
Depth Completion with Twin Surface Extrapolation at Occlusion Boundaries

Saif Imran Xiaoming Liu Daniel Morris
Michigan State University

{imransai, liuxm, dmorris}@msu.edu

https://github.com/imransai/TWISE

Abstract

Depth completion starts from a sparse set of known depth
values and estimates the unknown depths for the remaining
image pixels. Most methods model this as depth interpola-
tion and erroneously interpolate depth pixels into the empty
space between spatially distinct objects, resulting in depth-
smearing across occlusion boundaries. Here we propose a
multi-hypothesis depth representation that explicitly mod-
els both foreground and background depths in the difficult
occlusion-boundary regions. Our method can be thought
of as performing twin-surface extrapolation, rather than in-
terpolation, in these regions. Next our method fuses these
extrapolated surfaces into a single depth image leveraging
the image data. Key to our method is the use of an asym-
metric loss function that operates on a novel twin-surface
representation. This enables us to train a network to si-
multaneously do surface extrapolation and surface fusion.
We characterize our loss function and compare with other
common losses. Finally, we validate our method on three
different datasets; KITTI, an outdoor real-world dataset,
NYU2, indoor real-world depth dataset and Virtual KITTI,
a photo-realistic synthetic dataset with dense groundtruth,
and demonstrate improvement over the state of the art.

1. Introduction
Depth completion problems involve estimating a dense

depth image from sparse depth measurements of active depth
sensors, often guided by a high-resolution modality; e.g.,
RGB sensors. Solving depth completion has extensive appli-
cations, e.g., scene understanding [24], object shape estima-
tion [5], and 3D object detection in autonomous driving [21].

Step-like object discontinuities are an inherent property
of 3D scenes, and are challenging to model well with depth
completion and depth super-resolution methods. It is im-
portant to maintain depth discontinuities to facilitate object
shape and pose estimation. Most prior works rely on conven-
tional regression losses for depth completion which, albeit
promising results in depth accuracy, suffer from depth smear-

(a)

(b)

(c)

(d)

(e)

(f)

Figure 1: Our depth completion algorithm can input LiDAR data
and image (a), and extrapolate the estimates of foreground depth
d1 (b) and background depth d2 (c), along with a weight σ (e).
Fusing all three leads to the completed depth (d). The foreground-
background depth difference (f) d2 − d1 is small except at depth
discontinuities.

ing and hence shape distortion of objects. While [12] tackles
this depth mixing problem, it has high computational and
memory demand for accommodating many channels at high
resolution. Another interesting work [19] learns non-local
spatial affinity with spatial propagation network to eliminate
smearing, but suffers from significant inference times and
poor generalization due to sparse patterns (See Tab. 6).

One fundamental challenge of recovering depth discon-
tinuity is that pixels at boundary regions suffer from ambi-
guity as to whether they belong to a foreground depth or
background depth. Some methods seek to reduce the im-
pact of ambiguities through intelligent regularization of the
loss function [10] or ranking loss [33] at potential occlusion
boundaries; and others explicitly train detectors for depth
discontinuities [11] via full dense ground truth data. Unfortu-
nately large scale datasets like KITTI have only partial dense
ground truth depth (see Fig. 2 (a)) which is sparse on bound-
aries, making it difficult to explicitly label occlusion bound-

1

ar
X

iv
:2

10
4.

02
25

3v
1

 [
cs

.C
V

]
 6

 A
pr

 2
02

1

https://github.com/imransai/TWISE

aries. Some recent works have leveraged prior information,
e.g., estimated semantic maps [40, 7, 32] and estimated depth
maps [23] for object boundary recovery/refinement. Our
approach instead seeks to explicitly model ambiguity and
leverage it in depth completion. We noted that Depth coeffi-
cients [12] can also model ambiguities on account of its non-
parametric probability distribution, but maintaining many
high-resolution channels is computationally and memory ex-
pensive, and also suffer from the binning resolution. Instead
of using multiple channels with binning, our method, named
TWIn-Surface Estimation (TWISE), uses a two-surface rep-
resentation which is much more efficient and can explicitly
model ambiguity by finding difference between the twin
surface depths. We believe that naturally encoding the fore-
ground and background pixels at the boundary would enable
the effective learning of the step-wise discontinuity with
lower memory and computational requirement.

In order to train a twin-surface estimator, we propose a
pair of asymmetric loss functions that naturally bias esti-
mates toward foreground and background depth surfaces.
The asymmetry in the losses are key to separation of fore-
ground and background depths at ambiguous pixels. We also
incorporate a fusion channel that automatically combines
the foreground and background depths into a final depth esti-
mate for each pixel, by selecting a foreground/background
depth at the ambiguous regions and mixing the two depths
at non-ambiguous regions.

Of particular concern is the lack of dense and reliable
ground-truth depth data in outdoor scenes needed for accu-
rate evaluation of depth estimates. KITTI, a realistic outdoor
scene dataset, offers semi-dense ground-truth, created by
accumulating LiDAR points but suffers from noisy depth
samples (outliers) at boundaries and dynamic objects [30].
Indoor dataset like NYU2 provides dense GT only by using
some colorization techniques that can cause smoothing at
object boundaries. Currently the preferred evaluation metric
of choice for ranking depth completion methods is RMSE.
In this paper, we study the effects of outlier noise present in
ground-truth data on RMSE and note that MAE is a more
consistent metric for both cases of noisy and clean ground-
truth, as validated on the synthetic VKITTI dataset.

The contributions of this paper are as follows:
• We propose a twin-surface representation that can esti-

mate foreground, background and fused depth.
• We adopt a pair of assymmetric loss functions to explic-

itly predict foreground-background object surfaces.
• We validate our theory in KITTI, a challenging outdoor

scene dataset for depth completion, and show the su-
periority of our method on several metrics, and also
show it generalizes well to variable sparsity and offers
competitive inference times over the SoTA.

• We suggest that in presence of outliers, MAE is a more
consistent metric to rank methods compared to RMSE,

and we validate this claim with extensive experiments in
VKITTI, a synthetic dataset for urban driving scenario.

2. Related Works

Depth Completion Deep neural networks (DNNs) have
been applied to the depth completion problem, in works such
as Sparse-to-Dense [16], DDP [38], and Spade RGBsD [13].
These works show that by using standard encoder-decoder
architecture (ResNet and MobileNet), it is possible to im-
prove depth estimation accuracy via regression losses like
L2, L1 and inverse L1 losses. Deep-Lidar [22] estimates
surface normal and dense depth using multiple DNNs to
assist in further fine-tuning dense depth. Both [22] and [38]
rely on synthetic data and various labels for learning depth
representations. Recently, works have opted to optimize
depth using 3D geometric constraints like depth-normal con-
sistency [39, 36] to improve depth completion. Xu et al.
create geometric consistency between the surface normal
and depth in 3D, but use another refinement network for
improved depth estimation [36]. Another recent trend is to
learn spatial propagation of pixels in 2D depth space for
depth completion problems in fixed [4] or variable receptive
field [19, 37]. Although results are highly encouraging, these
methods suffer from poor inference times and generalizabil-
ity on variable sparsity. Researchers have also looked into
learning 3D features for depth completion using continuous
convolution in 3D space [2], point cloud completion [34],
3D graph neural networks [35] for dynamic construction of
local neighborhood regions.

Depth Representations Depth maps, as 2.5D representa-
tions, have been used for RGBD fusion and instance segmen-
tation [26, 8]. They naturally encode sensor viewing rays
and adjacency between points. They are compact representa-
tions and their regular grids can be processed with CNNs in
an analogous way to image super-resolution [27, 28]. This is
the representation of choice for colorization techniques and
fusion [18] as well as depth completion.

We propose a 2-layered representation of depth to model
occlusion boundaries. The concept of layered representa-
tion of depth has been well known in graphics community.
LDIs (Layered Depth Images) are first proposed by Shade
et al. [25] as intermediate representation for efficient image-
based rendering. These are gathered by accumulating depth
values via z-buffering from multiple depth images of nearby
view points. Tulsiani et al. [29] infer 2-layered depth repre-
sentation (recovering depth of visible and non-visible scene)
from a single input image by learning view-synthesis from
multiview camera guided supervision. Hedman et al. [9] pro-
pose a 3D photo reconstruction algorithm that builds multi-
layered geometric representation of the scene by warping
several depth maps and stitching color and depth panoramas
for front and back-scene surfaces. In all these cases, multi-

2

color img depthmap depthmap sigmoid chan

(a) (b) (c) (d)

585 590 595 600 605
x axis

40

60

80D
ep

th
 in

 m

585 590 595 600 605
x axis

40

60

80

D
ep

th
 in

 m

0

0.5

1

Depth

585 590 595 600 605
x axis

40

60

80D
ep

th
 in

 m

FG
BG

(e) (f) (g)

Figure 2: Depth smearing across boundaries. We show the
ground truth depth (colored red) overlaid on an image (a), depths
estimated by the SoTA method [14] (b), our fused depths (c), our
estimated weights σ (d), a depth slice of [14] (e), fused depth and
σ slices (f), and foreground and background slice (g). Our extrapo-
lation ability in (g) results in the sharp depth boundary in (f), rather
than the smeared depth in (e).

layered representation is constructed/learned from multi-
camera viewpoints/depthmaps of the scene. In our case, we
estimate these 2-layered representation on a single camera
viewpoint with our proposed loss functions.

Loss Functions in Depth Completion A key component
of depth completion is the choice of loss functions. Re-
cent work has explored loss functions including L2 [3, 16],
L1 [17], inverse-L1 [13], Huber loss [2] and Softmax loss
on depth [15]. Another elegant way is to use combination
of L1 + L2 [19], which can leverage the benefits of both
L1 and L2 losses. While these loss functions can achieve
low error on metrics including RMSE, MAE, iMAE, often it
comes at the cost of smoothing depth estimates across object
boundaries. In addition to the aforementioned losses, peo-
ple increasingly use Chamfer distance on point cloud [34],
depth-normal constraint [36], Cosine loss [22], in a multi-
learning framework to improve depth completion accuracy.
Nevertheless, smoothing across sharp boundaries remains a
concern in many of these methods. Imran et al. [12] show
that cross-entropy (CE) loss can generate sharp boundaries,
although performs worse in the RMSE metric.

We learn foreground and background depth by proposing
two assymetric loss functions, and the final depth using a
fusion loss. The assymetric loss function has been used
in Vogel et al. [31], for the different purpose of denoising
input images. We propose to use assymetric loss functions
to learn biased estimators of FG/BG surface, and learn to
select/blend (fusion loss) between FG/BG surface, and that,
we claim, helps to recover depth discontinuity.

3. Methodology

Depth completion involves two quite different challenges
which can be at odds. The first is to interpolate missing
pixel depths within objects leveraging nearby sparse depths.
The second is to accurately find the occlusion boundaries of
objects and ensure that interpolated pixels belong to either

the foreground or background object. We propose a method
that aims to perform both tasks well.

Our approach divides depth completion into two simpler
problems, each of which can be more easily learned by a
network. The first problem is depth interpolation without
boundary determination. Rather than estimating a single
surface which must model step functions at depth discon-
tinuities, Our key novelty is to estimate twin surfaces. A
foreground surface extrapolates the foreground object depth
up to and beyond boundaries, while a background surface
extrapolates the background depth up to and behind the
occluding object. Then the second problem is to find the
boundary and determine a single depth by fusing these two
surfaces. We find the color image is particularly useful in aid-
ing surface fusion. Both of these components are illustrated
in Fig. 2.

3.1. Ambiguities and Expected Loss

Ambiguities have a significant impact on depth comple-
tion, and it is useful to have a quantitative way to assess their
impact. Here we propose using the expected loss to predict
and explain the impact of ambiguities on trained networks.

By an ambiguity we mean, not that there isn’t a unique
true solution, but rather that from a measurement it is difficult
for the algorithm and/or human to decide between two or
more distinct solutions. Ambiguity can be more formally
defined as follows. Given measurement data that sparsely
samples the scene, the number of ambiguities is equal to
the number of different true scenes, i.e. true depth maps in
our case, that could have generated the sparse measurement.
This number depends on what variations occur in actual data.
For simplicity we treat each pixel ambiguity independently
of other pixels, and so the ambiguities for a pixel are the
possible depth values it could take that are consistent with
the measurement.

We anticipate the level of ambiguity to vary across a
scene. For example, pixels on flat surfaces will be well-
constrained by nearby pixels and have low ambiguity. In
contrast, pixels near depth discontinuities may have large
depth ambiguity. There is often insufficient data from the
depth image to decide whether the pixel is on the foreground
or background.

A corresponding color image can help resolve ambiguities
as to which object a pixel belongs. However, exactly how to
leverage color images to resolve ambiguities in CNNs is one
of the open challenges in depth completion. Our work aims
to offer a solution to this problem by explicitly estimating
ambiguities and resolving them within the network.

To assess the impact of ambiguities on our network, we
build a quantitative model. Consider a single pixel whose
depth, d, we seek to estimate. Next assume that the pixel
has a set of ambiguities, di, each with probability pi. This
probability measures of how likely it is that the ground truth

3

0

ALE ()

0

RALE ()

d1 d2 d

ALE (d d1)
ALE (d d2)
E{ALE (d)}

(a) (b) (c)

Figure 3: (a) The ALE from Eq. (2) is asymmetric around its
minimum at the origin. (b) The RALE from Eq. (3) is a reflection
of the ALE. We use the ALE for foreground surface estimation
and the RALE for background estimation. (c) A pixel depth is
shown with two ambiguities at depths d1 and d2 and probabilities
p1 and p1 respectively. The black line shows the expected ALE
which is the probability-weighted sum of two ALE functions, see
Eq. (1). The expected ALE will have a minimum at one of the
marked corners occurring at d1 and d2. The minimum will be at d1
if Eq. (4) is satisfied, as it is in this case with p1 = p2, and so acts
as a foreground depth estimator.

will take the corresponding depth, given our modeled scene
assumptions. Now consider a loss function on the error for
each pixel, L(d − dt), where dt is the ground truth depth.
The expected loss as a function of depth is:

E{L(d)} =
∑
i

piL(d− di). (1)

This expected loss is important because if a network is
trained on representative data then it will be trained to mini-
mize the expected loss. Thus by examining the expected loss
we can predict the behavior of our network at ambiguities,
and so justify the design of our method.

3.2. Asymmetric Linear Error

Our method uses a pair of error functions which we call
the Asymmetric Linear Error (ALE), and its twin, the Re-
flected Asymmetric Linear Error (RALE), defined as:

ALEγ(ε) = max
(
− 1

γ
ε, γε

)
, (2)

RALEγ(ε) = max
(
1

γ
ε,−γε

)
. (3)

Here ε is the difference between the measurement and the
ground truth, γ is a parameter, and max(a, b) returns the
larger of a and b. The ALE and RALE are generalizations
of the absolute error, and are identical to the absolute error
when γ = 1. The difference is that the negative side of
ALE is weighted by 1/γ and the positive weighted by γ. The
RALE is simply the reflection of the ALE over the ε = 0 line.
Both are illustrated in Fig. 3 (a,b).

Note that if γ is replaced by 1/γ, both the ALE and RALE
are reflected. Thus, without loss of generality, in this work
we restrict γ ≥ 1.

3.3. Foreground and Background Estimators

We make a further simplifying assumption in our analysis
that there are at most binary ambiguities per pixel. A binary
ambiguity is described by a pixel having probabilities p1 and
p2 of depths d1 and d2 respectively. When d1 < d2 we call
d1 the foreground depth and d2 the background depth. Such
a binary ambiguity is likely to occur near object-boundary
depth discontinuities.

To estimate the foreground depth we propose minimizing
the mean ALE over all pixels to obtain d̂1, the estimated
foreground surface. To predict the characteristics of d̂1 from
a trained network at ambiguous pixels, we examine the ex-
pected ALE, as shown in Fig. 3 (c). This is piecewise linear
and has two corners, one at d1 and the other at d2. The
lower of these will determine the minimum expected loss,
and hence what an ideal network will predict. Using Eqs. (2)
and (1), we obtain expected losses: L(d1) = p2(d2− d1)/γ,
and L(d2) = p1(d2 − d1)γ. From this it is straightforward
to see L(d1) < L(d2) when:

γ >

√
p2
p1
. (4)

This equation shows the sensitivity of the foreground estima-
tor to γ; the higher γ, the lower the probability on foreground
p1 needed for the minimum to be at the foreground depth d1.

To estimate the background depth, d̂2, at boundaries we
propose minimizing the expected RALE. The same analysis
will apply to this as to the ALE, and we obtain the same
constraint on γ as in Eq. (4), except that the probability ratio
is inverted.

Fig. 1 (b) shows an example foreground depth estimate,
(c) the background depth and (f) the depth difference. We
observe that at pixels far from depth discontinuities, as well
as the sparse input-depth pixels, the foreground depth is very
close to the background depth indicating no ambiguity.

3.4. Fused Depth Estimator

We desire to have a fused depth predictor that can do
both interpolation and extrapolation at surfaces depending
on ambiguous and non-ambiguous regions. The foreground
and background depth estimates provide lower and upper
bounds on the depth for each pixel. We express the final
fused depth estimator d̂t for the true depth dt as a weighted
combination of the two depths:

d̂t = σd̂1 + (1− σ)d̂2. (5)

where σ is an estimated value between 0 and 1. We use a
mean absolute error as part of the fusion loss:

F (σ) = |d̂t − dt| = |σd̂1 + (1− σ)d̂2 − dt|. (6)

4

The expected loss for this is

Le(σ) =E{F (σ)} = p|σd̂1 + (1− σ)d̂2 − d1|+

(1− p)|σd̂1 + (1− σ)d̂2 − d2|.
(7)

Here, p = p1, and p2 = 1 − p. This has a minimum at
σ = 1 when p > 0.5 and a minimum at σ = 0 when p < 0.5.
Of course this assumes that depth is either d1 or d2.

Depth fusion occurs by optimizing the loss of Eq. (7) to
predict a separate σ for each pixel. In this way our fusion step
is an explicit determination of whether a pixel is foreground
or background or a combination. An example estimated σ is
shown in Fig. 1 (e).

3.5. Depth Surface Representation

We have developed three separate loss functions whose
individual optimizations give us three separate components
of a final depth estimate for each pixel. Based on the charac-
terization of our losses, we require a network to produce a
3-channel output. Then for simplicity we combine all loss
functions into a single loss:

L(c1, c2, c3) =
1

N

N∑
j

(ALEγ(c1j) +RALEγ(c2j)

+ Le(s(c3j))).

(8)

Here cij refers to pixel j of channel i, s() is a Sigmoid func-
tion, and the mean is taken over all N pixels. We interpret
the output of these three channels for a trained network as
c1 → d̂1, c2 → d̂2 and s(c3)→ σ, and combine them as in
Eq. (5) to obtain a depth estimator d̂t for each pixel.

3.6. Implementation Details

Architecture This work presents novel loss functions linked
to a multi-channel depth representation. These can be easily
incorporated into a variety of network architectures with
minimal change to the network. Specifically we selected
the multistack network [14], with the author-provided code.
We choose this network due to its fast inference time, lower
number of parameters than [16], and its near-SoTA perfor-
mance. The changes we made were three output channels
and instead of one at each stacked hourglass network, and
we use our loss function for the optimization. We used 64
channels in the encoder-decoder network as that provided
their highest performing results. More details are shared in
the supplementary material.
Training and Inference We followed the training proto-
col in [14] with multi-scale supervision on our 3 channels.
The total loss is a weighted sum of the multiple resolution
losses Li, where L1 is the full resolution 3-channel loss
in Eq. (8), L2 is half-resolution and L3 quarter resolution:
L = ω1L1 + ω2L2 + ω3L3. The multiscale stage training

protocol sets ω1 = ω2 = ω3 = 1 during the first 10 epochs,
reduces ω2 = ω3 = 0.1, and continues to train for another
10 epochs. For the last 10 epochs we set ω2 = ω3 = 0 and
complete training after 30 epochs. Using Adam optimizer
with an initial learning rate of 10e− 3 and decrease to half
every 5 epochs, we train a full sized image with gradient ac-
cumulated every 4 samples in a batch. We use PyTorch [20]
for our implementation.

4. Experimental Results

Dataset We evaluate the proposed algorithm on the standard
KITTI Depth Completion dataset [6], a real-world outdoor
scene, NYU2, with indoor scenes [18], and Virtual KITTI
[1], a synthetic dataset with photo-realistic images and dense
ground-truth depth. KITTI depth is created by aggregating
LiDAR scans from 11 consecutive frames into one, produc-
ing a semi-dense ground truth (GT) with 30% annotated
depth pixels. The sparsity of GT makes depth estimation
more challenging. Note that we do not require any synthetic
depth data for pre-training as used by [38, 22] to improve per-
formance. The dataset consists of 85K, 1K, and 1K samples
for training, validation, and testing respectively. Although
the training set has different image sizes, the test and valida-
tion sets are cropped to a uniform size of 352× 1, 216.

Although created in a real world scenario, the semi-dense
GT produced by Uhrig et al. [30] has far fewer depth points
on object boundaries (see Fig. 2 (a)), and is susceptible to
outliers. As we claim our method works well on bound-
aries, we also evaluate on VKITTI 2.0, a synthetic dataset
with clean and dense GT depth at depth discontinuities. The
VKITTI 2.0, created by the Unity game engine, contains
5 different camera locations (15o left, 15o right, 30o left,
30o right, clone) in addition to 5 different driving sequences.
Additionally, there are stereo image pairs for each camera
location. For training and testing, we only use the clone (for-
ward facing camera) with stereo image pairs. For VKITTI
training, 2k training images were created from driving se-
quences 01, 02, 06, and 018 respectively. For testing, we
use sequence 020 at the left stereo camera, and choose ev-
ery other frames, with total 420 images. We subsample
the dense GT depth in azimuth-elevation space to simulate
LiDAR-like pattern as sparse inputs. Further, we create the
pseudo GT following [30] to study the effects of outlier noise
on training and evaluation. More details are shared in the
supplementary.

To show the generalizibility of our method, we also eval-
uate on NYU-Depth v2 dataset [18], which consists of RGB
and depth images obtained from Kinect in 464 scenes. We
use the official split of data, where 249 scenes are used for
training and we sample 50K images out of the training simi-
lar to [22, 19]. For testing, the standard labelled set of 654

5

Method MAE RMSE iMAE iRMSE TMAE [12] TRMSE [12] Infer. time (sec.)
Ma et al. [16] 249.95/269.2 814.73/878.5 1.21/1.34 2.80/3.25 –/190.15 –/297.48 0.081

Depth-Normal [36] 235.17/236.67 777.05/811.07 1.79/1.11 2.42/2.45 –/– –/– –
DeepLidar [22] 226.50/215.38 758.40/687.0 1.15/1.10 2.56/2.51 –/162.75 –/266.79 0.097
3DepthNet [34] 226.2/208.96 798.40/693.23 1.02/0.98 2.36/2.37 –/– –/– –

Uber-FuseNet [2] 221.19/217.0 752.88/785.0 1.14/1.08 2.34/2.36 –/– –/– –
MultiStack [14] 220.41/223.40 762.20/798.80 0.98/1.0 2.30/2.57 –/157.90 –/270.15 0.018

DC-3co [12] 215.75/215.04 965.87/1011.3 0.98/0.94 2.43/2.50 –/141.67 –/238.5 0.112
CSPN++ [4] 209.28/– 743.69/– 0.90/– 2.07/– –/– –/– 0.200

DDP [38] 205.40/– 836.00/– 0.86/– 2.12/– –/– –/– –
NLSPN [19] 199.59/198.64 741.68/771.8 0.84/0.83 1.99/2.03 –/138.81 –/248.88 0.225

TWISE 195.58/193.40 840.20/879.40 0.82/0.81 2.08/2.19 –/131.60 –/239.80 0.022

Table 1: Depth completion on the Test/Validation sets of KITTI, with 64R LiDAR and RGB input (units in mm).

(a)

(b)

(c)

(d)

(e)

Figure 4: Comparison of our method with SoTA methods with whole and zoom in views (a) showing Color Images (b) DC [12], (c)
MultiStack [14] (d) NLSPN [19] and our method (e). Four different regions of the image from two different instants are selected to show
depth quality from diverse areas.

images is used. The original image size is first downsampled
to half, and then center-cropped, producing a network input
dimension of 304× 208. Unlike [19], we use the same loss
function for all the datasets.

Metrics The standard metrics used by KITTI include
RMSE, MAE, iMAE and iRMSE. Since RMSE is used as
the preferred metric for depth completion, most SoTA meth-
ods on the KITTI leaderboard use MSE as their primary loss.
We also include tMAE and tRMSE metrics proposed in [12]
since it can discount outlier depth pixels (i.e., floating depth
pixels around boundary regions) and give a better evaluation
of depth pixels at and within object boundaries.

4.1. Results

Quantitative Results Tab. 1 compares the performance on
KITTI’s test/validation sets, with a 64-row LiDAR and color
image as input. We list the SoTA methods with performance
quoted from their papers. The inference times are calculated
on a single GPU of GTX 1080 Ti. The method [19] with
lowest RMSE achieves this at the expense of inference time.
We outperform the SoTA methods in other metrics including
MAE, and iMAE. The exception is RMSE, by which the
methods are ranked in the KITTI leaderboard. That leads us

to investigate in which areas are our method perform better
and worse, which we examine next.

Qualitative Results Fig. 4 shows our depth estimation qual-
ity compared to baselines. We choose three best SoTA meth-
ods: MultiStack [14], NLSPN [19], and DC [12]. Different
local regions including poles, trees, cars, and traffic signs,
illustrate the depth quality of close- and long-range depth
pixels. The zoomed-in view shows the substantial improve-
ment of our depth map over SoTA, especially along sharp
object boundaries. [14] has a more blurred estimation around
boundaries leading to mixed depth pixels and holes within
objects, such as on the traffic poles and van. Although [19]
has reduced mixed depths and more tighter boundary, depth
mixing still exists (blurriness at object boundaries), addi-
tionally it suffers from jagged boundary edges and streaking
artifacts.

Qualitative Parsing Fig. 5 offers a more detailed analysis
of our method by showing different estimation at foreground,
background depths and fused depth respectively. We choose
five zoom-in views from diverse objects, e.g., tree, poles,
car, and even pixels at far-away depth pixels. It shows that
our fused depth estimator can learn to choose foreground
and background regions well, resulting in a clear shape es-

6

(a)
(a)

(b)

(c)

(d)

(e)

(f)

Figure 5: Input image (a), its zoom-in views (d), our estimation on
foreground depth (b), background depth (c), fused depth (e), and
the depth difference between foreground and background depth (f).

Method RMSE (m) REL δ1.25 δ21.25 δ31.25
DC-3co [12] 0.118 0.013 99.4 99.9 100.0

DeepLidar [22] 0.115 0.022 99.3 99.9 100.0
DepthNormal [36] 0.112 0.018 99.5 99.9 100.0

GNN [35] 0.106 0.016 99.6 99.9 100.0
TWISE 0.097 0.013 99.6 99.9 100.0

NLSPN [19] 0.092 0.012 99.6 99.9 100.0

Table 2: Depth completion results on NYU2 [18].

timation of objects. We note that it is biased to choose the
foreground surface as ambiguity increases, e.g., relatively
large depth gap between foreground and background surfaces
(see depth difference in Fig. 5 (f)). This can be explained by
the fact that there are more supervision at the close-up region
than the far-away region on account of uneven distribution
of GT depth pixels.

Quantitative Results on NYU2 : Results on NYU2 are
shown in Tab. 2, based on its standard metrics. We are
currently ranked the second in all standard metrics. Note that
compared to NLSPN [19], ours is 10× faster in inference
on KITTI. The results also show that TWISE is equally
generalizable to indoor scenes.

4.2. Ablation Studies

In this section, we conduct extensive ablation studies to
investigate the effect of different parameters of our proposed
loss. We train with 1/6 data (∼12K training samples) due
to resource constraints, and maintain this protocol for all
ablations unless otherwise noted.

Effect of Loss Functions We show that performance of our

Res-18 [16] MultiStack [14]
Loss MAE RMSE TMAE TRMSE MAE RMSE TMAE TRMSE
L1 [17] 282.6 110.6 181.8 295.6 211.0 950.0 138.6 246.0
L2 [16] 341.2 987.8 244.6 349.5 247.4 880.0 170.3 285.0

L2+L1 [19] 298.8 972.2 206.5 316.7 231.8 887.5 156.9 271.2
Huber [2] 288.6 1039.6 198.0 302.1 222.6 927.1 153.9 256.0
CE [12] 279.1 1125.1 184.3 239.1 – – – –
TWISE 275.5 1045.1 181.1 294.0 201.3 927.6 134.1 240.1

Table 3: Effect of different loss functions. Compared to single channel
losses, CE requires 80 channel, while TWISE requires 3 channel.

Options MAE RMSE TMAE TRMSE
d̂t = d̂1 (σ = 1) 306.9 1109.9 204.4 314.8

d̂t = d̂2 (σ = 0) 295.4 1092.9 193.9 306.1

d̂t = 0.5 ∗ (d̂1 + d̂2) (σ = 0.5) 220.7 854.8 148.2 262.4

d̂t = d̂1/d̂2|σ > 0.5 261.0 1008.0 180.4 287.9
No color 222.4 1067.5 139.2 247.8

d̂t = σd̂1 + (1− σ)d̂2 193.4 879.4 131.1 236.0

Table 4: Effect of learned σ in TWISE, evaluated by our best model.

γ MAE RMSE TMAE TRMSE
1.0 223.1 950.1 145.8 257.0
1.5 207.8 947.9 138.1 245.1
2.0 201.3 927.6 134.1 240.1
2.5 204.4 932.5 136.1 242.5
5.0 207.1 923.4 138.7 246.1
10 216.1 922.8 146.7 255.4

Table 5: Effect of γ on depth completion performance.

loss function is network agnostic. Tab. 3 refers to different
loss functions typically used in SoTA depth estimation works.
Although L2 is a widely used loss for estimating depth [16,
14, 3], L1 loss [17], Huber loss [2], L1 + L2 [19] are some
of the widely used losses for depth completion. We compare
our TWISE loss with all others, including the CE loss [12].
Top performances on MAE and TMAE show the positive
side effect of our loss addressing the smearing problem at the
boundary. We particularly note that TWISE performs better
than a standard L1 loss on both the backbone networks,
leading to believe that TWISE offers more benefit than a
mere trade-off between MAE and RMSE.

Effect of σ on Estimated Surfaces Another interesting
evaluation is the importance of learned σ on different es-
timated surfaces. In Tab. 4, we evaluate estimated depths
for different combinations of σ and compare individually
its depth completion metrics. The performance is evalu-
ated on our best model in Tab. 1, except for the row with
“no color”, where we train without color input on the same
network of our best model. From Tab. 4, foreground and
background depth surface estimates, as usual, have higher
error metric, since they are individually a biased estimate
of depth. If we fix σ at 0.5, we see it is possible to achieve
decent performance on MAE and RMSE on account of aver-
aging (interpolation) between the two surfaces. We make a
binary choice between foreground and background surface
if σ > 0.5 and the results are worse than averaging. In
addition, we see σ does not learn effectively without color
input. So high-resolution imagery helps to learn effective σ

7

Supervision Noisy Semi-Dense GT Clean GT
Backbone Method MAE RMSE TMAE TRMSE MAE RMSE TMAE TRMSE

MultiStack
[14]

L1 8.79 49.9 7.09 16.02 14.43 130.62 6.16 18.28
L2 10.40 45.35 8.61 17.89 17.75 127.14 8.45 20.18

L1 + L2 9.42 44.90 8.23 16.82 15.45 126.20 7.14 19.30
TWISE 7.98 47.5 6.25 15.35 12.71 126.4 5.22 16.67

ResNet-18
[16]

CE 10.50 58.67 8.64 16.57 19.03 155.24 8.26 18.29
L1 12.95 62.97 14.68 19.25 23.52 147.42 12.51 29.33
L2 17.45 50.48 17.48 21.26 27.48 133.21 15.57 36.73

L1 + L2 14.21 48.25 15.80 20.10 25.40 132.6 14.35 32.47
TWISE 10.24 52.37 8.42 16.77 18.88 132.94 9.45 18.17

(a)

6 12 18

Semi-Dense

12

20

28

C
le

an

MAE:Res

MAE:Stack L1
L2
TWISE
L1L2
DC

(b)

43 55 65

Semi-Dense

123

140

158

C
le

an

RMSE:Stack

RMSE:Res

L1
L2
TWISE
L1L2
DC

(c)

Figure 9: (a) Results on Virtual KITTI experiments trained on clean GT and synthesized semi-dense respectively (units in cm). (b) MAE and
(c) RMSE curves of scatter plots (Semi-Dense vs Clean GT) for different loss functions (colored symbols) and two backbone networks
(MultiStack [14] and ResNet-18 [16]). Methods trained with the same backbone network are connected.

and resolve ambiguities at the boundaries.

Effect of γ on Performance Since γ impacts the separa-
tion of foreground and background surfaces, we perform
an ablation to assess its impact on TWISE. Tab. 5 shows
depth completion performance with several γ values. With
γ = 1, the loss is equivalent to MAE. As γ increases, the
gap between foreground and background surface increases.
At small γ values, the interpolation benefits, thus leading to
lower MAE, TMAE, TRMSE, since it is easier to interpolate
between two nearby surfaces; however, in the meantime ex-
trapolation suffers, thus leading to higher RMSE. At larger
γ, the slope between two surfaces increase, and interpolation
becomes harder. We choose γ = 2.0 in our experiment as a
compromise between interpolation and extrapolation.

Effect of Sparsity on Depth Performance We also ran an
extensive ablation study on generalization of SoTA methods
due to sparsity. Sparsity is created by subsampling LiDAR-
points in azimuth-elevation space to simulate LiDAR-like
structured patterns. All the SoTA methods compared have
been retrained using the author provided code with variable
sparse input patterns. Tab. 6 shows that TWISE has better
generalization and exhibits significantly less errors in all the
metrics compared to SoTA methods. With more sparsity,
TWISE is able to beat the RMSE metrics of methods su-
pervised by standard losses. Particularly interesting is the
fact that TWISE can be used for monocular depth estimation
with no sparse depth input.

Synthetic Experiments with VKITTI Using both semi-
dense GT and clean GT of VKITTI, we ran experiments on
different loss functions using two different backbone net-
works. The conclusion is drawn by training and evaluation
on noisy semi-dense and clean GT respectively. The results
are shown in Fig. 9 (a). Several inferences can be drawn
from the scatter plot of Fig. 9 (b) and (c). Firstly, the MAE
score is smooth and monotonic as opposed RMSE which
zigzags. This implies that given a MAE score on semi-dense,
we are able to predict its score on the clean dataset as well.
Additionally, the ranking of the methods in both the datasets
is the same for MAE but not RMSE. As a result, we can con-
clude that MAE is a superior metric to RMSE for comparing

Sparsity Method MAE RMSE TMAE TRMSE

64R

DC [12] 279.1 1125.1 183.1 292.3
MultiStack [14] 229.4 889.7 156.8 265.0

NLSPN [19] 219.1 868.0 147.7 263.4
TWISE 201.3 927.6 134.1 240.1

32R

DC 392.7 1456.2 232.1 350.7
MultiStack 439.2 1288.8 275.4 402.3

NLSPN 392.4 1229.2 248.2 373.8
TWISE 327.9 1242.6 204.9 324.3

16R

DC 477.7 1777.3 259.5 382.9
MultiStack 528.4 1504.3 308.6 439.5

NLSPN 497.1 1483.1 286.8 419.2
TWISE 414.0 1481.1 237.3 365.1

8R

DC 634.7 2311.9 288.5 420.6
MultiStack 672.58 1841.6 353.2 486.8

NLSPN 669.05 1869.5 340.3 475.2
TWISE 532.1 1782.5 275.6 409.4

RGB

DC 2423.8 4433.6 715.4 797.2
MultiStack 2070.4 4185.1 635.7 735.4

NLSPN 2192.9 4362.35 646.0 743.6
TWISE 1964.1 4078.8 612.0 716.5

Table 6: Row sparsity impact on SoTA depth completion methods.

and ranking depth completion methods.
Secondly, TWISE is more than a trade-off between MAE

and RMSE. One of the objective of TWISE is to improve
depth points at discontinuity regions. But KITTI semi-dense
GT lacks dense ground-truth depth points, and contains
more outliers in the boundary regions owing to methodology
adopted in creating the GT. In presence of outliers, RMSE in
TWISE suffers the most, but when clean GT can be provided,
RMSE in TWISE performs as well as those methods with
the L2 loss.

5. Conclusion
In this paper we propose TWISE, a new twin-surface

representation and estimation method for depth images. Our
proposed asymmetric loss functions, ALE and RALE, bias
these twin surface estimates towards the foreground and
background at pixels with depth ambiguity. A third channel
of our output fuses these estimates to achieve a single surface
estimate. This solution simplifies the task of learning depth
discontinuities, and as a result better maintains step-wise
depth discontinuities across boundaries, and generates SOTA
depth estimates. We also compared the robustness of MAE

8

and RMSE as metrics for ranking depth completion methods
and our analysis suggests that MAE is a superior metric in
presence of noisy GT datasets. In future, we would like
to improve our estimates at far-away depth pixels where
learning suffers due to sparsity of ground-truth pixels.

6. Supplementary Materials
In the supplementary section, we provide additional in-

sights of our results with SoTA methods, show evidences
of boundary outliers on KITTI semi-dense ground-truth and
its effect on depth completion performance, and discuss our
data generation process in KITTI and Virtual KITTI used for
our ablation study in the main paper.

6.1. Relative Error Maps

It is worthwhile to examine where our method has lower
errors in comparison with majority of the SoTA methods
which use MSE. For this purpose, we choose the MultiStack
method [14] for comparison. we calculate the difference of
error maps of Absolute Error, A(i), and Squared Error, S(i),
of two methods respectively to show the gains of our method
over MultiStack [14]. The error differences are calculated
by the following equation:

A(i) = |d̂M (i)− dt(i)| − |d̂T (i)− dt(i)|, (9)

S(i) = |d̂M (i)− dt(i)|2 − |d̂T (i)− dt(i)|2, (10)

where d̂M and d̂T are depth estimates of MultiStack [14]
and TWISE respectively. A(i) and S(i) are Absolute Error
Difference and Squared Error Difference of pixel i on two
competing methods respectively. For a particular pixel, when
A(i) and S(i) is (+)ve, TWISE is performing better then
MultiStack and vice-versa for (−)ve values. We note that the
errors are evaluated only where there are valid ground-truth
pixels.

(a)

(b)

Figure 10: Difference of TWISE vs MultiStack [14] in (a) Abso-
lute Error (AE) and (b) Squared Error (SE) respectively. The red
indicates the most gain of ours over [14], marked by ’o’; while the
blue is vice-versa, marked by ’x’. Zoom in for details.

As shown in Fig. 10, our method wins in substantially
more pixels than losing. Errors in our method often comes
from few pixels at boundary regions, when a FG depth is
erroneously chosen over a BG depth/vice versa; we term
them as outliers e.g., see depth error at the traffic sign pixels,
edge of tree-trunk etc close to/at the boundary. These outliers
with large depth errors are strongly weighted by the RMSE
metric, leading to our worse performance on that metric.

9

To further our analysis, we do a statistical evaluation on
200 samples of the validation set (chosen every 5 samples
from KITTI’s 1, 000 validation set) to confirm that TWISE
has better depth estimate on most pixels compared to Mul-
tiStack [14] except for few erroneous pixels (outliers) at
boundaries (see Fig. 10).

10 3

10 6

1 10 50

|A(i)|

MultiStack > TWISE
TWISE > MultiStack

10 3

10 6

1 10 100 600

|S(i)|

MultiStack > TWISE
TWISE > MultiStack

(a) (b)

Figure 11: (a) Magenta is a histogram of absolute error
differences A(i) for A(i) > 0 (where MultiStack errors
> TWISE errors) and green is a histogram of |A(i)| for
A(i) < 0 (where TWISE errors > MultiStack errors). (b)
Corresponding histograms for squared pixel error differences
S(i).

We do a histogram binning of A(i) for pixels where
A(i) > 0 (Multistack > TWISE is equivalent to perfor-
mance gain of TWISE over MultiStack) and of |A(i)| for
pixels where A(i) < 0 (TWISE > MultiStack is equiva-
lent to performance gain of MultiStack over TWISE). There
histograms are plotted together in Fig. 11(a). Analogous
histograms are plotted for the squared error difference, S(i),
in Fig. 11(b). These histograms show that TWISE has less
error than Multi-Stack [14] for most pixels (∼ 2.70 ∗ 106)
compared to just (∼ 6, 100) pixels where Multi-stack bests
TWISE. The average image in this set has 13, 500 pixels
where TWISE is better versus 31 pixels where MultiStack is
better.

Figure 12: Color images (top) and depth error maps in 0−5m
(bottom).

The reason for large RMSE errors in TWISE is believed
to be caused by the outliers (erroneous FG/BG depth selec-

Area MAE RMSE TMAE TRMSE
Inside Object 196.1 752.3 138.6 327.3
Edge Pixels 731.6 2396.9 304.4 454.6

Whole Image 215.1 880.9 144.6 254.3

Table 7: Error metrics for different image regions on TWISE.

tion by TWISE) closer to object boundaries. The outliers are
penalized heavily by RMSE metric as opposed to floating
depth pixels estimated by MultiStack; as a result, our depth
estimate suffers in that metric. As representative examples in
Fig. 12, the error maps show depth errors around the bound-
ary, and missing thin objects like poles. The reasoning can
be further enhanced by the Tab. 7. In this analysis, we lever-
age GT semantics provided by KITTI semantic segmentation
dataset. In 140 images, FG objects are poles, boundaries,
traffic signs, vehicle, person and the rest as background. For
each image, we label all pixels where whose distances to ob-
ject boundareis are less than 3 pixels as edge pixels and the
remaining as inside object pixels. Tab. 7 validates substantial
larger errors are around boundary.

While outliers can be caused by wrong estimation of fore-
ground/background depth, another important source of out-
liers is incorrect labelling of ground-truth depths in KITTI.
As a result, loss functions that are more sensitive to outliers
(i.e. MSE loss) can be negatively influenced by the pres-
ence of noise. We highlight the noisy ground-truth labels in
KITTI in the next section.

6.2. Outlier Errors and Analysis on KITTI Semi-
Dense GT

In this section we show some evidence of outliers (noisy
ground-truth depth) on boundaries of objects in KITTI’s
semi-dense GT.

Uhrig [30] proposed an approach [30] to generate large-
scale semi-dense GT data (85k training images) on realistic
outdoor scenes suitable for neural network training. Al-
though the approach is scalable on any dataset, it creates
noisy ground-truth depth. Uhrig’s [30] analysis shows that
the semi-dense GT has larger errors on dynamic objects and
large-range pixels. Additionally, we show that it also con-
tains incorrect depth labels on some boundaries of objects.
In both (a) and (b) of Fig. 13, we show zoomed in views of
how foreground and background depths that are incorrectly
spread across the boundaries of the poles, traffic signs, trees
etc. of color images.

Our analysis shows that the outliers in the semi-dense GT
are caused by a variety of reasons;

• Noisy rotation R, and translation t obtained from
the IMU sensor

• Timing synchronization between camera trigger and
time taken to spin one LiDAR revolution

10

(a) (b)

Figure 13: Semi-dense GT depths overlaid on color images. Zoom-in views show foreground/background depths are incorrectly
spread (dilated/constricted) across boundaries of poles, traffic signs etc. visible in color images.

MAE
(in pixel)

RMSE
(in pixel)

KITTI
Outliers*

MAE
(in cm)

RMSE
(in cm)

0.35 0.84 0.31 38.6 94.1

Table 8: Relation between Disparity Error and Depth Error
in metric units (cm). Note that KITTI Outliers are defined
by: > 3 pix disparity error and 5% error.

• Consistency Check on Stereo-Global Matching al-
gorithm which introduce boundary artifacts

• Accumulation of LiDAR points from dynamic ob-
jects.

In order to evaluate the depth quality of semi-dense GT,
Uhrig [30] used the manually cleaned training set of 2015
KITTI stereo benchmark as reference data. The depth eval-
uation is done in pixel units. We realize that it is equally
important to evaluate the semi-dense ground-truth depths in
metric units to notice the effect of boundary outliers on semi-
dense ground-truth depth metric performance. We translate
the error in pixel units to error in metric units in Tab. 8, by
converting the ground-truth disparity to depth using KITTI’s
provided intrinsics. It shows the noisy semi-dense ground-
truth depths suffering from boundary noise and dynamic
objects can also have significant errors in metric units. It is
also a possible indication that lowering the RMSE error in
semi-dense GT might result in learning the noise inherent in
semi-dense ground-truth.

6.3. Sparse Patterns in KITTI

In the main paper, we show the improved generalizability
of TWISE over other SoTA methods in terms of sparsity. In
this section, we explain how sparsity is created from 64R
LiDAR in KITTI. Ma et al. [16] reported improved perfor-
mance with uniform subsampling from KITTI’s ground-truth
data. But in real scenarios, sparse sensors such as LiDAR
often generate non-uniform, structured patterns. We sim-
ulate lower resolution LiDARs by subsampling 32R, 16R,
8R rows from 64R LiDAR (depth acquisition sensor used

(a)

(b)

(c)

(d)

Figure 14: KITTI sparse patterns of (a) 64R, (b) 32R, (c)
16R, and (d) 8R subsampled LiDAR respectively overlaid
on a color image.

by KITTI). The different sparse patterns can be seen in Fig.
14. We subsample the points based on selecting a subset
of evenly spaced rows of 64R raw data provided by KITTI
(split based on the azimuth angle in the LiDAR space) and
then projecting the points into the image.

6.4. Network Architecture

In the main paper, we mentioned that we used the network
of Li et al. [14] as a backbone network for TWISE. The only
modification we made are at the last layer of the network,
where we used three channels representing d1 (foreground
estimate), d2 (background estimate), and σ (see Fig. 16). We

11

(a) (b)

(c) (d)

(e)

Figure 15: Visual examples of (a) sparse depth, (c) semi-dense depth and (e) dense depth of virtual KITTI. (b) and (d) shows
sparse depth and semi-dense GT of KITTI respectively (shown for comparison with VKITTI data).

Hour Glass Network

S𝐷𝑛

𝐹𝐷𝑛

𝜎𝑛−1
𝐵𝐺𝑛−1
𝐹𝐺𝑛−1

Figure 16: Incorporating 3-channel at the output of the Hour-
glass network used in [14]. SDn and FDn are the sparse
inputs and fused depth obtained from FGn, BGn, and σn

at multi resolution scale n respectively.

repeat this strategy in the hourglass networks in all the three
multi-resolution levels. Please see [14] for more details of
the network.

6.5. Additional VKITTI Resutls

6.5.1 VKITTI Results on Different Weathers

The high-resolution color features is an important cue for
FG/BG selection in TWISE. We also analyze the effect of dif-
ferent weather conditions that can deteriorate high-resolution
boundary cues from color in Tab. 9. In this study, we found
that model trained on ’clone’ set is evaluated on different
weather conditions in VKITTI.T The performance is largely
maintained, with minor degradations in fog and rain. It
shows although the low-quality RGB (low contrast, shadows,
fog, rain etc) might create ambiguity and the blending coef-
ficient fail to correctly select FG/BG, it is possible to detect
boundary information using sufficient training examples.

RGB Mode MAE RMSE TMAE TRMSE
Clone 12.71 126.40 5.22 16.67

Morning 12.99 130.90 5.17 16.60
Fog 13.19 131.97 5.15 16.74

Sunset 12.77 129.50 5.10 16.50
Rainy 13.08 132.09 5.17 16.67

OverCast 12.48 126.82 5.08 16.47

Table 9: VKITTI Results on different weather conditions

6.5.2 Creating Semi-Dense and Sparse Depth from
Dense VKITTI GT

In the main paper, we performed an ablation study on Vir-
tual KITTI [1] (VKITTI) using semi-dense and sparse sam-
ples created from dense VKITTI depth maps. We created
semi-dense VKITTI to simulate outlier noise similar to that
existing in real KITTI dataset. In this section, we discuss
the data generation process in detail and show some visual
examples of how the sparse depth/semi-dense compares with
sparse/semi-dense gt of KITTI dataset in Fig. 15.

The dense ground-truth depth maps from VKITTI con-
tains accurate depth on object discontinuities. Using this
as a reference, we subsampled the ground-truth depth maps.
Instead of uniformly subsampling the GT depth, we subsam-
ple the LiDAR in the azimuth-elevation coordinates to make
the input sparse depth resemble structured patterns found in
original LiDAR (see (a) and (b) of Fig. 15). The subsam-
pled depth from the left camera is then projected to the right
camera, and vice versa to simulate LiDAR points projected
onto images in real-world scenes. For supervision, GT depth

12

Dataset R, t Outliers% Pix. Coverage% MAE (cm) RMSE (cm)
KITTI IMU 4.4 16 38.6 94.1

VKITTI Clean R, t 3.0 20 19.3 128.96
Noisy R, t 4.1 18 29.3 145.18

Table 10: Comparison of VKITTI semi-dense errors with
KITTI semi-dense GT errors. Higher errors in RMSE in
the VKITTI dataset is due to dense depth pixels at far-away
points, contrary to KITTI’s stereo benchmark data which is
sparse.

beyond 90m are suppressed to simulate LiDAR points with
no returns (see (e) of Fig. 15). In addition to supervision us-
ing clean ground-truth present, we also perform supervision
on Semi-Dense GT of VKITTI (Fig. 10 of the main paper)
created by simulating outliers existing in original KITTI
dataset [30]. In the KITTI dataset, semi-dense GT is created
by accumulating LiDAR points from +/ − 5 frames from
the reference frame. We follow the similar procedure as fol-
lowed by [30] when creating semi-dense GT. Additionally,
we add Gaussian noise to model noisy R, t from the IMU
sensor to simulate noisy semi-dense GT. Refer to Fig. 15 for
a comparison between semi-dense VKITTI and semi-dense
KITTI (see (c) and (d) of Fig. 15).

6.5.3 Relation to KITTI GT by Outliers

We define outliers as pixels having depth errors greater than
1m, contrary to KITTI outliers in Tab. 8 which define errors
in pixel units. Evaluated on KITTI’s 2015 stereo benchmark
depth data, we found outliers of KITTI’s semi-dense ground-
truth at 4.4% of the inlier depths. We created outliers in semi-
dense VKITTI by introducing Gaussian noise in VKITTI’s
extrinsics. See Tab. 10 for a metric comparison with outliers.
Tab. 10 shows that, as we add noisy in R, t, the semi-dense
GT of VKITTI is more comparable to KITTI semi-dense
GT.

References
[1] Yohann Cabon, Naila Murray, and Martin Humenberger. Vir-

tual kitti 2. 2020. 5, 12
[2] Yun Chen, Bin Yang, Ming Liang, and Raquel Urtasun. Learn-

ing joint 2d-3d representations for depth completion. In
Proc. Int. Conf. Computer Vision (ICCV), pages 10023–10032,
2019. 2, 3, 6, 7

[3] Zhao Chen, Vijay Badrinarayanan, Gilad Drozdov, and An-
drew Rabinovich. Estimating Depth from RGB and Sparse
Sensing. In Proc. European Conf. Computer Vision (ECCV),
pages 167–182, 2018. 3, 7

[4] Xinjing Cheng, Peng Wang, Chenye Guan, and Ruigang Yang.
Cspn++: Learning context and resource aware convolutional
spatial propagation networks for depth completion. In Proc.
AAAI Conf. Artificial Intelligence (AAAI), 2020. 2, 6

[5] Yan Cui, Sebastian Schuon, Sebastian Thrun, Didier Stricker,
and Christian Theobalt. Algorithms for 3D shape scanning

with a depth camera. IEEE Trans. Pattern Anal. Mach. Intell.,
35(5):1039–1050, 2013. 1

[6] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for Autonomous Driving? The KITTI Vision Bench-
mark Suite. In Proc. IEEE Conf. Computer Vision and Pattern
Recognition (CVPR), pages 3354–3361, 2012. 5

[7] Vitor Guizilini, Rui Hou, Jie Li, Rares Ambrus, and Adrien
Gaidon. Semantically-guided representation learning for self-
supervised monocular depth. In Intl. Conf. on Learning Rep-
resentations (ICLR), 2020. 2

[8] Saurabh Gupta, Ross Girshick, Pablo Arbeláez, and Jitendra
Malik. Learning rich features from RGB-D images for ob-
ject detection and segmentation. In Proc. European Conf.
Computer Vision (ECCV), pages 345–360. Springer, 2014. 2

[9] Peter Hedman, Suhib Alsisan, Richard Szeliski, and Johannes
Kopf. Casual 3D Photography. 36(6):234:1–234:15, 2017. 2

[10] Junjie Hu, Mete Ozay, Yan Zhang, and Takayuki Okatani.
Revisiting single image depth estimation: Toward higher
resolution maps with accurate object boundaries. In IEEE
Workshop Application Computer Vision (WACV), pages 1043–
1051. IEEE, 2019. 1

[11] Yu-Kai Huang, Tsung-Han Wu, Yueh-Cheng Liu, and Win-
ston H Hsu. Indoor depth completion with boundary consis-
tency and self-attention. In Proc. IEEE Conf. on Computer
Vision Workshops (ICCVW), 2019. 1

[12] Saif Imran, Yunfei Long, Xiaoming Liu, and Daniel Morris.
Depth coefficients for depth completion. In Proc. IEEE Conf.
Computer Vision and Pattern Recognition (CVPR), pages
12438–12447. IEEE, 2019. 1, 2, 3, 6, 7, 8

[13] Maximilian Jaritz, Raoul De Charette, Emilie Wirbel, Xavier
Perrotton, and Fawzi Nashashibi. Sparse and Dense Data
with CNNs: Depth Completion and Semantic Segmentation.
In Int. Conf. 3D Vision (3DV), pages 52–60, 2018. 2, 3

[14] Ang Li, Zejian Yuan, Yonggen Ling, Wanchao Chi, shenghao
zhang, and Chong Zhang. A multi-scale guided cascade
hourglass network for depth completion. In IEEE Workshop
Application Computer Vision (WACV), March 2020. 3, 5, 6,
7, 8, 9, 10, 11, 12

[15] Yiyi Liao, Lichao Huang, Yue Wang, Sarath Kodagoda, Yinan
Yu, and Yong Liu. Parse geometry from a line: Monocular
depth estimation with partial laser observation. In Proc. IEEE
Int. Conf. Robotics and Automation (ICRA), pages 5059–5066.
IEEE, 2017. 3

[16] Fangchang Ma, Guilherme Venturelli Cavalheiro, and Sertac
Karaman. Self-supervised sparse-to-dense: self-supervised
depth completion from lidar and monocular camera. In Proc.
IEEE Int. Conf. Robotics and Automation (ICRA), pages 3288–
3295. IEEE, 2019. 2, 3, 5, 6, 7, 8, 11

[17] Fangchang Ma and Sertac Karaman. Sparse-to-Dense: Depth
Prediction from Sparse Depth Samples and a Single Image.
In Proc. IEEE Int. Conf. Robotics and Automation (ICRA),
pages 1–8. IEEE, 2018. 3, 7

[18] Pushmeet Kohli Nathan Silberman, Derek Hoiem and Rob
Fergus. Indoor segmentation and support inference from
RGBD images. In Proc. European Conf. Computer Vision
(ECCV), 2012. 2, 5, 7

13

[19] Jinsun Park, Kyungdon Joo, Zhe Hu, Chi-Kuei Liu, and In So
Kweon. Non-local spatial propagation network for depth com-
pletion. In Proc. European Conf. Computer Vision (ECCV),
2020. 1, 2, 3, 5, 6, 7, 8

[20] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. In NIPS-W, 2017. 5

[21] Charles R Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J
Guibas. Frustum PointNets for 3D Object Detection from
RGB-D Data. In Proc. IEEE Conf. Computer Vision and
Pattern Recognition (CVPR), pages 918–927, 2018. 1

[22] Jiaxiong Qiu, Zhaopeng Cui, Yinda Zhang, Xingdi Zhang,
Shuaicheng Liu, Bing Zeng, and Marc Pollefeys. Deepli-
dar: Deep surface normal guided depth prediction for out-
door scene from sparse lidar data and single color image. In
Proc. IEEE Conf. Computer Vision and Pattern Recognition
(CVPR), pages 3313–3322, 2019. 2, 3, 5, 6, 7

[23] Michael Ramamonjisoa, Yuming Du, and Vincent Lepetit.
Predicting sharp and accurate occlusion boundaries in monoc-
ular depth estimation using displacement fields. In Proc. IEEE
Conf. Computer Vision and Pattern Recognition (CVPR),
pages 14648–14657, 2020. 2

[24] Brent Schwarz. Lidar: Mapping the world in 3D. Nature
Photonics, 4(7):429, 2010. 1

[25] Jonathan Shade, Steven Gortler, Li-wei He, and Richard
Szeliski. Layered depth images. In Intl. Conf. on Computer
Graphics and Interactive Applications (ACM SIGGRAPH),
pages 231–242, 1998. 2

[26] Lin Shao, Ye Tian, and Jeannette Bohg. Clusternet: In-
stance segmentation in RGB-D images. arXiv preprint
arXiv:1807.08894, 2018. 2

[27] Ying Tai, Jian Yang, and Xiaoming Liu. Image Super-
Resolution via Deep Recursive Residual Network. In
Proc. IEEE Conf. Computer Vision and Pattern Recognition
(CVPR), pages 3147–3155, 2017. 2

[28] Ying Tai, Jian Yang, Xiaoming Liu, and Chunyan Xu. Mem-
net: A Persistent Memory Network for Image Restoration. In
Proc. Int. Conf. Computer Vision (ICCV), pages 4539–4547,
2017. 2

[29] Shubham Tulsiani, Richard Tucker, and Noah Snavely. Layer-
structured 3d scene inference via view synthesis. In Proc.
European Conf. Computer Vision (ECCV), pages 302–317,
2018. 2

[30] Jonas Uhrig, Nick Schneider, Lukas Schneider, Uwe Franke,
Thomas Brox, and Andreas Geiger. Sparsity invariant cnns.
In Int. Conf. 3D Vision (3DV), pages 11–20. IEEE, 2017. 2,
5, 10, 11, 13

[31] Thijs Vogels, Fabrice Rousselle, Brian McWilliams, Gerhard
Röthlin, Alex Harvill, David Adler, Mark Meyer, and Jan
Novák. Denoising with kernel prediction and asymmetric loss
functions. ACM Transactions on Graphics (TOG), 37(4):1–15,
2018. 3

[32] Lijun Wang, Jianming Zhang, Oliver Wang, Zhe Lin, and
Huchuan Lu. Sdc-depth: Semantic divide-and-conquer net-
work for monocular depth estimation. In Proc. IEEE Conf.
Computer Vision and Pattern Recognition (CVPR), pages
541–550, 2020. 2

[33] Ke Xian, Jianming Zhang, Oliver Wang, Long Mai, Zhe
Lin, and Zhiguo Cao. Structure-guided ranking loss for single
image depth prediction. In Proc. IEEE Conf. Computer Vision
and Pattern Recognition (CVPR), pages 611–620, 2020. 1

[34] Rui Xiang, Feng Zheng, Huapeng Su, and Zhe Zhang.
3ddepthnet: Point cloud guided depth completion network
for sparse depth and single color image. In Proc. IEEE Conf.
Computer Vision and Pattern Recognition (CVPR), 2020. 2,
3, 6

[35] Xin Xiong, Haipeng Xiong, Ke Xian, Chen Zhao, Zhiguo
Cao, and Xin Li. Sparse-to-dense depth completion revisited:
Sampling strategy and graph construction?. 2, 7

[36] Yan Xu, Xinge Zhu, Jianping Shi, Guofeng Zhang, Hujun
Bao, and Hongsheng Li. Depth completion from sparse li-
dar data with depth-normal constraints. In Proc. Int. Conf.
Computer Vision (ICCV), 2019. 2, 3, 6, 7

[37] Zheyuan Xu, Hongche Yin, and Jian Yao. Deformable spatial
propagation networks for depth completion. In Proc. Int. Conf.
Image Processing (ICIP), pages 913–917. IEEE, 2020. 2

[38] Yanchao Yang, Alex Wong, and Stefano Soatto. Dense
depth posterior (ddp) from single image and sparse range.
In Proc. IEEE Conf. Computer Vision and Pattern Recogni-
tion (CVPR), pages 3353–3362, 2019. 2, 5, 6

[39] Zhenheng Yang, Peng Wang, Wei Xu, Liang Zhao, and Ra-
makant Nevatia. Unsupervised learning of geometry from
videos with edge-aware depth-normal consistency. In Proc.
AAAI Conf. Artificial Intelligence (AAAI), 2018. 2

[40] Shengjie Zhu, Garrick Brazil, and Xiaoming Liu. The edge of
depth: Explicit constraints between segmentation and depth.
In Proc. IEEE Conf. Computer Vision and Pattern Recognition
(CVPR), pages 13116–13125, 2020. 2

14

