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Abstract

In many real-world problems, collecting a large number
of labeled samples is infeasible. Few-shot learning (FSL) is
the dominant approach to address this issue, where the ob-
jective is to quickly adapt to novel categories in presence of
a limited number of samples. FSL tasks have been predom-
inantly solved by leveraging the ideas from gradient-based
meta-learning and metric learning approaches. However,
recent works have demonstrated the significance of pow-
erful feature representations with a simple embedding net-
work that can outperform existing sophisticated FSL algo-
rithms. In this work, we build on this insight and propose
a novel training mechanism that simultaneously enforces
equivariance and invariance to a general set of geometric
transformations. Equivariance or invariance has been em-
ployed standalone in the previous works; however, to the
best of our knowledge, they have not been used jointly. Si-
multaneous optimization for both of these contrasting ob-
jectives allows the model to jointly learn features that are
not only independent of the input transformation but also
the features that encode the structure of geometric transfor-
mations. These complementary sets of features help gener-
alize well to novel classes with only a few data samples. We
achieve additional improvements by incorporating a novel
self-supervised distillation objective. Our extensive exper-
imentation shows that even without knowledge distillation
our proposed method can outperform current state-of-the-
art FSL methods on five popular benchmark datasets.

1. Introduction

In recent years, deep learning methods have made great
strides on several challenging problems [29, 72, 28, 6, 7].
This success can be partially attributed to the availability
of large-scale labeled datasets [14, 6, 83, 44]. However,
acquiring large amounts of labeled data is infeasible in sev-
eral real-world problems due to practical constraints such
as the rarity of an event or the high cost of manual anno-
tation. Few-shot learning (FSL) targets this problem by
learning a model on a set of base classes and studies its
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Figure 1. Approach Overview: Shapes represent different trans-
formations and colors represent different classes. While the in-
variant features provide better discrimination, the equivariant fea-
tures help us learn the internal structure of the data manifold.
These complimentary representations help us generalize better to
new tasks with only a few training samples. By jointly leverag-
ing the strengths of equivariant and invariant features, our method
achieves significant improvement over baseline (bottom row).

adaptability to novel classes with only a few samples (typ-
ically 1-5) [19, 77, 66, 71]. Remarkably, this setting is dif-
ferent from transfer and self/semi-supervised learning that
assumes the availability of pretrained models [64, 81, 36] or
large-amounts of unlabeled data [17, 9, 3].

FSL has been predominantly solved using ideas from
meta-learning. The two most dominant approaches are
optimization-based meta-learning [19, 32, 62] and metric-
learning based methods [66, 71, 1]. Both sets of approaches
attempt to train a base learner which can be quickly adapted
in the presence of a few novel class examples. However, re-
cently it has been shown in [56] that the quick adaptation of
the base learner crucially depends on feature reuse. Other
recent works [73, 15, 10] have also shown that a baseline
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feature extractor trained on all the meta-train set can achieve
comparable performance to the state-of-the-art meta learn-
ing based methods. This brings in an interesting question:
How much further can FSL performance be pushed by sim-
ply improving the base feature extractor?

To answer this question, first, we take a look at the in-
ductive biases in machine learning (ML) algorithms. The
optimization of all ML algorithms takes advantage of dif-
ferent inductive biases for hypothesis selection; as the so-
lutions are never unique. The generalization of these algo-
rithms often relies on the effective design of inductive bi-
ases, since they encode our priori preference for a particular
set of solutions. For instance, regularization methods like
`1/`2-penalties [74], dropout [67], or early stopping [53]
implicitly impose Occam’s razor in the optimization pro-
cess by selecting simpler solutions. Likewise, convolutional
neural networks (CNN) by design impose translation invari-
ance [2] which makes the internal embeddings translation
equivariant. Inspired by this, several methods [12, 20, 16]
have attempted to generalize CNNs by imposing equivari-
ance to different geometric transformations so that the inter-
nal structure of data can be modeled more efficiently. On the
other hand, methods like [38] try to be robust against nui-
sance variations by learning transformation invariant fea-
tures. However, such inductive biases do not provide opti-
mal generalization on FSL tasks and the design of efficient
inductive designs for FSL is relatively unexplored.

In this paper, we propose a novel feature learning ap-
proach by designing an effective set of inductive biases.
We observe that the features required to achieve invariance
against input transformations can provide better discrimi-
nation, but can hurt the generalization. Similarly, features
that focus on transformation discrimination are not optimal
for class discrimination but learn equivariant properties that
help in learning the data structure leading to better trans-
ferability. Therefore, we propose to combine the comple-
mentary strengths of both feature types through a multi-task
objective that simultaneously seeks to retain both invari-
ant and equivariant features. We argue that learning such
generic features encourages the base feature extractor to be
more general. We validate this claim by performing exten-
sive experimentation on multiple benchmark datasets. We
also conduct thorough ablation studies to demonstrate that
enforcing both equivariance and invariance outperforms en-
forcing either of these objectives alone (see Fig. 1).

Our main contributions are:

• We enforce complimentary equivariance and invariance
to a general set of geometric transformations to model the
underlying structure of the data, while remaining discrim-
inative, thereby improving generalization for FSL.

• Instead of extensive architectural changes, we propose
a simple alternative by defining self-supervised tasks as
auxiliary supervision. For equivariance, we introduce a

transformation discrimination task, while an instance dis-
crimination task is developed to learn transformation in-
variant features.

• We demonstrate additional gains with cross-task knowl-
edge distillation that retains the variance properties.

2. Related Works
Few-shot Learning: The FSL approaches generally be-

long to the meta-learning family, which either learn a gen-
eralizable metric space [66, 35, 78, 51] or apply gradient-
based updates to obtain a good initialization. In the first
class of methods, Siamese networks related a pair of images
[35], matching networks applied an LSTM based context
encoder to match query and support set images [78], and
prototypical networks used the distance between the query
and the prototype embedding for class assignment [66].
A task-dependent metric scaling approach to improve FSL
was introduced in [51]. The second category use gradient-
based meta-learning methods that include using a sequence
model (e.g., LSTM) to learn generalizable optimization
rules [58], Model-agnostic Meta-Learning (MAML) to find
a good initialization that can be quickly adapted to new
tasks with minimal supervision [19], and Latent Embedding
Optimization (LEO) that applied MAML in the low dimen-
sional space from which high-dimensional parameters can
be generated. A few recent efforts, e.g., ProtoMAML [76],
combined the complementary strengths of metric-learning
and gradient-based meta-learning methods.

Inductive Biases in CNNs: Inductive biases reflect our
prior knowledge regarding a particular problem. State of
the art CNNs are based on such design choices which range
from the convolutional operator (e.g., the weight sharing
and translational equivariance) [40], pooling operator (e.g.,
local neighbourhood relevance) [11], regularization mecha-
nisms (e.g., sparsity with `1 regularizer) [33], and loss func-
tions (e.g., max-margin boundaries) [27]. Similarly, recur-
rent architectures and attention mechanisms are biased to-
wards preserving contextual information and being invari-
ant to time translation [2]. A number of approaches have
been designed to achieve invariance to nuisances such as
natural perturbations [30, 75], viewpoint changes [46], and
image transformations [13, 5]. On the other hand, equiv-
ariant representations have also been investigated to retain
knowledge regarding group actions [12, 54, 63, 42], thereby
maintaining meaningful structure in the representations. In
this work, we advocate that the representations required to
simultaneously achieve invariance and equivariance can be
useful for generalization to new tasks with limited data.

Self-supervised Learning for FSL: Our self-supervised
loss is inspired by the recent progress in self-supervised
learning (SSL), where proxy tasks are defined to learn trans-
ferable representations without adding any manual annota-
tions [57]. The pretext tasks include colorization [39, 82],
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inpainting [52], relative patch location [17, 50], and amount
of rotation applied [24]. Recently, the potential of SSL for
FSL was explored in [23, 68]. In [23] a parallel branch with
the rotation prediction task to help learn generalizable fea-
tures was added. Su et al. [68] also used rotation and per-
mutation of patches as auxiliary tasks and concluded that
SSL is more effective in low-shot regimes and under signif-
icant domain shifts. A recent approach employed SimCLR
[9] style contrastive learning with augmented pairs to learn
improved representations in either unsupervised pretraining
[45] or episodic training [18] for FSL.

In contrast to the existing SSL approaches for FSL, we
propose to jointly optimize for a complimentary pair of pre-
text tasks that lead to better generalization. Our novel distil-
lation objective acquires knowledge from the classification
as well as proxy task heads and demonstrates further per-
formance improvements. We present our approach next.

3. Our Approach
We first describe the problem setting and the baseline

training approach and then present our proposed approach.

3.1. Problem Formulation

Few-shot learning (FSL) operates in two phases, first a
model on a set of base classes is trained and then at infer-
ence a new set of few-shot classes are received. We de-
fine the base training set as Db = {(x,y)}, where x ∈
I ⊂ Rh×w×3 is an image, and the one-hot encoded label
y ∈ Y ⊂ RNb can belong to a total of Nb base classes. At
inference, a data set of few-shot classes Df = {(x,y)} is
presented for learning such that the label y belongs to one
of the Nf novel classes, each with a total of K examples
(K typically ranges between 1-5). The evaluation setting
for few-shot classes is denoted as Nf -way, K-shot. Impor-
tantly, theNb base andNf few-shot classes belong to totally
disjoint sets.

For solving the FSL task, most meta-learning methods
[19, 66, 77] have leveraged an episodic training scheme. An
episode consists of a small train and test set

(
Ditr,Dits

)
. The

examples for the train and test set of an episode are sam-
pled from the same distribution i.e. from the same subset
of meta-training classes. Meta-learning methods try to opti-
mize the parameters of the base learner by solving a collec-
tion of these episodes. The main motivation is that the eval-
uation conditions should be emulated in the base training
stage. However, following recent works [73, 15, 10], we do
not use an episodic training scheme which allows us to train
a single generalizable model that can be efficiently used for
any-way, any-shot setting without retraining. Specifically,
we train our base learner on the whole base training set Db
in a supervised manner.

Let’s assume our base learner for the FSL task is a neural
network, fΘ, parameterized with parameters Θ. The role of

this base learner is to extract good feature embeddings that
can generalize for novel classes. The base learner fΘ can
project an input image x into the embedding space fΘ :
x → z, such that z ∈ Rd. Now, to optimize the parameters
of the base learner fΘ we need a classifier to project the
extracted embeddings into the label space. To this end, we
introduce a classifier function, fΦ, with parameters Φ that
projects the embeddings z into the label space Y i.e., fΦ :
z→ ỹ, such that ỹ ∈ Y .

We jointly optimize the parameters of both fΘ and fΦ by
minimizing cross-entropy loss on the whole base-training
set Db. The classification loss is given by,

Lce = − log
exp(ỹj:yj=1)∑

i exp(ỹi)
, s.t.,y ∈ {0, 1}Nb , ỹ = fΘ,Φ(x).

To regularize the parameters of both of the sub-networks,
we add a regularization term. Hence, the learning objective
for our baseline training algorithm becomes:

Lbaseline = E
(x,y)∼Db

[
Lce (fΘ,Φ(x),y)

]
+R(Θ,Φ). (1)

Here,R(Θ,Φ) is an L2 regularization term for the parame-
ters Θ and Φ. Next, we present our inductive objectives.

3.2. Injecting Inductive Biases through SSL

We propose to enforce equivariance and invariance to a
general set of geometric transformations T by simply per-
forming self-supervised learning (SSL). Self-supervision
is particularly useful for learning general features with-
out accessing semantic labels. For representation learning,
self-supervised methods generally aim for either achieving
equivariance to some input transformations or learn to dis-
criminate instances by making the representations invariant.
To the best of our knowledge, simultaneous equivariance
and invariance to a general set of geometric transformations
T has not been explored in the self-supervised literature.
We are the first ones to do so.

The transformation set T can be obtained from a family
of geometric transformations, DT ; T ∼ DT . Here, DT can
be interpreted as a family of geometric transformations like
Euclidean transformation, Similarity transformation, Affine
transformation, and Projective transformation. All of these
geometric transformations can be represented with a R3×3

matrix with varying degrees of freedom. However, enforc-
ing equivariance and invariance for a continuous space of
geometric transformations, T , is difficult and may even lead
to suboptimal solutions. To overcome this issue, in this
work, we quantize the complete space of affine transforma-
tions. We approximate DT by dividing it into M discrete
set of transformations. Here, M can be selected based on
the nature of the data and computation budget.

For training, we generate M transformed copies of an
input image x by applying all M transformations. Then
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Figure 2. Network Architecture during Training: A series of transformed inputs (transformed by applying transformations T1...TM ) are
provided to a shared feature extractor fΘ. The resulting embedding is forwarded to three parallel heads fΦ, fΘ and fΩ that focus on
learning equivariant features, discriminative class boundaries, and invariant features, respectively. The resulting output representations are
distilled from an old copy of the model (teacher model on the right) across multiple-heads to further improve the encoded representations.
Notably, a dedicated memory bank of negative samples helps stabilize our invariant contrastive learning.

we combine all of these transformed images together into a
single tensor, xall = {x0,x1, ...,xM−1}. Here, xi is the in-
put image x transformed through ith transformation, Ti (the
subscript of xi is dropped in the subsequent discussion for
clarity). We send this composite input to the network and
optimize for both equivariance and invariance. The train-
ing is performed in a multi-task fashion. In addition to the
classification head, which is needed for the baseline super-
vised training, two other heads are added on top of the base
learner, as shown in Figure 2. One of these heads is used for
enforcing equivariance, and the other is used for enforcing
invariance. This multi-task training scheme ensures that the
base learner retains both transformation equivariant and in-
variant features in the output embedding. We explain each
component of our inductive loss below.

3.2.1 Enforcing Equivariance

As discussed above, equivariant features help us encode the
inherent structure of data that improves generalization of
features to new tasks. To enforce equivariance for the set
T comprising of M quantized transformations, we intro-
duce an MLP fΨ with parameters Ψ. The role of fΨ is to
project the output embeddings from the base learner z into
an equivariant space i.e., fΨ : z→ ũ, where ũ ∈ U ⊂ RM .

In order to train the network, we create proxy labels
without any manual supervision. For a specific transforma-
tion, aM dimensional one-hot encoded vector u ∈ {0, 1}M
(such that

∑
i ui = 1) is used to represent the label for fΨ.

Once proxy labels are assigned, training is performed in a
supervised manner with the cross-entropy loss, as follows:

Leq = − log
exp(ũj:uj=1)∑

i exp(ũi)
, s.t., ũ = fΘ,Ψ(x). (2)

This supervised training with proxy labels in the equivariant
space U ensures that the output embedding z retains trans-
formation equivariant features.

3.2.2 Enforcing Invariance

While equivariant representations are important to encode
the structure in data, they may not be optimal for class dis-
crimination. This is because the transformations we con-
sider are nuisance variations that do not change the image
class, therefore a good feature extractor should also encode
representations that are independent of these input varia-
tions. To enforce invariance to the set T consisting of M
quantized transformations, we introduce another MLP fΩ

with parameters Ω. The role of fΩ is to project the output
embeddings from the base learner z into an invariant space
i.e., fΩ : z → v where v ∈ V ⊂ RD and D is the dimen-
sion of the invariant embedding.

To optimize for invariance we leverage a contrastive loss
[26] for instance discrimination. We enforce invariance
by maximizing the similarity between an embedding vm

corresponding to a transformed image (after undergoing
mth transformation Tm), and the reference embedding v0

(embedding from the original image without applying any
transformation T ). Importantly, we note that selecting neg-
atives within a batch is not sufficient to obtain discriminant
representations [79, 48]. We employ a memory bank in our
contrastive loss to sample more negative samples without
arbitrarily increasing the batch size. Further, the memory
bank allows a stable convergence behavior [48]. Our learn-
ing objective is as follows:

Lin = − 1

M

M−1∑
m=0

log (h(vr,vm))

{
m 6= 0→ vr = v0

m = 0→ vr = ṽ0
(3)
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where, m denotes the transformation index, ṽ0 represents a
previous copy of the reference v0 held in the memory and
the function h(·) is defined as,

h(vr,vm) =
exp

(
s(vr,vm)

τ

)
exp

(
s(vr,vm)

τ

)
+

∑
v′∈Dn

exp
(
s(v′ ,vm)

τ

) .
Here, s(.) is a similarity function, τ is the temperature, and
Dn is the set of negative samples drawn from the memory
bank for a particular minibatch. Note that we also maximize
the similarity between the reference embedding v0 and its
past representation ṽ0 which helps stabilize the learning.

3.2.3 Multi-head Distillation

Once the invariant and equivariant representations are
learned by our model, we use self-distillation to train a
new model using outputs from the previous model as an-
chor points (Fig. 2). Note that in typical knowledge distil-
lation [31], information is exchanged from a larger model
(teacher) to a smaller one (student) by matching their soft-
ened outputs. In contrast, the outputs from the same models
are matched in the self-distillation [21] where the smooth
predictions encode inter-label dependencies, thereby help-
ing the model to learn better representations.

In our case, a simple knowledge distillation by pair-
ing the logits [73] would not ensure the transfer of invari-
ant and equivariant representations learned by the previous
model version. Therefore, we extend the idea of logit-based
knowledge distillation and employ it to our invariant and
equivariant embedding embeddings. Specifically, in paral-
lel to minimizing the Kullback Leibler (KL) divergence for
the soft output of supervised classifier head fΦ, we also
minimize the KL divergence between the outputs of the
equivariant head fΨ. Since the output of our invariant head
fΩ is not a probability distribution, we minimize a L2 loss
for distilling the knowledge at this head. The overall learn-
ing objective for knowledge distillation is as follows:

Lkd =KL(f tΘ,Φ(x), fΘ,Φ(x)) + KL(f tΘ,Ψ(x), fΘ,Ψ(x))

+ L2(f tΘ,Ω(x), fΘ,Ω(x)). (4)

Here, f t(.,.) and f(.,.) are the teacher and student networks
for distillation, respectively.

3.2.4 Overall Objective

Finally, we obtain the resultant loss for injecting the desired
inductive biases by combining both equivariant Leq , invari-

ant Lin, and multi-head distillation Lkd losses:

Linductive = E
x∼Db,v′∼Dn

[
Leq(fΘ,Ψ(x),u)+

Lin(fΘ,Ω(x),v′) + Lkd(f .,tΘ,Φ(x), f .,tΘ,Ψ(x), f .,tΘ,Ω(x))

]
.

The overall loss is simply a combination of inductive and
baseline objectives,

L = Lbaseline + Linductive. (5)

3.3. Few-Shot Evaluation

For evaluation, we test our base learner fΘ by sampling
FSL tasks from a held-out test set comprising of images
from novel classes. Each FSL task contains a support set
and a corresponding query set {Dsupp, Dquery}; both con-
tain images from the same subset of test classes. Using
fΘ, we obtain embeddings for the images of both Dsupp

and Dquery. Following [73], we train a simple logistic re-
gression classifier based on the image embeddings and the
corresponding labels from the Dsupp. We use that linear
classifier to infer the labels of the query embeddings.

4. Experimental Evaluation
Datasets: We evaluate our method on five popular bench-
mark FSL datasets. Two of these datasets are subset of
the CIFAR100 dataset: CIFAR-FS [4] and FC100 [51].
Another two are derivatives of the ImageNet [14] dataset:
miniImageNet [77] and tieredImageNet [61]. The CIFAR-
FS dataset is constructed by randomly splitting the 100
classes of the CIFAR-100 dataset into 64, 16, and 20 train,
validation, and test splits. FC100 dataset makes the FSL
task more challenging by making the splits more diverse;
the FC100 train, validation, and test splits contain 60, 20,
and 20 classes. Following [59], we use 64, 16, and 20
classes of the miniImageNet dataset for training, validation,
and testing. The tieredImageNet dataset contains 608 Ima-
geNet classes that are grouped into 34 high-level categories,
and we use 20/351, 6/97, and 8/160 categories/classes for
training, validation, and testing. We also evaluate our
method on the newly proposed Meta-Dataset [76], which
contains 10 diverse datasets to make the FSL task more
challenging and closer to realistic classification problems.
Implementation Details: Following [73, 47, 51, 41], we
use a ResNet-12 network as our base learner to conduct ex-
periments on CIFAR-FS, FC100, miniImageNet, tieredIm-
ageNet datasets. Following [73, 41], we also apply Drop-
block [22] regularizer to our Resnet-12 base learner. For
Meta-Dataset experiments we use a Resnet-18 [29] network
as our base learner to be consistent with [73]. We instanti-
ate both of our equivariant and invariant embedding learners
(fΨ, fΩ) with an MLP consisting of a single hidden layer.
The classifier, fΦ, is instantiated with a single linear layer.
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Methods Backbone 1-Shot 5-Shot

MAML[19] 32-32-32-32 58.90± 1.90 71.50± 1.00

Proto-Net†[66] 64-64-64-64 55.50± 0.70 72.00± 0.60
Relation Net[71] 64-96-128-256 55.00± 1.00 69.30± 0.80
R2D2[4] 96-192-384-512 65.30± 0.20 79.40± 0.10
Shot-Free[60] ResNet-12 69.20 84.70
TEWAM[55] ResNet-12 70.40 81.30

Proto-Net†[66] ResNet-12 72.20± 0.70 83.50± 0.50
MetaOptNet[41] ResNet-12 72.60± 0.70 84.30± 0.50
Boosting[23] WRN-28-10 73.60± 0.30 86.00± 0.20
Fine-tuning[15] WRN-28-10 76.58± 0.68 85.79± 0.50
DSN-MR[65] ResNet-12 75.60± 0.90 86.20± 0.60
MABAS[34] ResNet-12 73.51± 0.92 85.49± 0.68
RFS-Simple[73] ResNet-12 71.50± 0.80 86.00± 0.50
RFS-Distill[73] ResNet-12 73.90± 0.80 86.90± 0.50

Ours ResNet-12 76.83± 0.82 89.26± 0.58
Ours-Distill ResNet-12 77.87± 0.85 89.74± 0.57

Table 1. Average 5-way few-shot classification accuracy with 95%
confidence intervals on CIFAR-FS dataset; †trained on both train
and validation sets. The top two results are shown in red and blue.

Methods Backbone 1-Shot 5-Shot

Proto-Net†[66] 64-64-64-64 35.30± 0.60 48.60± 0.60

Proto-Net†[66] ResNet-12 37.50± 0.60 52.50± 0.60
TADAM[51] ResNet-12 40.10± 0.40 56.10± 0.40
MetaOptNet[41] ResNet-12 41.10± 0.60 55.50± 0.60
MTL[69] ResNet-12 45.10± 1.80 57.60± 0.90
Fine-tuning[15] WRN-28-10 43.16± 0.59 57.57± 0.55
MABAS[34] ResNet-12 42.31± 0.75 57.56± 0.78
RFS-Simple[73] ResNet-12 42.60± 0.70 59.10± 0.60
RFS-Distill[73] ResNet-12 44.60± 0.70 60.90± 0.60

Ours ResNet-12 47.38± 0.79 64.43± 0.77
Ours-Distill ResNet-12 47.76± 0.77 65.30± 0.76

Table 2. Average 5-way few-shot classification accuracy with 95%
confidence intervals on FC100 dataset; †trained on both train and
validation sets. The top two results are shown in red and blue.

We use SGD optimizer with a momentum of 0.9 in all ex-
periments. For CIFAR-FS, FC100, miniImageNet, tiered-
ImageNet datasets we set the initial learning rate to 0.05 and
use a weight decay of 5e − 4. For experiments on CIFAR-
FS, FC100, miniImageNet datasets, we train for 65 epochs;
the learning rate is decayed by a factor of 10 after the first
60 epochs. We train for 60 epochs for experiments on the
tieredImageNet dataset; the learning rate is decayed by a
factor of 10 for 3 times after the first 30 epochs. For Meta-
Dataset experiments, we set the initial learning rate to 0.1
and use a weight decay of 1e−4. We train our method for 90
epochs and decay the learning rate by a factor of 10 every 30
epochs. We use a batch size of 64 in all of our experiments
except on Meta-Dataset where the batch size is set to 256
following [73]. For Meta-dataset experiments, we use stan-
dard data augmentation which includes random horizontal
flip and random resized crop. For all the other dataset exper-

Methods Backbone 1-Shot 5-Shot

MAML[19] 32-32-32-32 48.70± 1.84 63.11± 0.92
Matching Net [77] 64-64-64-64 43.56± 0.84 55.31± 0.73

Proto-Net†[66] 64-64-64-64 49.42± 0.78 68.20± 0.66
Relation Net[71] 64-96-128-256 50.44± 0.82 65.32± 0.70
R2D2[4] 96-192-384-512 51.20± 0.60 68.80± 0.10
SNAIL[47] ResNet-12 55.71± 0.99 68.88± 0.92
AdaResNet[49] ResNet-12 56.88± 0.62 71.94± 0.57
TADAM[51] ResNet-12 58.50± 0.30 76.70± 0.30
Shot-Free[60] ResNet-12 59.04 77.64
TEWAM[55] ResNet-12 60.07 75.90
MTL[69] ResNet-12 61.20± 1.80 75.50± 0.80
MetaOptNet[41] ResNet-12 62.64± 0.61 78.63± 0.46
Boosting[23] WRN-28-10 63.77± 0.45 80.70± 0.33
Fine-tuning[15] WRN-28-10 57.73± 0.62 78.17± 0.49

LEO-trainval†[62] WRN-28-10 61.76± 0.08 77.59± 0.12
Deep DTN[8] ResNet-12 63.45± 0.86 77.91± 0.62
AFHN[43] ResNet-18 62.38± 0.72 78.16± 0.56
AWGIM[25] WRN-28-10 63.12± 0.08 78.40± 0.11
DSN-MR[65] ResNet-12 64.60± 0.72 79.51± 0.50
MABAS[34] ResNet-12 65.08± 0.86 82.70± 0.54
RFS-Simple[73] ResNet-12 62.02± 0.63 79.64± 0.44
RFS-Distill[73] ResNet-12 64.82± 0.60 82.14± 0.43

Ours ResNet-12 66.82± 0.80 84.35± 0.51
Ours-Distill ResNet-12 67.28± 0.80 84.78± 0.52

Table 3. Average 5-way few-shot classification accuracy with 95%
confidence intervals on miniImageNet dataset; †trained on both
train and validation sets. The top two results are shown in red and
blue.

iments we use random crop, color jittering and random hor-
izontal flip for data augmentation following [73, 41]. Con-
sistent with [73], we use a temperature coefficient of 4.0 for
our knowledge distillation experiments. For all datasets, we
perform one stage of distillation, except the ILSVRC train-
ing on Meta-dataset where we don’t use distillation. We
sample 600 FSL tasks to report our score.

For our geometric transformations, we sample from a
complete space of similarity transformation and use four ro-
tation transformations: {0◦, 90◦, 180◦, 270◦}, two scaling
transformations: {0.67, 1.0} and three aspect ration trans-
formations: {0.67, 1.0, 1.33}. These geometric transfor-
mations can be applied in any combination. For all of our
experiments, we set the total number of applied transforma-
tions to 16. Additional details and experiments with more
geometric transformations are included in the supplemen-
tary materials. For the contrastive loss, we use a memory
bank that stores 64-dimensional embedding of instances;
we sample 6400 negative samples from the memory bank
for each mini-batch and set the value of τ to 1.0.

4.1. Results

We present our results on five popular benchmark FSL
datasets in Table 1-5 which demonstrates that even without
multi-head distillation our proposed method consistently
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Methods Backbone 1-Shot 5-Shot

MAML[19] 32-32-32-32 51.67± 1.81 70.30± 1.75

Proto-Net†[66] 64-64-64-64 53.31± 0.89 72.69± 0.74
Relation Net[71] 64-96-128-256 54.48± 0.93 71.32± 0.78
Shot-Free[60] ResNet-12 63.52 82.59
MetaOptNet[41] ResNet-12 65.99± 0.72 81.56± 0.53
Boosting[23] WRN-28-10 70.53± 0.51 84.98± 0.36
Fine-tuning[15] WRN-28-10 66.58± 0.70 85.55± 0.48

LEO-trainval†[62] WRN-28-10 66.33± 0.05 81.44± 0.09
AWGIM[25] WRN-28-10 67.69± 0.11 82.82± 0.13
DSN-MR[65] ResNet-12 67.39± 0.82 82.85± 0.56
RFS-Simple[73] ResNet-12 69.74± 0.72 84.41± 0.55
RFS-Distill[73] ResNet-12 71.52± 0.69 86.03± 0.49

Ours ResNet-12 71.87± 0.89 86.82± 0.58
Ours-Distill ResNet-12 72.21± 0.90 87.08± 0.58

Table 4. Average 5-way few-shot classification accuracy with 95%
confidence intervals on tieredImageNet dataset; †trained on both
train and validation sets. The top two results are shown in red and
blue.

outperforms the current state-of-the-art (SOTA) FSL meth-
ods on both 5-way 1-shot and 5-way 5-shot tasks. By virtue
of our novel representation learning approach which re-
tains both the transformation invariant and equivariant fea-
tures in the learned embeddings, our proposed method im-
proves over the baseline RFS-Simple [73] method across
all datasets by 2-5% for both 1-shot and 5-shot tasks. To
be more specific, our method outperforms the current best
results on CIFAR-FS dataset (Table 1) by 1.3% in the 1-
shot task whereas for the 5-shot task it improves the score
by 2.8%. However, unlike [15], which achieves the current
best results on the CIFAR-FS 1-shot task, we do not per-
form any transductive fine-tuning. For FC100 dataset (Table
2) we observe an even bigger improvement; 2.7% and 4.4%
for 1 and 5-shot, respectively. We see similar trends in mini-
ImageNet and tieredImageNet (Table 3,4) where we consis-
tently improve over the current SOTA methods by 0.7-2.2%.

For the Meta-Dataset [76], we train our model on the
ILSVRC train split and test on 10 diverse datasets. Our re-
sults in Table 5 demonstrate that our method outperforms
the fo-Proto-MAML [76] across all 10 datasets. Even with-
out multi-head distillation, we outperform both simple and
distilled version of the RFS method on 6 out of 10 datasets.
Overall, we perform favorably well against the RFS, achiev-
ing a new SOTA result on the challenging Meta-Dataset.

4.2. Ablations

To study the contribution of different components of our
method we do a thorough ablation study on three bench-
mark FSL datasets: miniImageNet, CIFAR-FS, and FC100
(Table 6). On these three datasets, our baseline super-
vised training achieves 62.02%, 71.50%, and 42.60% av-
erage accuracy on 5-way 1-shot task respectively; which
is the same as RFS-Simple [73]. By enforcing invariance

Dataset fo-Proto-MAML RFS Ours
LR-Simple LR-Distill

ILSVRC 49.53 60.14 61.48 60.64
Omniglot 63.37 64.92 64.31 65.55
Aircraft 55.95 63.12 62.32 65.65
Birds 68.66 77.69 79.47 77.84
Textures 66.49 78.59 79.28 81.07
Quick Draw 51.52 62.48 60.83 57.91
Fungi 39.96 47.12 48.53 49.26
VGG Flower 87.15 91.60 91.00 92.06
Traffic Signs 48.83 77.51 76.33 78.92
MSCOCO 43.74 57.00 59.28 55.07

Mean Accuracy 57.52 68.02 68.28 68.40

Table 5. Results on Meta-Dataset. Average accuracy (%) is re-
ported with variable number of ways and shots, following the setup
in [76]. 1000 tasks are sampled for evaluation. The top two results
are shown in red and blue.

we obtain 2.62%, 2%, and 3.5% improvements respectively.
Likewise, enforcing equivariance gives 4.07%, 4.87%, and
4.13% improvements over the baseline respectively. On the
other hand, we get even bigger improvements by simulta-
neously optimizing for both equivariance and invariance;
achieving 4.8%, 5.33%, and 4.78% improvements on top
of the baseline supervised training. Besides, joint training
gives 1.3%-3.3% improvement over only invariance train-
ing and 0.5%-0.7% improvement in comparison to only
equivariance training. We observe similar trends for 5-way
5-shot task. This consistent improvement across all datasets
for both tasks empirically validates our claim that joint op-
timization for both equivariance and invariance is beneficial
for FSL tasks. Our ablation study also shows that the multi-
head distillation improves the performance over the stan-
dard logit-level supervised distillation across all datasets.
Effect of the number of Transformations: To investigate
the effect of the total number of applied transformations, we
perform an ablation study on the CIFAR-FS validation set
by varying the number of transformations, M . We present
the results in Table 7, which demonstrates that initially, the
performance of our method improves with the increasing
M . However, the performance starts to saturate beyond a
particular point. We hypothesize that the performance for
an increasing number of transformations decreases since
discriminating a higher number of transformations is more
difficult and the model spends more representation capabil-
ity for solving this harder task. A similar trend is observed
in [24], where increasing the number of recognizable rota-
tions does not lead to better performance. Based on Table
7 results, we set the value of M to 16 for all of our experi-
ments and do not tune the M value from dataset to dataset.

4.3. Analysis

We do a t-SNE visualization of the output embeddings
from fΘ for the test images of miniImageNet to demonstrate
the effectiveness of our method (see Fig. 3). We observe
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Method miniImageNet, 5-Way CIFAR-FS, 5-Way FC100, 5-Way
1-Shot 5-Shot 1-Shot 5-Shot 1-Shot 5-Shot

Baseline Training 62.02± 0.63 79.64± 0.44 71.50± 0.80 86.00± 0.50 42.60± 0.70 59.10± 0.60
Ours with only Invariance 64.64± 0.80 82.59± 0.54 73.50± 0.86 87.55± 0.61 46.10± 0.78 63.18± 0.76

Ours with only Equivariance 66.09± 0.80 84.03± 0.53 76.37± 0.83 89.08± 0.58 46.73± 0.79 64.09± 0.75
Ours with Equi and Invar (W/O KD) 66.82± 0.80 84.35± 0.51 76.83± 0.82 89.26± 0.58 47.38± 0.79 64.43± 0.77

Ours with Supervised KD 66.95± 0.78 84.39± 0.52 76.92± 0.85 89.34± 0.57 47.70± 0.81 65.09± 0.76
Ours Full 67.28± 0.80 84.78± 0.52 77.87± 0.85 89.74± 0.57 47.76± 0.77 65.30± 0.76

Table 6. Ablation study on miniImageNet, CIFAR-FS, and FC100 datasets.

M Description 1-Shot 5-Shot

3 Aspect-Ratio 65.13± 0.93 81.22± 0.66
4 Rotation 66.56± 0.92 82.64± 0.64
8 Rotation, Scale 67.46± 0.92 82.80± 0.64

12 Aspect-Ratio, Rotation 68.04± 0.93 83.48± 0.64
16 Aspect-Ratio, Rotation, Scale 68.20± 0.92 83.63± 0.62
20 Aspect-Ratio, Rotation, Scale 68.07± 0.90 83.53± 0.61

Table 7. Ablation Study on CIFAR-FS validation set with differ-
ent values of M . We choose M = 16 for all the experiments.

Baseline Baseline+INV

Baseline+EQ Ours
Figure 3. t-SNE visualization of features for 1000 randomly sam-
pled images from 5 randomly selected test classes of miniIma-
geNet dataset. In our case, the learned embeddings provide better
discrimination for unseen test classes.

that the base learner trained in a supervised manner can re-
tain good class discrimination even for unseen test classes.
However, as evident in Fig. 3, the class boundaries are not
precise and compact. Enforcing invariance on top of the
base learner leads to more compact class boundaries; how-
ever, the sample embeddings of different classes are still
relatively closer to one another. On the other hand, enforc-
ing equivariance leads to class representations that are well
spread out since it retains the transformation equivariant in-
formation in the embedding space. Finally, our proposed
method takes advantage of both of these complementary
properties and generates embeddings that lead to more com-
pact clusters and discriminative class boundaries.

Method 1-Shot 5-Shot

Baseline Training 62.02± 0.63 79.64± 0.44
Baseline + Jigsaw Puzzle [50] 63.98± 0.79 81.08± 0.55
Baseline + Location Pred [70] 64.39± 0.81 81.75± 0.54
Baseline + Context Pred [17] 64.72± 0.79 81.83± 0.54

Baseline + Rotation [24] 65.25± 0.80 82.85± 0.54
Ours (W/O KD) 66.82± 0.80 84.35± 0.51

Table 8. FSL with different SSL objectives on miniImageNet
dataset.

4.4. Alternate Self-Supervision Losses

In Table 8, to further analyze the performance improve-
ment of our method, we conduct a set of experiments where
commonly used self-supervised objectives like solving jig-
saw puzzles [50], patch location prediction [70], context
prediction [17], rotation classification [24] are added on top
of the base learner as an auxiliary task. We found that our
proposed method which aims to learn representations that
retain both transformation invariant and equivariant infor-
mation outperforms all of these SSL tasks by a good margin.
Besides, we have noticed that the patch-based SSL tasks
[50, 70, 17] generally underperform in comparison to SSL
tasks that rely on changing the global statistics of the image
while maintaining the local statistics; this conclusion is in
line with the experimental results from [23].

5. Conclusion

In this work, we explored a set of inductive biases that
help us learn highly discriminative and transferable repre-
sentations for FSL. Specifically, we showed that simultane-
ously learning equivariant and invariant representations to
a set of generic transformations results in retaining a com-
plimentary set of features that work well for novel classes.
We also designed a novel multi-head knowledge distillation
objective which delivers additional gains. We conducted ex-
tensive ablation to empirically validate our claim that joint
optimization for invariance and equivariance leads to more
generic and transferable features. We obtained new state-
of-the-art results on four popular benchmark FSL datasets
as well as on the newly proposed challenging Meta-Dataset.

8



References
[1] Kelsey Allen, Evan Shelhamer, Hanul Shin, and Joshua

Tenenbaum. Infinite mixture prototypes for few-shot learn-
ing. volume 97 of Proceedings of Machine Learning Re-
search, pages 232–241, Long Beach, California, USA, 09–
15 Jun 2019. PMLR. 1

[2] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Al-
varo Sanchez-Gonzalez, Vinicius Zambaldi, Mateusz Ma-
linowski, Andrea Tacchetti, David Raposo, Adam Santoro,
Ryan Faulkner, et al. Relational inductive biases, deep learn-
ing, and graph networks. arXiv preprint arXiv:1806.01261,
2018. 2

[3] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas
Papernot, Avital Oliver, and Colin A Raffel. Mixmatch: A
holistic approach to semi-supervised learning. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
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A. Supplementary Materials Overview
In the supplementary materials we include the follow-

ing: additional details about the applied geometric transfor-
mations (Section B), additional results with the transforma-
tions sampled from the complete space of affine transfor-
mations (Section C), ablation study on the coefficient of in-
ductive loss (Section D), ablation study on the temperature
of knowledge distillation (Section E), effect of successive
self knowledge distillation (Section F), additional results on
Meta-Dataset with multi-head distillation (Section G), and
effect of enforcing invariance and equivariance for super-
vised classification (Section H).

B. Geometric Transformations
For our geometric transformations, we sample from a

complete space of similarity transformation and use four ro-
tation transformations: {0◦, 90◦, 180◦, 270◦}, two scaling
transformations: {0.67, 1.0} and three aspect ratio transfor-
mations: {0.67, 1.0, 1.33}. Different combinations of these
transformations lead to different values of M (total number
of applied transformations). An ablation study on the value
of M is included in section 4.2 of the main paper. In Table
9 we include the complete description of different values of
M that we use in our experiments.

C. Additonal Resutls with Affine Transforma-
tions

We perform a set of experiments where the objective is to
sample geometric transformation from the complete space
of affine transformations. To this end, we quantize the affine
transformation space according to Table 10. This leads to
972 distinct geometric transformations. Since it’s not fea-
sible to apply all the 972 transformations on an input im-
age x to obtain the input tensor xall = {x0,x1, ...,x971},
we randomly sample 10 geometric transformations from the
set of 972 transformations. We apply these randomly sam-
pled 10 geometric transformations on an input image x and
generate the input tensor xall. The results of these exper-
iments are presented in Table 11. From Table 11 it’s ev-
ident that training with either invariance or equivariance
improves over the baseline training for both 1 and 5 shot
tasks (2.5-3.7% improvement). Joint optimization for both
invariance and equivariance provides additional improve-
ment of ∼ 1%. Even though the experiments with geo-
metric transformations sampled from the complete affine
transformation space do not improve over the training with
M = 16 (description of M = 16 is available in Table 9),
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Figure 4. Ablation study on CIFAR-FS validation set with differ-
ent coefficients of the inductive loss (W/O KD); the reported score
is average 5-way 1-shot classification accuracy with 95% confi-
dence intervals.

the experiments demonstrate consistent improvement when
both invariance and equivariance are enforced simultane-
ously. This provides additional support for our claim that
enforcing both invariance and equivariance is beneficial for
learning good general representations for solving challeng-
ing FSL tasks.

D. Ablation Study for Coefficient of Inductive
Loss

We conduct an ablation study to measure the effect of
different values of the coefficient of inductive loss (without
multi-head distillation) on the CIFAR-FS [4] validation set;
the results of 5-way 1-shot FSL tasks are presented in fig.
4. From fig.4 it is evident that the proposed method is fairly
robust to the different values of the coefficient of the induc-
tive loss. However, the best performance is obtained when
we set the loss coefficient to 1.0. Based on this ablation
study, we use a loss coefficient of 1.0 for the inductive loss
in all of our experiments.

E. Ablation Study for Knowledge Distillation
Temperature

To analyse the effect of knowledge distillation tempera-
ture (for Kullback Leibler (KL) divergence losses) we con-
duct an ablation study on the validation set of CIFAR-FS
[4] dataset. From fig. 5 we can observe that the proposed
method with multi-head distillation objective is not very
sensitive to the temperature coefficient of knowledge distil-
lation. The proposed method achieves similar performance
on the CIFAR-FS validation set when the value of distilla-
tion temperature is set to 4.0 and 5.0. Based on this ablation
study and to be consistent with [73], we set the value of the
coefficient of knowledge distillation temperature to 4.0 in
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M Description

3 AR:{0.67, 1.0, 1.33}
4 ROT:{0◦, 90◦, 180◦, 270◦}
8 ROT:{0◦, 90◦, 180◦, 270◦}�S:{0.67, 1.0}

12 AR:{0.67, 1.0, 1.33}�ROT:{0◦, 90◦, 180◦, 270◦}
16

(
AR:{0.67, 1.0, 1.33}�ROT:{0◦, 90◦, 180◦, 270◦}

) ⋃ (
ROT:{0◦, 90◦, 180◦, 270◦}�S:{0.67}

)
20

(
AR:{0.67, 1.0, 1.33}�ROT:{0◦, 90◦, 180◦, 270◦}

) ⋃ (
ROT:{0◦, 90◦, 180◦, 270◦}�S:{0.67}�AR:{0.67, 1.33}

)
24 AR:{0.67, 1.0, 1.33}�ROT:{0◦, 90◦, 180◦, 270◦}�S:{0.67, 1.0}

Table 9. Complete description of different values of M based on different combination of aspect ratio (AR), rotation (ROT), and scaling
(S) transformations.

Transformation Quantized Values

Rotation {0◦, 90◦, 180◦, 270◦}
Translation(X) {−0.2, 0.0, 0.2 }
Translation(Y) {−0.2, 0.0, 0.2}

Scale {0.67, 1.0, 1.33}
Aspect-Ratio {0.67, 1.0, 1.33}

Shear {−20◦, 0◦, 20◦}

Table 10. Quantization of the space of Affine transformations.

Method 1-Shot 5-Shot

Baseline Training 62.02± 0.63 79.64± 0.44
Ours with only Invar (affine) 65.55± 0.81 82.17± 0.52
Ours with only Equi (affine) 65.70± 0.79 82.47± 0.53

Ours with Equi and Invar (affine) 66.82± 0.79 82.96± 0.53
Ours with Equi and Invar (M=16) 66.82± 0.80 84.35± 0.51

Table 11. Average 5-way few-shot classification accuracy with
95% confidence intervals on miniImageNet dataset; trained with
different geometric transformations.
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Figure 5. Ablation study on CIFAR-FS validation set with dif-
ferent values of knowledge distillation temperature; the reported
score is average 5-way 1-shot classification accuracy with 95%
confidence intervals.

all of our experiments.
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Figure 6. Evaluation of different knowledge distillation stages on
CIFAR-FS dataset; the reported score is average 5-way 1-shot
classification accuracy with 95% confidence intervals.

F. Effect of Successive Distillation
In all of our experiments, we use only one stage of multi-

head knowledge distillation. To further investigate the effect
of knowledge distillation we perform multiple stages of self
knowledge distillation on CIFAR-FS [4] dataset. The re-
sults are presented in fig. 6. Here, the 0th distillation stage
is the base learner trained with only the supervised baseline
loss (Lbaseline), equivariant loss (Leq), and invariant loss
(Lin). From fig. 6, we observe that the performance in the
FSL task improves for the first 2 stages of distillation, after
that the performance saturates. Besides, the improvement
from stage 1 to stage 2 is minimal (∼ 0.1%). Therefore, to
make the proposed method more computationally efficient
we perform only one stage of distillation in all of our exper-
iments.

G. Additional Results on Meta-Dataset
In Table 12, we provide additional results on meta-

dataset [76] which demonstrates that our proposed method
can provide additional improvement (0.5%) with the pro-
posed multi-head knowledge distillation objective. We also
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Dataset RFS-Distill Ours Ours-Distill

ILSVRC 61.48 60.64 61.36
Omniglot 64.92 65.55 65.53
Aircraft 62.32 65.65 66.58
Birds 79.47 77.84 78.23

Textures 79.28 81.07 80.42
Quick Draw 60.83 57.91 59.02

Fungi 48.53 49.26 49.50
VGG Flower 91.00 92.06 92.66
Traffic Signs 76.33 78.92 79.92
MSCOCO 59.28 55.07 55.68

Mean Accuracy 68.28 68.40 68.89

Table 12. Results on Meta-Dataset. Average accuracy (%) is re-
ported with variable number of ways and shots, following the setup
in [76]. 1000 tasks are sampled for evaluation.

outperform the distilled version of the current state-of-the-
art method RFS [73] by 0.6% in terms of mean accuracy
across all the 10 datasets. Considering the challenging na-
ture of Meta-Dataset, this improvement is significant.

H. Invariance and Equivariance for Super-
vised Classification

To demonstrate the effectiveness of complementary
strengths of invariant and equivariant representations we
conduct fully supervised classification experiments on
benchmark CIFAR-100 dataset [37]. For these experiments,
we use the standard Wide-Resnet-28-10 [80] architecture as
the backbone. For training, we use an SGD optimizer with
an initial learning rate of 0.1. We set the momentum to 0.9
and use a weight decay of 5e−4. For all the experiments,
the training is performed for 200 epochs where the learning
rate is decayed by a factor of 5 at epochs 60, 120, and 160.
We use a batch size of 128 for all the experiments as well
as a dropout rate of 0.3. The training augmentations include
standard data augmentations: random crop and random hor-
izontal flip. For enforcing invariance and equivariance, we
set the value of M to 12 for computational efficiency; de-
scription of M = 12 is available in Table 9. We do not
perform knowledge distillation for these experiments. The
results of these experiments are presented in Table 13.

From Table 13, we can notice that enforcing invari-
ance provides little improvement (0.2%) over the super-
vised baseline. This is expected since the train and test
data is coming from the same distribution and same set
of classes; making the class boundaries compact (for seen
classes) doesn’t provide that much additional benefit. How-
ever, in the case of FSL we observe that enforcing invari-
ance over baseline provides 2.62%, 2%, and 3.5% improve-
ment for miniImageNet [77], CIFAR-FS [4], and FC100
[51] datasets respectively (section 4.2 of main text). On
the other hand, enforcing equivariance for supervised clas-

Method Error Rate (%)

Supervised Baseline 18.78
Ours with only Invariance 18.56

Ours with only Equivariance 16.95
Ours with Equi and Invar (W/O KD) 16.84

Table 13. Results with invariance and equivariance for supervised
classification on CIFAR-100 dataset.

sification provides better improvement (1.8%) since it helps
the model to better learn the structure of data. Even though
enforcing equivariance provides noticeable improvement
for supervised classification, in the case of FSL we ob-
tain a much bigger improvement of 4.07%, 4.87%, and
4.13% for miniImageNet [77], CIFAR-FS [4], and FC100
[51] datasets respectively (section 4.2 of main text). Fi-
nally, joint optimization for both invariance and equivari-
ance achieves the best performance and provides minimal
but consistent improvement of 0.1% over enforcing only
equivariance. However, joint optimization provides a much
larger improvement on FSL tasks (see section 4.2 of the
main text). From these experiments, we conclude that, al-
though enforcing both invariance and equivariance is ben-
eficial for supervised classification, injecting these induc-
tive biases is more crucial for FSL tasks since the inductive
inference for FSL tasks is more challenging (inference on
unseen/novel classes).
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