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Abstract

Temporal grounding aims to localize temporal bound-
aries within untrimmed videos by language queries, but it
faces the challenge of two types of inevitable human un-
certainties: query uncertainty and label uncertainty. The
two uncertainties stem from human subjectivity, leading to
limited generalization ability of temporal grounding. In
this work, we propose a novel DeNet (Decoupling and De-
bias) to embrace human uncertainty: Decoupling — We ex-
plicitly disentangle each query into a relation feature and
a modified feature. The relation feature, which is mainly
based on skeleton-like words (including nouns and verbs),
aims to extract basic and consistent information in the pres-
ence of query uncertainty. Meanwhile, modified feature as-
signed with style-like words (including adjectives, adverbs,
etc) represents the subjective information, and thus brings
personalized predictions; De-bias — We propose a de-bias
mechanism to generate diverse predictions, aim to allevi-
ate the bias caused by single-style annotations in the pres-
ence of label uncertainty. Moreover, we put forward new
multi-label metrics to diversify the performance evaluation.
Extensive experiments show that our approach is more ef-
fective and robust than state-of-the-arts on Charades-STA
and ActivityNet Captions datasets.

1. Introduction
As the increasing demand for video understanding, many

related works have drawn increasing attention, e.g. ac-
tion recognition [31, 37, 23] and temporal action detec-
tion [50, 20]. These tasks rely on trimmed videos or pre-
defined action categories, yet most videos are untrimmed
and associated with open-world language descriptions in
real scenarios. Temporal grounding task aims to localize
corresponding temporal boundaries in an untrimmed video

*This is the corresponding author.
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Figure 1. Example of temporal grounding task with two types
of uncertainties. Query uncertainty: For one same event, there
are different language expressions. Label uncertainty: Given one
same query and video, different annotators may provide a variety
of temporal boundaries.

by a language query. Thus, models need to understand both
fine-grained video content and complex language queries.
Recently, this task has also shown its potential in a wide
range of applications, e.g. video captioning [26, 41, 5],
video object segmentation [7, 13] and video question an-
swering [19, 14, 35].

We observe there lies inherent uncertainty in temporal
grounding task and classify it into two types: 1) One is
query uncertainty stemming from different expressions for
one same event. As shown in Figure 1, three queries are
attached to the same moment. Previous approaches usually
leverage LSTM-based [45, 47] networks to encode entire
language as a deterministic vector. However, the variety of
expressions makes it challenging to extract discriminative
semantic features, sometimes leading to quite different pre-
dictions for the same event. 2) The other is label uncertainty
representing subjective boundaries for one same event. As
shown in Figure 1, for the same query A and video, tempo-
ral boundaries annotated by different people exist disagree-
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ment. Due to the expensive cost of multiple-labeling, most
of previous models [24, 28] are optimized using single-style
annotations (which means each sample is labeled by one an-
notator), whereas the inherent uncertainty of event localiza-
tion [29] is ignored. As a result, models may learn single-
style prediction bias from training datasets, leading to lim-
ited generalization performances.

Considering the fact that uncertainty can cover a broad
range of human perspectives, it should be embraced to pro-
mote robust temporal grounding. Furthermore, we argue
single-annotation, single prediction is not reasonable in the
presence of uncertainty, and diversity of predictions is an
effective way to alleviate the bias caused by single-style an-
notations. Therefore, the key challenge is how to obtain di-
verse predictions. Inspired by linguistic knowledge, we find
consistent discriminative information lies in a skeleton-like
relation phrase (including nouns and verbs), and query un-
certainty mainly exists in a style-like modified phrase (in-
cluding adjectives, adverbs, etc). On one hand, the rela-
tion phrase is beneficial to robust temporal grounding. On
the other hand, the modified phrase may be largely associ-
ated with human preferences and brings personalized dif-
ferences. Based on this intuition, our main idea is to lever-
age various expressions stemming from query uncertainty
to obtain a diverse yet plausible prediction set that fits label
uncertainty.

In this paper, we propose one novel DeNet (Decoupling
and De-bias) to embrace the two types of uncertainties in
the temporal grounding task. First of all, a decoupling
method is introduced to disentangle each query into a re-
lation feature and a modified feature using Parts-of-Speech
(PoS). While discriminative and consistent information is
obtained from the relation feature, personalized informa-
tion can be also reserved in the modified feature. Then, a
de-bias mechanism is proposed to generate diverse predic-
tions, which includes sampling operation, multiple choice
learning (MCL) [10], clustering, etc. Specifically, we en-
code the modified feature as a Gaussian distribution and
adopt a sampling operation in the latent space to obtain mul-
tiple query representations. To tackle the dilemma between
multiple predictions and single-style annotations, we intro-
duce a min-loss from MCL to optimize DeNet to generate
diverse predictions. In the inference stage, multiple predic-
tions are clustered into one diverse yet plausible prediction
set. Moreover, we devise multi-label metrics to meet for
multiple testing annotations situations. Finally, DeNet is
evaluated on two popular datasets Charades-STA [6] and
ActivityNet Captions [2, 16] in terms of standard metrics
and new multi-label metrics. To sum up, the main contribu-
tions of our work are as follows:

(1) We first attempt to embrace two types of human un-
certainties: query uncertainty and label uncertainty, in one
unified network DeNet to model robust temporal grounding.

(2) We develop a decoupling module in the language en-
coding, and one de-bias mechanism in the temporal regres-
sion. With the two designs, diverse yet plausible predictions
can be obtained to fit human diversity in real scenarios.

(3) We devise new multi-label metrics to meet multiple
annotations and verify the effectiveness and robustness of
DeNet on both Charades-STA and ActivityNet Captions.

2. Related Work
Temporal grounding. As a challenging task in video un-
derstanding, temporal grounding needs to capture semantic
information in both videos and language queries.

In the video encoding component, most previous ap-
proaches [6, 22, 1, 38, 47] follow a proposal-based frame-
work, where untrimmed videos are clipped into multi-scale
segments as proposal candidates. Gao et al. [6] and Liu et
al. [22] adopt a sliding window to combine each central-
clip feature and its context-clip features as one proposal
candidate. Hendricks et al. [1] and Wang et al. [38] con-
catenate local features and global feature to better cover
contexts. To further explore dependencies across multiple
candidates, Zhang et al. [47] generate multi-scale segments
and construct a 2D temporal adjacent map. However, too
many proposals will burden models during the training pro-
cess. Recently, some approaches [24, 45, 28, 11] adopt a
proposal-free framework. For example, Zeng et al. [45]
extract sequential clip-level features, then directly predict
temporal boundaries in a subsequent network. In this paper,
the proposed DeNet follows the proposal-free framework to
reduce the training computation cost.

Language encoding also plays an important role in the
temporal grounding task. Most approaches employ LSTM-
based layers [45, 47, 24, 39] or GRU-based layers [28, 43]
to encode entire language queries. Recently, some ap-
proaches [49, 48, 21] leverage syntactic dependency parser
to capture underlying semantic structures. Besides, Mun et
al. [24] and Yuan et al. [44] attempt to capture discrimi-
native features from queries using an attention mechanism.
These methods aim to obtain more subtle query represen-
tations, yet we follow a different motivation. On the one
hand, we hope to obtain discriminative information from
various expressions to achieve robust predictions. On the
other hand, we attempt to reserve personalized differences
to achieve diversified predictions. Thus, we adopt an ex-
plicit decoupling method to disentangle each query into the
relation feature and the modified feature.
Multiple choice learning. In contrast to single-output
learning, multiple choice learning (MCL) [10] is proposed
to produce multiple outputs based on one min-loss. Given
a training sample, MCL takes account of all hypotheses
and only updates networks according to the best hypothe-
sis. One accurate and diverse prediction set can be obtained
in this way. Inspired by MCL, we consider diversity is an
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Figure 2. An overview of our proposed model for the temporal grounding task. (a) In the video-language encoding component, we use a
pretrained 3D CNN to extract the sequential video feature and disentangle the query into relation feature and modified feature by Parts-of-
Speech. Then, a sampling operation is applied in the latent space to generate multiple query representations. (b) In the temporal regression
component, two independent branches are set to generate multiple predictions. (c) In the inference stage, we adopt a clustering method to
obtain a fixed-size prediction set.

effective way to model human uncertainty, and introduce
the min-loss into temporal grounding to predict all possi-
ble temporal boundaries in the absence of multiple annota-
tions. However, note that our proposed method is signif-
icantly different from traditional MCLs. Firstly, MCL fo-
cuses on ensemble learning, whereas we focus on temporal
grounding. Then, most MCL approaches [18, 17, 32] pro-
duce the multi-output {fi(x)}Ni=1 based on multiple ”base
classifiers”, whereas our method generates the multi-output
{f(x̂i)}Ni=1 via multiple features.

3. Proposed Method

3.1. Method overview

Given an untrimmed video V and an open-world lan-
guage description Q as a query, temporal grounding aims to
localize the start-end boundary bse within V. Specifically,
the untrimmed video is represented as V = {vi}Ti=1, where
vi denotes the i-th video clip and T is the total number of
video clips. The query is represented as Q = {wi}Si=1,
where wi denotes the i-th word and S is the total number of
words. In this work, models should output matched tempo-
ral times {bse}N = {(ts, te)}N corresponding to the query
Q, where N is the number of predictions.

As illustrated in Figure 2, DeNet contains two main com-
ponents: video-language encoding and temporal regression.
In the video-language encoding component, we adopt a de-

coupling method to disentangle each query into a relation
feature and a modified feature using PoS, where the mod-
ified feature is encoded as a distribution. Then, the video-
language feature is fed into the temporal regression compo-
nent to predict multiple temporal boundaries. In the training
stage, two independent branches are optimized by single-
output loss and multi-output loss, respectively. In the in-
ference stage, we cluster the collection of predictions into a
fixed-size prediction set and evaluate them in both standard
metrics and new multi-label metrics.

3.2. Video-language encoding

Video encoding. Firstly, an untrimmed video is represented
as a collection of clips V = {vi}Ti=1, where each clip cov-
ers C frames (C = 16 in this work). Analogous to [47], we
use a pretrained 3D CNN model to extract clip-level fea-
tures, then sample fixed Tm clips from T clips so as to ob-
tain a fixed-length video feature Ṽ ∈ Rdv×Tm , where dv
is the dimension of the video feature. Furthermore, a zero-
padding operation is applied if there are less than Tm clips
in an untrimmed video. Finally, two extra Fully Connected
layers are implemented to obtain a final video embedding
FV ∈ Rdv×Tm as:

FV = W2ReLU(W1Ṽ), (1)

where W1, W2 ∈ Rdv×dv are learnable parameters, the
superscript V indicates the video modality.

3



Language encoding. For a language query Q = {wi}Si=1

with S words, we take advantage of Glove [27] to map each
word to a 300-dimensional vector, then set two Bi-LSTM
layers to get word-level features {hi}Si=1 ∈ Rdl×S , where
dl is the feature dimension of each word. In our observa-
tion, query uncertainty mainly lies in the modified phrase
and discriminative information are in the relation phrase.
For example, ”a person is washing their hands in the sink”
can be broken down into relation phrase [person, washing,
hands, sink] and modified phrase [a, is, their, in, the]. Here,
the spaCy toolbox1 is used to generate PoS tags that denote
word types, like verbs, adjectives. Then, we average word-
level features associated with the relation phrase to get a
relation feature fLr . Similarly, the remaining word-level fea-
tures are selected and averaged as a modified feature fLm.

Then, we concatenate the two types of features and set a
Fully Connected layer to obtain a final query embedding as:

fL = W3[f
L
r , f

L
m] + b3, (2)

where W3 ∈ Rdl×2dl , b3 ∈ Rdl are the learnable parame-
ters, [·, ·] denotes concatenation and the superscript L indi-
cates the language modality. Considering the fact that most
variances stem from the modified phrase, we encode corre-
sponding modified feature as a distribution instead of a de-
terministic vector. Here, we adopt the Gaussian distribution
N (u, σ2) as in many existing works [40]. From a proba-
bilistic perspective, it means that the feature is regarded as a
random variable to model uncertainty [42]. fLm is set as the
distribution center u and a collection of modified features
are sampled from the Gaussian distribution N (fLm, σ

2). A
reparameterisation trick is used to obtain the modified fea-
ture f̂Lm = fLm + ε, ε ∼ N (0, σ2). Finally, a variant query
embedding is formulated as:

f̂L = W4[f
L
r , f̂

L
m] + b4. (3)

From another perspective, the distribution representation
is equivalent to adding small perturbations in the modified
feature. We provide two rationales illustrating its advan-
tages. On the one hand, models will further focus on the
relation feature and pay less attention to the modified fea-
ture. Thereby, the model is more robust. On the other hand,
the sampling process can be viewed as query augmentation.
Based on multiple query features, models can generate mul-
tiple personalized predictions.
Multimodal fusion. When both videos and language em-
beddings are obtained, we need to model the interaction of
them. First of all, fL and f̂L are replicated for Tm times
to get sequential embeddings FL, F̂L ∈ Rdl×Tm , respec-
tively. Then, multimodal features FM , F̂M ∈ Rdm×Tm are
produced by fusing video embedding and query embedding:

FM = ||FV ◦ FL||F , (4)
1https://spacy.io/

F̂M = ||FV ◦ F̂L||F , (5)

where ◦ denotes the Hadamard product and || · ||F is the
Frobenius normalization (`2-norm). Note that dm, dv and
dl are consistent for dimension matching.

3.3. Temporal regression

When we obtain a collection of multimodal features,
a temporal regression network is constructed to predict
matched temporal boundaries. It is composed of two in-
dependent branches, where each branch contains a stack of
temporal blocks and a regression layer. The single-output
branch associated with FM produces a top-1 prediction.
The multi-output branch associated multiple F̂M produces
multiple predictions covering possible annotations.

Each temporal block contains a Temporal Convolutional
layer and a Multi-head Attention layer [34]. The Temporal
Convolutional layer aims to capture temporal dependencies
in the neighbor clips and the Multi-head Attention layer is
to capture long-range temporal dependencies. For the n-th
temporal block, its output F(n) ∈ Rdm×Tm can be formu-
lated as:

F̃(n) = F(n−1) +Conv(F(n−1)), (6)

F(n) = F̃(n) +MultiheadAttention(F̃(n)), (7)

where F(n−1) is the output of previous temporal block.
Conv(·) represents a mapping function in the Temporal
Convolutional layer that contains two 1D convolutional lay-
ers with batch normalization.

Following a stack of temporal blocks, an attention-
guided regression layer is employed to output the start-end
prediction bse. An auxiliary head is implemented here to
predict the center-width bcw to assist temporal grounding.
Thus, the regression layer is formulated as:

a = softmax(W6Tanh(W5F)), (8)

bcw = (tc, tw) = Regcw(

Tm∑
i=1

aiFi), (9)

bse = (ts, te) = Regse(

Tm∑
i=1

aiFi), (10)

where a ∈ RTm is an attention coefficient and Regcw,
Regse are two independent Fully Connected layers. Note
that all of predictions are normalized to [0,1].

3.4. Optimization and inference

Optimization. According to the definition of equation 6-
10, we feed FM and the collection of F̂M into the two
branches of temporal regression network and obtain a
single prediction (bse,bcw,a) and multiple predictions
{(b̂se, b̂cw, â)}K , respectively.
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R@1 = 0 R@5 = 1 R@(5,5) = 3/5 = 0.6 Rβ @(5,5) = 3/4 = 0.75

predictionsannotations/ ignored/

(a) standard metrics (b) multi-label metrics

Figure 3. A example to illustrate differences between proposed
multi-label metrics and standard metrics. The green star denotes
the corresponding annotation that is matched with at least one pre-
diction (with IoU larger than α) and otherwise the corresponding
star is blue. The grey star is the low-quality annotation (with aver-
age IoU smaller than β).

The single-output branch is optimized with two kinds of
loss functions, and one is a regression loss as follows:

Lreg(bse,bcw) = L1(bse−yse)+L1(bcw−ycw), (11)

where L1 denotes L1 distances, and yse, ycw ∈ [0, 1]
denote the start-end and center-width groundtruth, respec-
tively. The other one is an attention loss [44] that forces the
model to focus on clips within groundtruth interval:

Latt(a) = −
∑Tm

i=1milogai∑Tm

i=1mi

, (12)

where mi = 1 if the i-th clip is within the groundtruth in-
terval and otherwise mi = 0.

For the multi-output branch, it’s not reasonable to
regress all of {(b̂se, b̂cw, â)}K with one single annota-
tion. To tackle the dilemma between multiple predictions
and single-style annotations, we introduce a min-loss from
MCL [10] to learn diverse predictions without extra annota-
tions. It only computes a loss between the closest prediction
to the existing annotations. Finally, all of the loss functions
are jointly considered as follows:

Lall = Lsingle + λLmulti
= Lreg(bse,bcw) + Latt(a)
+ λ min

i∈[K]
[Lreg(b̂se,i, b̂cw,i) + Latt(âi)],

(13)

where λ is a trade-off parameter between two regression
branches, and [K] denotes the set {1, ...,K}.
Inference. We only focus on the single prediction bse and
the collection of predictions {b̂se}K in the inference stage,
where K depends on the number of query embeddings F̂M

sampled in the latent space. Previous approaches adopt
NMS to reduce predictions, yet this method faces two is-
sues: 1) Since the collection of predictions is dense, pre-
dictions are mistakenly suppressed easily. 2) Confidence

scores are necessary to rank predictions. Most approaches
build up an extra branch to predict the confidence scores or
IoU scores, whereas performances are limited. To address
above two issues, we leverage K-Means to cluster {b̂se}K
into a fixed-size prediction set {b̂se}N without NMS, where
N is a pre-defined constant. If necessary, we can rank
{b̂se}N using the distance from single-style prediction bse.

3.5. New evaluation metrics

The standard evaluation metric is ”R@N , IoU=α”. It is
defined as the percentage of at least one of the top-N pre-
dictions having IoU larger than α. This metric only focuses
on whether the single groundtruth is localized successfully.
Due to the label uncertainty, different people localize vari-
ous moment boundaries for the same query. That is to say,
there are multiple acceptable labels for each query. Thus,
we consider the prediction set should be evaluated with
multi-labels instead of a single label.

Recently, Otani et al. [25] provide 5 annotations for
each testing sample on two public datasets. We propose
two multi-label metrics to meet for multi-label situations.
The first metric is ”R@(N,G), IoU=α” that evaluates per-
formances with N predictions and G annotations for each
query. It is defined as the percentage of annotations that
match at least one prediction (with IoU larger than α) in
top-N predictions. This metric is equivalent to the stan-
dard metric ”R@N , IoU=α” if G is set as 1. The second
metric is ”Rβ@(N,G), IoU=α”, where low-quality anno-
tations (with average IoU among annotations smaller than
β) are ignored. Intuitively, when one annotation has a small
average IoU, it tends to be low-quality. Thus, ”Rβ@(N,G),
IoU=α” is equivalent to ”R@(N,G), IoU=α” if β is set as 0.
When there is only one testing sample, Figure 3 illustrates
the results in different metrics. The standard metrics only
compute the matched percentage of single annotation (e.g.
R@1 = 0 and R@5 = 1), our multi-label metrics consid-
ers whether multiple annotations are matched (e.g. R@(5,5)
= 0.6 and Rβ@(5,5) = 0.75). We note that some meth-
ods [1, 12] consider multiple annotations based on standard
metrics that use their aggregator over three out of the four
human annotators. Similar to our proposed ”Rβ@(N,G),
IoU=α”, they ignore part of multi-labels when evaluating.
However, instead of discarding one of four labels that has
the lowest evaluation score, we evaluate the disagreements
among labels and filter out low-quality labels adaptively.

4. Experiments
4.1. Datasets

Charades-STA. This dataset contains 9,848 videos built on
the Charades dataset [30]. Gao et al. [6] provide single
temporal annotation for each language query as Charades-
STA, where 12,408 samples are split into the training set
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Method Feature R@1 R@1 R@5 R@5
IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

CTRL [6] C3D 23.63 8.89 58.92 29.52
SMRL [38] C3D 24.36 11.17 61.25 32.08
MAC [8] C3D 30.48 12.20 64.84 35.13
MLVI [39] C3D 35.60 15.80 79.40 45.40
CBP [36] C3D 36.80 18.87 70.94 50.19
SAP [4] VGG 27.42 13.36 66.37 38.15
MAN [46] VGG 41.24 20.54 83.21 51.85
2D-TAN [47] VGG 42.80 23.25 80.54 54.14
EXCL [9] I3D 44.10 22.40 - -
TMLGA [9] I3D 52.02 33.74 - -
DRN [45] I3D 53.09 31.75 89.06 60.05
SCDM [43] I3D 54.44 33.43 74.43 58.08
LGI [24] I3D 59.46 35.48 - -
DeNet(ours) I3D 59.70 38.52 91.24 66.83

Table 1. Comparison with state-of-the-art methods on Charades-
STA using standard metrics; bold font indicates best results, un-
derlined second-best.

and 3,720 samples are into the testing set. Recently, Otani et
al. [25] extend 5 temporal annotations for each query (1,000
queries totally) in the testing set.
ActivityNet Captions. This dataset [2] contains 19,209
videos, which was originally proposed by [16] for dense
video captioning task. As the largest dataset in temporal
grounding task, it contains 10,024, 4,926, and 5,044 sam-
ples for the training set, val 1 set, and val 2 set. Due to
the lack of of the testing set, we follow a popular split
method [39] that combines the two validation sets as the
testing set. Besides, Otani et al. [25] extend 5 temporal an-
notations for each query (1,288 queries totally) in the vali-
dation sets.

4.2. Implementation details

In the video encoding, we use pretrained 3D CNN net-
works to extract clip-level features, where each clip contains
16 consecutive frames. Following previous works, we adopt
I3D features [3] for Charades-STA and C3D features [33]
for ActivityNet Captions. The max video length Tm is set
as 128. In the language encoding, we draw 5 samples F̂M

from the latent space and set the standard deviation σ as an
identical matrix I during the training procedure. For dimen-
sion matching, dimension of video embedding dv , dimen-
sion of query embedding dl and dimension of multimodal
feature dm are all set as 512. In the inference procedure,
we set deviation σ as 2I to enlarge the personalized differ-
ences from modified feature, and cluster about 200 results
into fixed 5 predictions using K-means. The trade-off pa-
rameter λ in Equation 13 is set as 0.02. In all experiments,
we use Adam [15] and batch size of 32 for optimization.

Method R@1 R@1 R@5 R@5
IoU=0.3 IoU=0.5 IoU=0.3 IoU=0.5

MLVI [39] 45.30 27.70 75.70 59.20
TMLGA [9] 51.28 33.04 - -
CBP [36] 54.30 35.76 77.63 65.89
ABLR [44] 55.68 36.79 - -
2D-TAN [47] 56.92 42.08 82.64 73.01
DRN [45] - 43.95 - 74.87
LGI [24] 58.52 41.51 - -
DeNet(ours) 61.93 43.79 86.02 74.13

Table 2. Comparison with state-of-the-art methods on ActivityNet
Captions (combination of two val sets) using standard metrics;
bold font indicates best results, underlined second-best.

4.3. Comparison with state-of-the-arts

First of all, we compare our model DeNet with other
state-of-the-art methods using standard metrics on two
datasets, which contains CTRL [6], SMRL [38], MAC [8],
MLVI [39], CBP [36], SAP [4], MAN [46], 2D-TAN [47],
EXCL [9], TMLGA [9], DRN [45], SCDM [43], LGI [24]
and ABLR [44]. Table 1 and Table 2 report the results
on Charades-STA and ActivityNet Captions, respectively.
For a fair comparison, all of the performances listed in
Table 2 are based on the combination of two validation
sets on ActivityNet Captions. In the standard metrics, our
method DeNet achieves competitive performances on both
datasets, especially on the Charades-STA dataset. For ex-
ample, DeNet obtains 3.04% gains in ”R@1,IoU=0.7” and
6.78% gains in ”R@5,IoU=0.7”.

Then, to better evaluate performances of multiple
predictions, we compare our model DeNet with some
related methods (including 2D-TAN [47], DRN [45]
and SCDM [43])2 using ”R@(N,G), IoU=α” and
”Rβ@(N,G), IoU=α”. In this work, we take account of at
most 5 predictions (N = 5) and 5 temporal annotations (G
= 5). To reserve an average of 3 annotations for each query,
β is set to 0.5 on Charades-STA, and 0.4 on ActivityNet
Captions. Figure 4 illustrates the results. In contrast to per-
formances in standard metrics, proposal-based methods (i.e.
2D-TAN and SCDM) outperform the proposal-free method
(i.e. DRN) in new multi-label metrics. It means proposal-
based methods tend to better cover multiple-styles annota-
tions, yet most proposal-free models are biased to single-
style annotations. We consider it is because most proposal-
free models tend to produce dense predictions. However,
our proposal-free-based DeNet still outperforms the above
methods on both datasets, e.g. 1.75% gains on ActivityNet
Captions in terms of R@(5,5). It validates our method has
an advantage in matching the multi-styles annotations.

2We test 2D-TAN and DRN using pretrained official models and
SCDM using third-party implementation [25].
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Figure 4. Performances on Charades-STA (top) and ActivityNet
Captions (bottom) using multi-label metrics(IoU = 0.5), and at
most 5 predictions and 5 annotations are taken into consideration.
Best viewed in color.

Method DRN [45] 2D-TAN [47] SCDM [43] DeNet
Dvar 0.338 0.365 0.286 0.223

Table 3. Comparison of robustness for query uncertainty on
Charades-STA. The lower value represents more consistent pre-
dictions for two siamese queries.

4.4. Ablation studies

Robustness for query uncertainty. We conduct exper-
iments to evaluate the robustness for query uncertainty.
Specifically, we explored whether predictions of models can
be consistent when using different queries in the same tem-
poral moment. A subset is selected from the Charades-
STA testing set, where each temporal moment contains two
queries. If a moment contains more queries in the origi-
nal testing set, we randomly select two queries. Finally, the
subset is composed of 848 testing samples (corresponding
to 1696 queries). Then, we use Dvar = 1 − IoU to com-
pute the average distance between top-1 predictions of two
queries. The lower value of Dvar represents more consis-
tent predictions for the two corresponding queries. Table 3
shows a comparison between DeNet with some methods.
Our DeNet outperforms them by 6.3%, which validates the
robustness of our model for query uncertainty.
Robustness for label uncertainty. To evaluate the robust-
ness for label uncertainty, we add perturbations in the tem-
poral boundaries to enlarge the label uncertainty. During
the training procedure, we take annotations ts, te and gen-
erate new annotations t̂s = ts + εs(te − ts), t̂e = te +
εe(te − ts), εs, εe ∈∼ U(−0.5, 0.5), where U(−0.5, 0.5)
is uniform distribution. We train our DeNet and 2D-TAN
using new annotations, then still evaluate them using orig-
inal annotations. For a fair comparison, 2D-TAN adopts
the same I3D feature with DeNet. Here, we mainly inves-
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Figure 5. Performances of our DeNet and 2D-TAN with original
annotations and noise annotations using multi-label metrics(IoU =
0.5). Best viewed in color.

Method R@1 R@5 R@(5,5) R0.5@(5,5)
IoU=0.5 IoU=0.5 IoU=0.5 IoU=0.5

DeNet w/o PoS 57.47 90.90 52.64 58.97
DeNet-Relation 58.12 91.34 54.32 61.76
DeNet-All 58.23 88.76 46.20 50.32
DeNet 59.70 91.24 56.30 64.04

Table 4. Ablation studies of language encoding on Charades-STA;
bold font indicates best results.

tigate the impact of label uncertainty on multiple predic-
tions. Figure 5 shows different results in the multi-label
metrics, where ”original” adopts the previous annotations,
and ”noise” adopts the new annotations. Compared to 2D-
TAN, DeNet only drops slightly using noise annotations,
e.g. 0.35% vs 5.54% in ”R0.5@(5,5), IoU = 0.5”. It also
means that our method can mitigate the reliance on precise
annotations in real scenarios.
Analysis on language encoding. In this subsection, we
investigate the contribution of the language encoding un-
der query uncertainty and set three variant implements. 1)
”DeNet w/o PoS” encodes entire language without PoS. 2)
”DeNet-Relation” encodes the relation feature as a Gaus-
sian distribution rather than modified feature. 3) ”DeNet-
All” encodes both relation feature and modified feature as
Gaussian distributions. Table 4 shows the results.

Firstly, it’s more effective to disentangle language into
two types of features (DeNet) than a single feature (DeNet
w/o PoS). DeNet benefits from Parts-of-Speech parsing
when extracting discriminative features. Secondly, for pro-
ducing multiple predictions, it’s more beneficial to encode
the modified feature as Gaussian distribution instead of the
relation feature (DeNet-Relation). Thirdly, when both two
types of features are encoded as distributions (DeNet-All),
it will cause performance degradation.
Analysis on temporal regression. In this subsection, we
investigate the contribution of our temporal regression un-
der label uncertainty. Firstly, we set two variant imple-
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Method R@1 R@5 R@(5,5) R0.5@(5,5)
IoU=0.5 IoU=0.5 IoU=0.5 IoU=0.5

DeNet-Boundary 57.88 89.25 55.42 63.14
DeNet-Centerness 57.85 89.17 54.40 62.18
DeNet-Single 57.45 89.19 55.38 62.95
DeNet w/o min-loss 58.90 69.11 42.18 50.61
DeNet 59.70 91.24 56.30 64.04

Table 5. Ablation studies of temporal regression on Charades-
STA; bold font indicates best results.

ments to validate the benefit of predicting the center-width
as an auxiliary head. 1) ”DeNet-Boundary” only predicts
the start-end boundary. 2) ”DeNet-Centerness” only pre-
dicts the center-width. As shown in Table 5, when super-
vised from two perspectives, our model DeNet can obtain
gains in terms of all metrics.

Secondly, we set two variant implements to investigate
settings of two independent branches. 1) ”DeNet-Single”
represents that we only build a single-output branch. 2)
”DeNet w/o min-loss” replaces Lmulti with Lsingle for
multi-output branch. Table 5 summarizes different re-
sults. The original DeNet with two independent regression
branches outperforms the model with only a single-output
branch (DeNet-Single). For each sample, the single-output
branch aims at matching the single-style annotations, yet
the multi-output branch aims at matching potential multiple
annotations. We consider the two different tasks may dis-
turb each other once relied on one same branch. In terms of
multiple predictions, performances will drop dramatically
without min-loss (DeNet w/o min-loss), e.g. 22.13% drop
in ”R@5, IoU = 0.5”. Thus, min-loss is necessary to learn
multiple predictions for the multi-output branch.
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Figure 6. Effect of the number of stacked temporal blocks on
Charades-STA and ActivityNet Captions.

Thirdly, we analyze the impact of the number of stacked

temporal blocks. Each temporal block contains a Temporal
Convolutional layer and a Multi-head Attention layer. Fig-
ure 6 shows results on the Charades-STA and ActivityNet
Captions. We observe that our proposed method DeNet
achieves best performances when the number of stacked
temporal blocks reaches 3 for Charades-STA and 4 for Ac-
tivityNet Captions. We consider that fewer temporal blocks
can not capture the long-range temporal dependencies, yet
more temporal blocks may face over-fitting risk.
Qualitative results. Figure 7 illustrates multiple predic-
tions generated by DeNet. We can find the temporal bound-
aries of different annotations exist disagreement for the
same query. For the same query, the multiple predictions
generated by DeNet can match each annotation as much
as possible. For the same event, predictions of different
queries (i.e. Query A and Query B) tend to be consistent.

Query A : person takes out a box.

Query B : person takes out a box out of the same closet.

Annotations

Predictions

2s 4s 6s 8s 10s 12s2s 4s 6s 8s 10s 12s

Figure 7. Qualitative results on Charades-STA dataset.

5. Conclusion

In this paper, we propose DeNet to embrace human un-
certainty for temporal grounding. Firstly, DeNet adopts
a decoupling method to decompose each query into rela-
tion feature and modified feature by PoS, where consistent
query information and expression variance can be obtained
respectively. Then, DeNet uses a de-bias mechanism to pro-
duce diverse yet plausible predictions, aims to mitigate the
reliance on single-style annotations. Experiments on two
datasets validate its effectiveness and robustness.
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