filter for anti-aliasing is typically applied before sam-
pling to remove the signal with a frequency higher than the
Nyquist frequency. The effect of pooling-based subsam-
pling in CNN-based speech recognition was studied and
a performance drop caused by aliasing was observed [11].
The dilated convolution involves the subsampling of input
feature maps and can cause aliasing. To avoid this problem,
most CNN architectures that involve dilated convolution are
carefully designed to allow earlier layers to learn appro-
priate anti-aliasing filter if necessary, i.e., standard convo-
lutions are applied before dilated convolutions with fixed
dilation factor [1, 45], or the dilation factors is gradually
increased as the layer goes deeper [46, 43]. A naive combi-
nation of DenseNet with dilation has already been proposed
[10], where dilated convolutions are used and the dilation
factor was set to one at the initial layer and doubled as the
layer goes deeper. However, this approach has significant
aliasing due to skip connections, as discussed in Sec. 3.

3. Multidilated convolution for DenseNet
In DenseNet, the outputs of the lth convolutional layer xl

are computed using 3× 3 convolution filters wl and outputs
of all preceding layers as

xl = ψ([x0, x1, · · · , xl−1])~ wl, (1)

where ψ() denotes the composite operation of batch nor-
malization and ReLU nonlinearity, [x0, x1, · · · , xl−1] the
concatenation of feature maps from 0, · · · , l − 1 layers (x0
is the input), and ~ the convolution. xl>0 has k feature
maps and k is the growth rate. A naive way of incor-
porating dilated convolution is to replace the convolution

3
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(a) Naïve dilated convolution (b) Multidilated convolution

Figure 3. Visualization of receptive fields at the third layer of (a)
naive integration of dilated convolution and (b) proposed multidi-
lated convolution (in the case of one dimension). The filter size is
3. Red dots denote the points on which filters are applied, and the
colored background shows the receptive field covered by the red
dots. In (a), convolution kernels for skip connections have blind
spots in their receptive fields, while the multidilated convolution
(b) appropriately changes the dilation factor to avoid them.

~ with the dilated convolution ~d with the dilation factor
d = 2l−1. However, this causes a severe aliasing prob-
lem; for instance, at the third layer, input is subsampled
at four sample intervals without any anti-aliasing filtering
because of the skip connections. Only the path that passes
through all convolution operations without any skip connec-
tion covers the input field without omission, and all other
paths from skip connections have blind spots in their recep-
tive fields that inherently make it impossible for appropri-
ate ant-aliasing filters to be learned in the preceding layers
(Fig. 3(a)). To overcome this problem, we propose the mul-
tidilated convolution ~m

l defined as

Yl ~
m
l kl =

l−1∑
i=0

yi ~di
wi

l , (2)

where Yl = [y0, y1, · · · , yl−1] = ψ([x0, x1, · · · , xl−1]) is
the composite layer output, wi

l the subset of filters that cor-
responds to the ith skip connection, and di = 2i. As de-
picted in Fig. 3(b), DenseNet with the proposed multidi-
lated convolution has different dilation factors depending
on which layer the channel comes from. This allows the
receptive field to cover the input field without the loss of
coverage between the samples to which the filters are to be
applied and, hence, to learn proper filters to prevent alias-
ing.

One advantage of the multidilated convolution is its ca-
pability to integrate information from the very local to
global information of an exponentially large receptive field
within a single layer. Combined with the dense skip con-
nection topology, D2 blocks can perform multiresolution
modeling in all layers (except the first layer). This fast in-
formation flow with dense skip connections and the dense
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Figure 4. D3 block densely connects D2 blocks with repeated di-
lation patterns.

(frequent) information interchange among representations
in a wide range of resolutions provide a more flexible capa-
bility of modeling a relationship between local and global
structures.

Note that the multidilation convolution is not equivalent
to the multibranch convolution, where convolutions with
different dilation factors are applied to the same input fea-
ture maps, similar to the Inception block [37, 36], as it again
causes the aliasing problem when combined with the dense
skip connection topology.

4. D3Net
Although the D2 block provides an exponentially large

receptive field as the number of layers increases, it is also
worthwhile to provide sufficient flexibility to transform fea-
ture maps in each resolution. In WaveNet [43], dilation fac-
tors are reset to one after several layers are stacked and re-
peated; that is, the dilation factor in the lth layer is given
by dl = 2l−1 mod M , where mod is the modulo operation
andM is the number of layers at which the dilation factor is
doubled. Inspired by this work, we propose a nested archi-
tecture of D2 blocks, as shown in Fig. 4. D2 blocks are con-
sidered single composite layers and are densely connected
in the same way as within the D2 block itself. With the M
D2 blocks nested, the multidilated convolution operates at
each resolution at least M times, providing a flexible mod-
eling capability at each resolution. We refer to this nested
architecture as the D3 block.

Inspired by the DenseNet-BC architecture [15], we also
employ two channel-reduction mechanisms to mitigate the
excessive increase in the number of channels and thus im-
prove computational efficiency. First, we adopt bottleneck
layers that reduce the number of input channels using 1× 1
convolution at the beginning of each D2 block. In our ex-
periment, bottleneck layers were set to produce 4k feature
maps, where k is the growth rate, and such layers are placed
only when the input channel to the D2 block is greater than
4k. Second, we compress the output channels at the end of
each D2 block by 1 × 1 convolution to produce cm chan-
nels, where 0 < c < 1 is the compression rate and m is
the number of channels before the compression. Alterna-
tively, we can simply pass the outputs of the last N layers
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(a) Image                               (b) Ground truth                            (c) D3Net

Figure 5. Qualitative examples of Cityscapes results on val set.

to the next D2 block. In our experiment, we used the former
approach for semantic segmentation and the latter approach
for audio source separation. Note that without the channel
reduction layer, the D3 architecture is reduced to standard
dense connections with repeated multidilation factors.

5. Implementation details

Our proposed D3 block can be integrated with CNN
architectures commonly used in image classification (e.g.,
VGG [33], ResNet [12]), image segmentation (e.g., FCN
[22] and deconvolution-based approaches [26, 27, 9]), and
audio tasks [41] by replacing the series of convolution lay-
ers in the same scale with a D3 block. We call a CNN ar-
chitecture that uses D3 blocks as D3Net. When D3Net in-
volves downsampling between D3 blocks, we adopt a tran-
sition layer which is composed of a 1× 1 convolution layer
followed by 2 × 2 average pooling. In the transition layer,
the number of output channels is compressed to half of the
input channels, as performed in DenseNet [15]. In sum-
mary, a D3 block is characterized with a set of parameters
(M,L, k,B, c), where M denotes the number of D2 blocks
in a D3 block (Fig. 4), L the number of layers in each D2
block, k the growth rate, B the number of bottleneck layer
channels (which is set to 4k in our experiments), and c the
compression rate.

6. Experiments

We evaluate the proposed method on two dense predic-
tion tasks in different domains, namely, semantic segmen-
tation of images and audio source separation, to show the
generality of the proposed approach against the task and
data type.

6.1. Semantic segmentation

The goal of semantic segmentation is to assign a class
label to each pixel, as shown in Fig. 5. Since our con-
tribution is the CNN architecture, we mainly focus on the
evaluation of backbone networks. To this end, unless oth-
erwise noted, all experiments including baselines are con-
ducted under the same training/testing setup using the MM-
Segmentation1 framework.

Dataset. We use the Cityscapes dataset [6], which con-
tains 5,000 images collected from street scenes in 50 dif-
ferent cities with high quality pixel-level annotation. The
images are divided into 2,975, 500, 1,525 for training, val-
idation, and testing, respectively. We did not use coarsely
annotated images. Following the evaluation protocol in [6],
19 categories are used for evaluation and we report the mean
of class-wise intersection over union (mIoU).

Model architecture D3Net consists of two 3 × 3 con-
volution layers followed by four D3 blocks with transition
layers in between. Here, we refer to the downsample ra-
tio as “scale”; therefore D3 blocks operate in four different
scales. Outputs of D3 blocks in each scale are combined
and passed to a decode head in the same way as in [22, 44],
i.e., feature extraction layers formed by 1 × 1 convolution
are applied to the outputs of each D3 block to collect fea-
tures from all scales, and the features in a lower scale are
rescaled by bilinear upsampling to match the highest scale.
Finally, another 1× 1 convolution is performed on the con-
catenation of the rescaled features to mix the information in
four representations.

We consider two D3Nets. The smaller architecture, de-
noted as D3Net-S, employs D3 blocks of (M,L, k, c) =
(4, 8, 36, 0.2), while the larger architecture, D3Net-L, uses
D3 blocks of (M,L, k, c) = (4, 10, 64, 0.2). The number
of feature maps extracted from each scale using the fea-
ture extraction layers are (32, 40, 64, 128) for D3Net-S, and
(32, 48, 96, 192) for D3Net-L.

Training We follow the same training protocol as in
[50, 51]. The data augmentation of random horizontal flip,
random cropping (from 1024 × 2048 to 512 × 1024), and
random scaling in the range of [0.5, 2] are performed. The
stochastic gradient descent with a momentum of 0.9 and a
weight decay of 0.0005 is used for optimization. The “poly”
learning rate policy with a base learning rate of 0.01 and a
power of 0.9 is used for dropping the learning rate. All the
models are trained on the training set with a batch size of 8
and the synchronized batch normalization [48].

Ablation study In the first set of experiments, we focus
on the evaluation of the proposed multidilated convolution

1https://github.com/open-mmlab/mmsegmentation
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Table 1. Ablation study on Cityscapes val set. D-ResNet stands
for Dilated-ResNet

Backbone #param. mIoU
D-ResNet-50 [12] 49.5M 59.7

D-ResNet-101 [12] 68.5M 62.4
HRNetV2-W18 [44] 9.6M 62.7
HRNetV2-W48 [44] 65.9M 67.7

D3Net-S without dilation 9.7M 62.3
D3Net-S standard dilation 9.7M 57.9
DenseNet-133 (k = 36) 10.2M 57.6
DenseNet-189 (k = 23) 10.0M 54.9

D3Net-S 9.7M 65.1
D3Net-L 38.7M 68.1

with dense connections (D2 block) and the nested architec-
ture (D3 block). To this end, we consider four baselines.
To highlight the effect of the multidilated convolution, we
consider models with the same architecture as D3Net-S but
replace the multidilated convolution with a standard convo-
lution (without dilation) and a standard dilated convolution,
whose dilation factors d are equal to the maximum dilation
factor in the corresponding multidilated convolution layer
in D3Net, e.g., d = (1, 2, 4, 8, 1, 2, 4, · · · ). For the evalu-
ation of the nested architecture, we consider a model that
replaces the D3 block with a standard dense block (with BC
layers) [15]. For a fair comparison, we design the dense
block to have a similar parameter size to D3Net-S by either
keeping the growth rate and fitting the number of layers,
or keeping the number of layers nearly the same and fitting
the growth rate. This results in two DenseNet baselines,
DenseNet-133 that has 16 layers for each Dense block with
the growth rate of 36, and DenseNet-189 that has 23 layers
for each dense block with the growth rate of 23 (the num-
ber after DenseNet- indicates the total number of layers).
For reference, we also evaluate commonly used backbone
networks. All networks are trained from scratch for 40,000
iterations. Table 1 shows the mIoU scores on the validation
set.

D3Net-S (with the proposed multidilated convolution)
performs significantly better than D3Net-S without dilation
and D3Net-S with the standard dilation, improving mIoU
by 2.8 points. This highlights the effectiveness of the mul-
tidilated convolution in dense connections. Interestingly,
D3Net-S with the standard dilation performs significantly
worse than the model without dilation. This is probably
due to the aliasing problem since a large dilation factor is
applied directly to the initial feature map, as discussed in
Sec. 3. D3Net-S without dilation outperforms DenseNet-
133 by 4.7 points, where both models have the same growth
rate and no dilation. This could be because the receptive
field of DenseNet-133 covers the entire input only in the
last few layers, which did not provide a sufficient capacity
to model global information. On the other hand, D3Net-
S without dilation still largely outperforms DensNet-189,

Table 2. Cityscapes val set results. No test-time augmentation
(multiscale, flipping) is applied. † denotes results reported in ref-
erence papers.

Method Backbone #param. mIoU
DeepLabV3 [1] D-ResNet-50 68.1M 79.3
DeepLabV3 [1] D-ResNet-101 87.1M 80.2
DeepLabV3 [1] ResNeSt-101 [49] 90.8M 79.7

DeepLabV3+† [4] Xception-71 43.5M 79.6
PSPNet [50] D-ResNet-101 68.0M 79.8
PSANet [51] D-ResNet-101 78.1M 79.3

Auto-DeepLab-L† [19] - 44.4M 80.3
FCN D-ResNet-50 49.5M 73.6
FCN D-ResNet-101 68.5M 75.1
FCN HRNetV2-W18 [44] 9.6M 78.7
FCN HRNetV2-W48 [44] 65.9M 79.9

OCRNet HRNetV2-W48 [44] 70.3M 80.7
FCN D3Net-S 9.7M 79.5
FCN D3Net-L 38.7M 80.6

OCRNet D3Net-L 42.3M 81.2

Table 3. Results on Cityscapes test set. Baseline results are from
original papers. All models are trained on the train set without
using coarse data.

Backbone mIoU
PSPNet [50] D-ResNet-101 78.4
PSANet [51] D-ResNet-101 78.6

PAN [18] D-ResNet-101 78.6
AAF [16] D-ResNet-101 79.1

HRNetV2 [44] HRNetV2-W48 80.4
D3Net (FCN) D3Net-L 80.8

which has almost the same number of layers as D3Net-
S. This is probably due to followings: the growth rate in
DenseNet-189 had to be a smaller to have the similar pa-
rameter size and the receptive field of DenseNet-189 is
still smaller than D3Net-S without dilation as DenseNet in-
volves more 1×1 convolutions, which does not increase the
receptive field. These results highlight the efficiency of the
proposed nested architecture, the D3 block.

D3Nets-L exhibits the best performance among all base-
lines with a much smaller number of parameters than cur-
rent state-of-the-art backbone networks, such as HRNetV2-
W48. D3Net-S outperforms dilated ResNet101 with nearly
a seven times smaller parameter size, showing the parame-
ter efficiency of the proposed architecture.

Comparison with state-of-the-art approaches Next, we
compare D3Net with state-of-the-art approaches in Table
2. Again, our focus is on the evaluation of D3Net as a
backbone, and we train all models in the same setup (ex-
pect methods denoted with †) to eliminate the effect of hy-
perparameter difference that mainly comes from computa-
tional resources such as the batch size. We initialize all
backbone networks with weights pretrained on ImageNet
[28] and trained 80K iterations. Among backbone net-
works in the FCN approach, D3Net-L shows superior per-
formance over all baselines with a much smaller number of

6



Mixture
Source separation

Source 2

Source N

…

Source 1

high

low

full

Figure 6. Illustration of audio source separation in STFT domain.

parameters than HRNetV2p-W48[44], D-ResNet101, or D-
ResNet50. By combining with the object-contextual repre-
sentation (OCR) scheme [47], D3Net further improves the
performance, obtaining the best result of 81.2% in this ex-
periment. In Table 3, we also show the results for the test
set. All results are with six scales and flipping. For this
experiment, we train D3Net-L for 160K iterations with a
batch size of 12. All other settings are the same as those in
previous experiments. Baseline results are from the original
papers. The proposed method again outperforms all base-
lines that were trained on the train set.

6.2. Audio source separation

To see the generality of the proposed method on a dense
prediction task in a different domain, we conduct experi-
ments on the audio source separation task. Audio source
separation is the problem of separating source signals from
their mixture. Recently, CNN-based methods have been
intensively studied [23, 20, 34, 29, 7, 38]. In most meth-
ods, a time domain signal is first transformed by short-
time Fourier transform (STFT) and source separation is per-
formed in the magnitude STFT domain. In this case, the
audio source separation problem is similar to an image seg-
mentation problem, i.e., a model accepts two-dimensional
magnitude STFT maps (with channels) and predicts the
source magnitude for each time-frequency bin (cf. pix-
els in an image), as shown in Fig. 6. However, there are
three major differences. First, source separation is a regres-
sion problem rather than a pixel-wise classification prob-
lem, as the model is trained to estimate the source magni-
tude STFT. Second, when multiple sources are in the same
time-frequency bin, they are summed in a complex STFT
domain, unlike objects in an image, where a front object
can hide an object at the back (occlusion). Since only mag-
nitude is considered in complex STFT, the mixing behavior
becomes more complex. Third, in the STFT domain, the
translation invariant property is not globally satisfied along
with the frequency axis, although local translation along
with frequency and translation along the time axis are in-
variant.

Table 4. SDRs for MUSDB18 dataset. ’*’ denotes the method
operating in the time domain.

SDR in dB
Method Vocals Drums Bass Other Acco. Avg.

TAK1 (MMDenseLSTM) [38] 6.60 6.43 5.16 4.15 12.83 5.59
UHL2 (BLSTM ensemble) [42] 5.93 5.92 5.03 4.19 12.23 5.27

GRU dilation 1 [20] 6.85 5.86 4.86 4.65 13.40 5.56
UMX [34] 6.32 5.73 5.23 4.02 - 5.33

demucs* [7] 6.29 6.08 5.83 4.12 - 5.58
Meta-TasNet* [29] 6.40 5.91 5.58 4.19 - 5.52

Nachmani et al. * [23] 6.92 6.15 5.88 4.32 - 5.82
D3Net without dilation 6.86 6.37 4.97 4.21 13.19 5.60
D3Net standard dilation 7.12 6.61 5.19 4.53 13.39 5.86

D3Net (proposed) 7.24 7.01 5.25 4.53 13.52 6.01

Dataset We use the MUSDB18 dataset prepared for the
SiSEC 2018 challenge [21]. In this dataset, approximately
10 hours of professionally recorded 150 songs in the stereo
format at 44.1kHz are available. For each song, a mixture
and its four sources, bass, drums, other, and vocals, are pro-
vided; thus, the task is to separate the four sources from the
mixture. We adopted the official split of 100 and 50 songs
for the Dev and Test sets, respectively. STFT magnitude
frames of the mixture, windowed at 4096 samples with 75%
overlap, with data augmentation [42] are used as inputs.

Training The four networks for each source instrument
are trained to estimate the source spectrogram by minimiz-
ing the mean square error with the Adam optimizer for 50
epochs. The patch length is set to 256 frames; thus, the di-
mensions of input were 2×256×2049. The batch size is set
to 6. The learning rate is initially set to 0.001 and annealed
to 0.0001 at 40 epochs.

Model architecture Following [41, 38], in which the best
results obtained in SiSEC 2018 were reported, we use the
multiscale multiband architecture in which band-dedicated
modules and a full band module, each with a bottleneck
encoder–decoder architecture with skip connections, are
placed. The network configuration is shown in Table 5.
The network outputs are used to calculate the multichannel
Wiener filter (MWF) to obtain the final separations, as com-
monly performed in frequency domain audio source separa-
tion methods [38, 42, 20, 29].

Results The signal-to-distortion ratios (SDRs) of the pro-
posed method and existing state-of-the-art methods are
shown in Table 4. The SDRs are computed using the mu-
seval package [21] and median SDRs are reported as in the
SiSEC 2018 challenge [21]. TAK1 [38] and UHL2 [42] are
the two best performing methods in SiSEC 2018 (among
submissions that do not use external data). The proposed
D3Net exhibited the best performance for vocals, drums
and accompaniment (the summation of drums, bass, and
other) and performed comparably to the best method for
other. The average SDR of four instruments is 6.01dB,
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Table 5. Proposed architectures. All D3 blocks have 3×3 kernels with growth rate k, L layers, and M D2 blocks.

Layer scale Vocals, Other Drums Bass
low high full low high full low high full

band split index
1

1-256 257-1600 - 1-128 128-1600 - 1-192 192-1600 -
conv (t×f,ch) 3×3, 32 3×3, 8 3×3, 32 3×3, 32 3×3, 8 3×3, 32 3×3, 32 3×3, 8 3×3, 32

D3 block 1 (k,L,M) 16, 5, 2 2, 1, 1 13, 4, 2 16, 5, 2 2, 1, 1 13, 4, 2 16, 5, 2 2, 1, 1 10, 4, 2
down sample 1

2

avg. pool 2× 2 avg. pool 2× 2 avg. pool 2× 2
D3 block 2 (k,L,M) 18, 5, 2 2, 1, 1 14, 5, 2 18, 5, 2 2, 1, 1 14, 5, 2 18, 5, 2 2, 1, 1 10, 5, 2

down sample 1
4

avg. pool 2× 2 avg. pool 2× 2 avg. pool 2× 2
D3 block 3 (k,L,M) 20, 5, 2 2, 1, 1 15, 6, 2 20, 5, 2 2, 1, 1 15, 6, 2 18, 5, 2 2, 1, 1 12, 6, 2

down sample 1
8

avg. pool 2× 2 avg. pool 2× 2 avg. pool 2× 2
D3 block 4 (k,L,M) 22, 5, 2 2, 1, 1 16, 7, 2 22, 4, 2 2, 1, 1 16, 7, 2 20, 5, 2 2, 1, 1 14, 7, 2

down sample 1
16

avg. pool 2× 2 avg. pool 2× 2 avg. pool 2× 2
D3 block 5 (k,L,M) - - 17, 8, 2 - - 16, 8, 2 - - 16, 8, 2

up sample
1
8

t.conv 2× 2 t.conv 2× 2 t.conv 2× 2
concat. - - D3 block 4 - - D3 block 4 - - D3 block 4

D3 block 6 (k,L,M) - - 16, 6, 2 - - 16, 6, 2 - - 14, 6, 2
up sample

1
4

t.conv 2× 2 t.conv 2× 2 t.conv 2× 2
concat. D3 block 3 D3 block 3 D3 block 3 D3 block 3 D3 block 3 D3 block 3 D3 block 3 D3 block 3 D3 block 3

D3 block 7 (k,L,M) 20, 4, 2 2, 1, 1 14, 5, 2 20, 4, 2 2, 1, 1 14, 6, 2 18, 4, 2 2, 1, 1 12, 6, 2
up sample

1
2

t.conv 2× 2 t.conv 2× 2 t.conv 2× 2
concat. D3 block 2 D3 block 2 D3 block 2 D3 block 2 D3 block 2 D3 block 2 D3 block 2 D3 block 2 D3 block 2

D3 block 8 (k,L,M) 18, 4, 2 2, 1, 1 12, 4, 2 18, 4, 2 2, 1, 1 12, 4, 2 16, 4, 2 2, 1, 1 8, 4, 2
up sample

1
t.conv 2× 2 t.conv 2× 2 t.conv 2× 2

concat. D3 block 1 D3 block 1 D3 block 1 D3 block 1 D3 block 1 D3 block 1 D3 block 1 D3 block 1 D3 block 1
D3 block 9 (k,L,M) 16, 4, 2 2, 1, 1 11, 4, 2 16, 4, 2 2, 1, 1 11, 4, 2 16, 4, 2 2, 1, 1 8, 4, 2

concat. (axis)

1

freq - freq - freq -
concat. (axis) channel channel channel
d2 block (k,L) 12, 3 12, 3 12, 3

gate conv (t×f,ch) 3× 3, 2 3× 3, 2 3× 3, 2

which is significantly better than all baselines. To the best of
our knowledge, this is the best result reported to date. The
primaly difference between MMDenseLSTM (TAK1) and
the proposed method is that MMDenseLSTM incorporates
LSTM units to further expand the receptive field, whereas
the proposed method uses the multidilated convolution and
the nested architecture. A comparison of these methods in-
dicates the effectiveness of the D3 block. On the other hand,
GRU dilation 1 [20] consists of dilated convolution and di-
lated GRU units without a down–up-sampling path. This
also highlights the effectiveness of the dense multiresolu-
tion modeling of D3Net. For bass, approaches that operate
in the time domain perform better, as they are capable of
recovering the target phase, which is easier in the low fre-
quency range. Among the frequency domain approaches,
D3Net performs the best.

We also conduct an ablation study to validate the effec-
tiveness of the multidilated convolution. By replacing the
multidilated convolution with the standard convolution, we
obtain comparable results to the best performing model in
SiSEC2018, TAK1 (MMDenseLSTM). When we replace
the multidilated convolution with the standard dilated con-
volution, we obtain a decent improvement over D3Net with-
out dilation even though the aliasing problem arises. How-
ever, the proposed multidilated convolution clearly outper-
forms the standard dilated convolution, showing the impor-
tance of handling the aliasing problem in order to incorpo-

rate dilation in DenseNet.

7. Conclusion

In this paper, we showed the importance of a dense
multiresolution representation learning in dense prediction
tasks and proposed a novel CNN architecture called D3Net.
A novel multidiated convolution is introduced to enable
the dense multiresolution modeling by combining with a
dense skip connection topology while avoiding the alias-
ing problem that occurs when a standard dilated convolu-
tion is applied. We further propose a nested architecture
of the densely connected multidilated convolution block to
improve the parameter efficiency and provide a sufficient
capacity to learn representation in each resolution. Ex-
tensive experiments in image semantic segmentation and
audio source separation tasks confirm the effectiveness of
the proposed method and its generality to different types
of task and domain. D3Net shows superior performance
over state-of-the-art backbones on Cityscapes with a much
smaller number of parameters. In audio source separa-
tion on MUSDB18, D3Net achieved state-of-the-art per-
formance. We believe that this work provides an insight
into another important property for designing CNNs: the
frequency of interchanging local and global information in
multiple resolutions.
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