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Abstract

Temporal receptive fields of models play an important
role in action segmentation. Large receptive fields facilitate
the long-term relations among video clips while small re-
ceptive fields help capture the local details. Existing meth-
ods construct models with hand-designed receptive fields in
layers. Can we effectively search for receptive field combi-
nations to replace hand-designed patterns? To answer this
question, we propose to find better receptive field combina-
tions through a global-to-local search scheme. Our search
scheme exploits both global search to find the coarse com-
binations and local search to get the refined receptive field
combination patterns further. The global search finds pos-
sible coarse combinations other than human-designed pat-
terns. On top of the global search, we propose an expecta-
tion guided iterative local search scheme to refine combina-
tions effectively. Our global-to-local search can be plugged
into existing action segmentation methods to achieve state-
of-the-art performance.

1. Introduction
Action recognition segments the action of each video

frame, playing an important role in computer vision appli-
cations such as clips tagging [49], video surveillance [6, 7],
and anomaly detection [44]. While conventional works [3,
15,16,46] have continuously refresh the recognition perfor-
mance of short trimmed videos containing a single activity,
segmenting each frame densely in long untrimmed videos
remains challenging as those videos contain many activ-
ities with different temporal lengths. Temporal convolu-
tional networks (TCN) [10,14,26,31,54] are widely adapted
in action segmentation tasks with their ability to capture
both long-term and short-term information. Appropriate re-
ceptive fields in layers are crucial for TCN as large recep-
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Figure 1. Search space comparison between searching for network
architecture and receptive field combinations. Left: Network ar-
chitecture search mostly search for several operations with differ-
ent functions. Right: The search space of receptive field combi-
nations is huge. The white, gray, blue nodes and red shade repre-
sent the dilation rate candidates, the sparse search space in global
search, one of the global searched results, and the local search
space.

tive fields contribute to long-term dependencies while small
receptive fields benefit the local details. State-of-the-art
(SOTA) methods [4, 20, 30, 31, 54] rely on human-designed
receptive field combinations, i.e., dilation rate or pooling
size in each layer, to make the trade-off between capturing
long and short term dependencies. Questions have raised:
Are there other effective receptive field combinations that
perform comparable or better than hand-designed patterns?
Will the receptive field combinations vary among different
datasets? To answer those questions, we propose to find
the possible receptive field combinations in a coarse-to-fine
scheme through the global-to-local search.

As shown in Fig. 1, unlike the existing network archi-
tecture search spaces [2, 19, 34] that only contain several
operation options within a layer, the available search space
of receptive field combinations could be huge. Suppose
a TCN has L convolutional layers and D possible recep-
tive fields in each layer. There are DL possible combi-
nations, i.e., the number of possible receptive field com-
binations in MS-TCN [10] is 102440. Directly apply net-
work architecture searching algorithms [19, 32, 34, 55] to
such a huge search space is impractical. For example,
conventional reward-based searching methods [33, 38, 55]
are not suitable for CNN-based models with a huge search
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Figure 2. Our proposed method utilizes the global-to-local search
to find effective receptive field combinations. The global search
firstly finds multiple coarse but competitive candidates. The local
search further locally modifies the receptive field at a fine level.

space. The model training and performance evaluation of
each possible combination are too costly. Differentiable ar-
chitecture searching methods (DARTS) [2, 32, 34] rely on
shared big networks to save training time, thus only sup-
porting several operators within a layer due to the model
size constraint. Moreover, they heavily dependent on the
initial combination and fail to find new combinations with
a huge difference from the initial one. While our goal is
to explore effective receptive field combinations other than
human-designed patterns in the huge search space, those al-
gorithms are either too costly or cannot support the large
search space.

To explore the search space with low cost, we exploit
both a genetic-based global search to find the coarse re-
ceptive field combinations and an expectation guided iter-
ative (EGI) local search to get the refined combinations, as
shown in Fig. 2. Specifically, we follow the MS-TCN [10]
to use dilation rates to determine layers’ receptive fields.
A genetic-based global search scheme is proposed to find
coarse combinations within a sparsely sampled search space
at an affordable cost. The global search discovers var-
ious combinations that achieve even better performance
than human designings but have completely different pat-
terns. Based on the global-searched coarse combinations,
we propose the local search to determine fine-grained di-
lation rates. Our proposed convolutional weight-sharing
scheme enforces learned dilation weights to approximate
the probability mass distribution for calculating the expec-
tation of dilation rates. The expectation guided searching
transfer the discrete dilation rates into a distribution, allow-
ing fine-grained dilation rates searching. With an iteratively
searching process, the local search gradually finds more ef-

fective fine-grained receptive field combinations with low
cost. Our proposed global-to-local search scheme can be
plugged into existing models, surpassing human-designed
structures with impressive performance gain. In summary,
we make two major contributions:

• The expectation guided iterative local search scheme
enables searching fine-grained receptive field combi-
nations in the dense search space.

• The global-to-local search discovers effective recep-
tive field combinations with better performance than
hand-designed patterns.

2. Related Work
2.1. Action Segmentation

Many approaches have been proposed for modeling de-
pendencies for action segmentation. Early works [11–13]
mostly model the changing state of appearance and actions
with sliding windows [1, 21, 41]. Thus they mainly focus
on short-term dependencies. Capturing both short-term and
long-term dependencies then gradually becomes the focus
of action segmentation.

Sequential Model. Sequential models capture long-short
term dependencies in an iterative form. Vo and Bobick [53]
apply the Bayes network to segment actions represented
with the stochastic context-free grammar. Tang et al. [52]
use a hidden Markov model to model transitions between
states and durations. Later, hidden Markov models are com-
bined with context-free grammar [23], Gaussian mixture
model [24], and recurrent networks [25, 40] to model long-
term action dependencies. Cheng et al. [5] apply the se-
quence memorizer to capture long-range dependencies in
visual words learned from the video. However, these se-
quential models are inflexible in parallel modeling long-
term dependencies and usually suffer from information for-
getting [10, 31].

Multi-stream Architecture. Some researchers [8, 39, 47,
48] utilize multi-stream models to model dependencies
from both the long and short term. Richard and Gall em-
ploy [39] dynamic programming to inference models com-
posed of length model, language model, and action classi-
fier. Singh et al. [47] learn short video chunks represen-
tation with a two-stream network and pass these chunks
to a bi-directional network to predict action segmentation
results sequentially. A three-stream architecture is pro-
posed in [48], which contains egocentric cues, spatial and
temporal streams. Tricornet [8] utilizes a hybrid temporal
convolutional and recurrent network to capture local mo-
tion and memorize long-term action dependencies. Cou-
pledGAN [17] uses a GAN model to utilize multi-modal
data to better model human actions’ evolution. Capturing
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long-short term information with multiple streams increases
the computational redundancy.

Temporal Convolutional Network. Recently, temporal
convolutional networks (TCN) are introduced to model de-
pendencies of different ranges within a unified structure by
adjusting receptive fields and can process long videos in
parallel. Lea et al. [26] propose the encoder-decoder style
TCN for action segmentation to capture long-range tem-
poral patterns and apply the dilated convolution to enlarge
the receptive field. TDRN [28] further introduces the de-
formable convolution to process the full-resolution residual
stream and low-resolution pooled stream. MS-TCN [10,31]
utilizes multi-stage dilated TCNs with hand-designed dila-
tion rate combinations to capture information from various
temporal receptive fields. However, the adjustment of re-
ceptive fields still relies on human design, which may not be
appropriate. Our proposed efficient receptive field combi-
nations searching scheme can automatically discover more
efficient structures, improving these TCN based methods.

Complementary Techniques. Instead of capturing long-
term and short-term information, some works [9, 54] fur-
ther improve the action segmentation performance with
boundary refinement. Li et al. [9] utilize an iterative train-
ing procedure with transcript refinement and soft boundary
assignment. Wang et al. [54] leverage semantic bound-
ary information to refine the prediction results. Other re-
searchers focus on action segmentation under the weakly
supervised [9, 24, 40] or unsupervised [45] settings. These
works still rely on the efficient TCN to model the action
dependencies, thus complementing the proposed method.

2.2. Network Architecture Search

The genetic algorithm [36] has achieved remarkable per-
formance on a wide range of applications. Many genetic-
based methods are recently introduced for the neural net-
works architecture search of vision tasks [33,35,38,51,55].
An evolutionary coding scheme is proposed in Genetic
CNN [55] to encode the network architecture to a binary
string. A hierarchical representation is presented by Liu et
al. [33] to constrain the search space. Real et al. [38] regu-
larize the evolution by an age property selection operation.
Sun et al. [51] introduce a variable-length encoding method
for effective architecture designing. However, the genetic
algorithm requires the training of each candidate, consum-
ing too much computational cost when faced with a huge
search space.

Differentiable architecture search [34] saves the train-
ing time by introducing a large network containing sub-
networks with different searching options. The importance
of searched blocks is determined by gradient backpropa-
gation [43]. This differentiable search idea is further ex-
tended [56] to deal with semantic segmentation [32] and

other tasks beyond image classification [2]. However, these
network architecture search methods are designed for find-
ing a limited number of operations such as convolution,
ReLU, batch normalization, short connection, etc. Thus,
they cannot handle the huge receptive field combinations
search space. In this paper, we propose a global search to
handle the huge search space with sparse sampling. The
expectation guided iterative local search then transfers the
sparse search space of receptive fields into the dense one for
fine-level searching.

3. Method
The pipeline of our proposed global-to-local search

method has two components: (i) a genetic-based global
search algorithm that produces coarse but competitive com-
binations of the receptive fields; (ii) an expectation guided
iterative local search scheme that locally refines the global-
searched coarse structures.

3.1. Description

Our objective is to efficiently search for optimal recep-
tive field combinations for the given dataset. The receptive
field can be represented with multiple forms, such as the
dilation rate, kernel size, pooling size, stride, and the stack
number of layers. In this work, we mainly follow the MS-
TCN [10] to formulate the receptive fields using the com-
binations of dilation rates in layers and propose to evolve
these combinations during the searching process. Note that
other receptive field representations can also be applied to
the proposed global-to-local search with some minor adjust-
ments.

Suppose a TCN has L convolutional layers and D =
{d1, d2, ..., dN} is the possible dilation-rates/receptive-
fields in each layer. The combination of receptive fields is
represented with C = {c1, ..., cl, ..., cL}, where l ∈ [1, L]
is the index of layers with dilated convolutions, and cl ∈ D
is the receptive field of each layer. There are |D|L possible
combinations of receptive fields, i.e., the possible receptive
field combinations in MS-TCN [10] is 102440 when dila-
tion rates ranging from 1 to 1024. Directly searching for
effective combinations in such a large search space is im-
practical. We thus decompose the searching process into the
global and local search to find the combination in a coarse-
to-fine manner.

3.2. Global Search

The objective of the global search is to find the coarse
receptive field combinations with affordable cost. There-
fore, we reduce the search space by sparsely sampling the
dilation rates within layers. Multiple sparse discrete sam-
pling strategies such as uniform sampling, gradually sparse
sampling, and gradually dense sampling can be applied
to sparse the search space. A gradually sparse sampling
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Figure 3. Illustration of one iteration in our genetic-based global search algorithm.

scheme from small to large dilation rates is appropriate for
the action segmentation task. Because small receptive fields
benefit the extraction of precise local details while large re-
ceptive fields contribute to coarse long-term dependencies
of video sequences. Therefore we formulate the receptive
field space in global search as:

Dg = {di = ki, i ∈ [0, 1, · · ·T ]}, (1)

where k is the controller of the search space sparsity, and
T determines the largest available receptive field. With the
same maximum receptive field, |Dg| � |D|. The search
space is greatly reduced. i.e., when set k = 2, and set the
maximum receptive field to 1024 as in MS-TCN, the search
space is reduced from 102440 to 1140.

However, the reduced space of receptive field combina-
tions can still be huge, unaffordable for a brute force search.
We propose a genetic algorithm [36] based method to find
coarse combinations that are competitive or even better than
human designing. We illustrate one iteration of our pro-
posed genetic-based global search in Fig. 3. We now detail
the selection, crossover, mutation process within our pro-
posed global search method.

Selection. The population of receptive field combinations
can be described as a group of candidate structures P =
{Ci, i ∈ [1,M ]}, where Ci is the candidate structure in the
global search space, and M is the number of individuals in
the population. The selection operation selects individuals
to be kept in P based on the estimated performance of each
structure Ci:

E(Ci) = f(V |Ci, θn), (2)

where f(·) is the evaluation metric detailed in Sec. 4, and
V , θn are the cross-validation set and model trained with
n epochs, respectively. Each Ci will be selected for the
following crossover operation with probability:

p(Ci) =
E(Ci)∑M
i E(Ci)

. (3)

Crossover. This operation generates new samples of re-
ceptive field combinations. Every two combinations in the
population are exchanged to born new patterns of the com-
bination while maintaining the local structures. Instead of

randomly exchanging individual points, we choose to ex-
change random segments of the receptive field combina-
tion since the representation ability lies in the combination
patterns. Specifically, we randomly choose two anchors
and exchange combinations within anchors to generate new
samples.

Mutation. The mutation operation avoids getting stuck in
local optimal results by choosing an individual with proba-
bility pm and randomly changing a value within the selected
combination.

Algorithm 1 Global Search.
Input: Iterations N , training epoch n, randomly initialized
P , mutation probability pm, and population size M ;
for iter in [1, N ] do

Select individuals for crossover based on Eqn. (3);
Crossover for every two selected individuals;
Mutate the new individuals with probability pm;
Training each individual with n epochs;
Select the top M individuals based on Eqn. (2) as the

new population P ;
end for
return P .

The global search process can be summarised as Algo-
rithm (1), and a simple example is given in Fig. 3. With
the coarse search space and the global search method, we
can find receptive field combinations with different pat-
terns than human-designed structures while having similar
or even better performance. We further propose the local
search to locally find the more efficient combinations on top
of the global-searched structures. We show in Tab. 5 that
local search heavily relies on the initial structure, revealing
the importance of global search.

3.3. Expectation Guided Iterative Local Search

The local search aims to find more efficient receptive
field combinations in a fine-grained level at a low cost. A
naive approach is to sample finer-grained dilation rates near
the initial dilation rate searched by the global search and
apply existing DARTS algorithms [2, 34] to choose for the
proper one. However, even with the good initial structure
provided by the global search, the available range of fine-
grained dilation rates is still large. Existing search algo-

4



d0 d1 d2 d3 dS

α0 α1 α2 α3 αS

+

Figure 4. The approximated probability mass function of dilation
rates is determined by the multi-dilated convolutional layer with
shared weights.

rithms are designed for searching sparse operators with sev-
eral choices in each layer, thus cannot handle dilation rates
with hundreds of choices. While too sparsely sampling is in
conflict with our goal of searching for the finer-grained re-
ceptive fields. Also, DARTS methods search operators with
different functionality [34], while the searching on receptive
fields only contains one functional dimension. Different
subsets in the dataset sometimes prefer different searching
options. Searching within a functional dimension enables
us to determine dilation rates with the expectation of all sub-
sets instead of choosing the option required by one majority
subset. Therefore, we propose an expectation guided itera-
tive (EGI) local search scheme to determine the finer-level
dilation rates on top of the global-searched structures.

Suppose that the receptive field of a layer l is Dl. For
a dataset, once we get the probability mass distribution of
dilation rates around Dl, we can obtain the expected dila-
tion rate with the weighted average of the dilation rates re-
quired by all subsets. However, the probability mass of di-
lation rates for the dataset is inaccessible. Therefore, we
utilize a convolutional weight-sharing scheme to enforce
the learned importance weights of dilation rates to approx-
imate the probability mass. To get the approximated prob-
ability mass function of dilation rates, we first evenly sam-
ple S dilation rates near the initial dilation rate Dl within
the range of [Dl ± ∆Dl]. The set of available dilation
rates within this layer is Tl = {di|i ∈ [1, S]}, where
di = Dl − ∆Dl + (i − 1) · 2∆Dl/(S − 1). ∆Dl is the
finer controller of the search space that is smaller than the
sampling sparsity in the global search.

With the dilation rates set Tl, we propose a multi-dilated
layer composed of a shared convolutional weight and multi-
ple branches with different dilation rates, as shown in Fig. 4.
Each branch has a unique weight to determine the impor-
tance of the dilation rate. During the searching process, the
weights are updated with the gradient backpropagation to
reflect the receptive field requirements of the dataset. Ex-
isting DARTS schemes [34, 56] have separated weights in

Algorithm 2 Expectation Guided Iterative Local Search.
Input: Iterations N , initial receptive fields D;

Initialize model using given D;
for iter in [1, N ] do

Construct Tl for each layer based on D;
Train model to get the PMF in Eqn. (4);
Obtain new dilation rates through Eqn. (6);
Update D;

end for
return local-searched D.

Top

Bottom
Figure 5. Visualization of receptive field combinations changes
during the EGI local searching process.

each branch. In contrast, our convolutional weight-sharing
strategy forces the model to learn the approximated prob-
ability of receptive fields and ease the model convergence.
Specifically, the dilation rates in the multi-dilated convo-
lutional layer are set to Tl. Apart from the shared con-
volutional θ, the multi-dilated layer contains weight W =
{w1, w2, ..., wi, i ∈ [1, S]} to determine the importance of
the dilation rates. W is unbounded, thus cannot be directly
used to determine the dilation rates probability. Therefore,
we propose a normalization function to get the approxi-
mated probability mass function PMF (di) of dilation rates
through normalizing wi:

PMF (di) = αi =
|wi|∑S
i |wi|

. (4)

With the probability mass function, given the input feature
x, the output y of the multi-dilated convolutional layer can
be written as follows:

y =

S∑
i

αiΨ(x, di, θ), (5)

where Ψ(x, di, θ) is the convolutional operation with the
shared weight θ and dilation rate di. αi is updated with
gradient optimization. Once we get the probability mass
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function, the newly searched dilation rate D
′

l is obtained
with the expectation:

D
′

l = b
∑
di∈Tl

PMF (di) · dic. (6)

To reduce the computational cost during the local search
process, we reduce the number of dilation rates in T to 3
by default and apply the iterative search scheme to find the
more suitable dilation rate based on the D

′

l from the last
iteration. The local search process can be summarised as
Algorithm (2). Furthermore, Fig. 5 visualizes the dilation
rates changes during the local searching process.

4. Experiments
We introduce the implementation details, verify the

effectiveness, and analyze the property of our proposed
global-to-local search scheme in this section.

4.1. Implementation Details
Structure Searching. Our proposed searching method is
implemented with the PyTorch framework [37]. In the
global search stage, we set the total iterations N = 100,
k = 2 in Eqn. (1), the initialized population size M = 50,
and mutation probability pm = 0.2. The T in Eqn. (1) is set
to 10, indicating the maximum dilation rate of the global
search space is 1024. We observe that 5 epochs of training
can reflect the structure performance, and therefore models
are trained with 5 epochs for evaluation. In the EGI local
search stage, ∆Dl and S are set to be 0.1Dl and 3, respec-
tively. We train the model for 30 epochs during local search
and update the structure every 3 epochs.

Datasets. Following [4, 10, 31, 54], we evaluate our
proposed method on three popular action segmentation
datasets: Breakfast [22], 50Salads [50], and GTEA [13].
The details of the three datasets are summarised in Tab. 2.
As far as we know, the Breakfast dataset is the largest
public dataset for action segmentation task, which has a
larger number of categories and samples compared with the
other two datasets. So we perform our ablations mainly
on the Breakfast dataset if not otherwise stated. Following
common settings [4, 10, 31, 54], we perform 4-fold cross-
validation for the Breakfast and GTEA dataset and 5-fold
cross-validation for the 50Salads dataset.

Evaluation Metrics. We follow previous works [4,10,31,
54] to use the frame-wise accuracy (Acc), segmental edit
score (Edit) [26], and segmental F1 score [29] at tempo-
ral intersection over union with thresholds 0.1, 0.25, 0.5
(F@0.1, F@0.25, F@0.5) as our evaluation metrics.

4.2. Performance Evaluation
Global2Local Search. Our proposed global-to-local
search aims to find new combinations of receptive fields bet-
ter than human designings. We mainly take MS-TCN [10]

Global Search
Random Search

F@
0.

1

Iterations

Figure 6. Performance comparison between our proposed genetic-
based search and random search during the global search stage.

as our baseline architecture to perform the global-to-local
search. When testing the MS-TCN on the Breakfast dataset,
we train all models with the batch size 8 to save training
time. The reproduced results shown in Tab. 1 indicates that
large batch size achieves much better performance. Tab. 1
shows that global-to-local searched structures achieve con-
siderable performance improvements than human-designed
baselines, i.e., the searched structure surpasses the repro-
duced baseline with 5.8% in terms of F@0.1. The global-
to-local search focuses on the receptive field combinations,
thus can cooperate with existing SOTA action segmentation
methods to further improve their performance. Since our
proposed global-to-local search scheme is model-agnostic,
the training settings for model evaluation, i.e., training
epochs, optimizer, learning rate, batch size, keep the same
with the cooperation methods [4, 31, 54]. As shown in
Tab. 3, on the large scale BreakFast dataset, global-to-
local search consistently boosts the performance of MS-
TCN++ [31], BCN [54], and SSTDA [4]. Also, we give
comparisons on two small scale datasets, 50Salads and
GTEA dataset in Tab. 10 and supplementary, proving the
effectiveness of our proposed global-to-local search.

Global Search. Global search reduces the computational
cost with the sparse search space and our proposed genetic-
based searching scheme. Fig. 6 shows the performance
change of models during the global searching process.
Compared with the random search, the genetic-based global
search convergences faster. The standard division of model
performance searched by genetic-based search is smaller
than the random search, showing the stability of our pro-
posed search scheme. The visualized well-performed
global-searched structures shown in the supplementary
prove that the global search discovers various structures
completely different from human-designed patterns. Tab. 5
also shows that the local search heavily relies on global-
searched structures to achieve better performance.

Local Search. Based on the global-searched structures,
our proposed EGI local search aims to fine-tune the re-
ceptive field in a finer search space. Compared with the
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BreakFast 50Salads GTEA
F@{10,25,50} Edit Acc F@{10,25,50} Edit Acc F@{10,25,50} Edit Acc

MS-TCN [10] 52.6 48.1 37.9 61.7 66.3 76.3 74.0 64.5 67.9 80.7 87.5 85.4 74.6 81.4 79.2
Reproduce 69.1 63.7 50.1 69.9 67.3 78.8 75.3 64.4 71.4 77.8 87.1 83.6 70.4 81.1 75.5
Global 72.2 66.0 51.5 71.0 69.2 79.3 76.5 68.1 71.9 81.2 89.1 87.1 74.4 84.2 78.6
Local 74.9 69.0 55.2 73.3 70.7 80.3 78.0 69.8 73.4 82.2 89.9 87.3 75.8 84.6 78.5

Table 1. Performance of the global and local searching stages of our global-to-local searching method using MS-TCN [10] as the baseline.

#Cls #Vid #Frame Scene

GTEA [13] 11 28 1115 daily activities
50Salads [50] 17 50 11552 preparing salads
BreakFast [22] 48 1712 2097 cooking breakfast

Table 2. Details of three action segmentation datasets. #Cls and
#Vid are the numbers of classes and videos, respectively. #Frame
is the average frames of videos.

BreakFast F@0.1 F@0.25 F@0.5 Edit Acc

ED-TCN [26] - - - - 43.3
HTK (64) [23] - - - - 52.0
TCFPN [9] - - - - 56.3
GRU [40] - - - - 60.6
GTRM [20] 57.5 54.0 43.3 58.7 65.0
MS-TCN [10] 52.6 48.1 37.9 61.7 66.3
Ours-MS-TCN 74.9 69.0 55.2 73.3 70.7
MS-TCN++ [31] 64.1 58.6 45.9 65.6 67.6
Ours†-MS-TCN++ 72.4 66.8 53.5 70.2 69.6
BCN [54] 68.7 65.5 55.0 66.2 70.4
Ours†-BCN 72.5 69.9 60.2 69.0 72.9
SSTDA [4] 75.0 69.1 55.2 73.7 70.2
Ours‡-SSTDA 76.3 69.9 54.6 74.5 70.8

Table 3. Cooperating with SOTA methods. We perform the whole
search pipeline based on MS-TCN [10]. Because of the limited
computing resources, we only perform the EGI local search on
MS-TCN++ [31] and BCN [54], denoted by †. SSTDA [4] uses
MS-TCN [10] as a backbone, so we directly add our searched
structure to SSTDA, denoted by ‡.

BreakFast F@0.1 F@0.25 F@0.5 Edit Acc

DARTS 73.8 67.6 52.8 72.8 69.3
Ours 74.9 69.0 55.2 73.3 70.7

Table 4. Performance of our proposed EGI local search and previ-
ous DARTS [34].

DARTS [34] method that only supports several search op-
tions, the EGI local search iteratively finds the accurate dila-
tions in a dense space, obtaining structures with better per-
formance, as shown in Tab. 4. As shown in Tab. 6, EGI
local search is insensitive to the number of sampling dila-
tion rates S, as it searches dilation rates with the expec-
tation. Tab. 5 shows that the EGI local search can boost
the performance of randomly generated, human-designed,
and global-searched structures. Still, the performance of

BreakFast F@0.1 F@0.25 F@0.5 Edit Acc

random 67.7 61.8 48.3 68.4 67.0
random + local 73.6 67.8 53.7 72.3 69.9
baseline [10] 69.1 63.7 50.1 71.0 69.2
baseline + local 74.1 68.5 55.3 72.3 70.2
global 72.2 66.0 51.8 71.5 69.4
global + local 74.9 69.0 55.2 73.3 70.7

Table 5. Performance of the EGI local search initialized by differ-
ent structures.

BreakFast F@0.1 F@0.25 F@0.5 Edit Acc

S = 2 74.8 68.9 55.0 73.4 70.4
S = 3 74.9 69.0 55.2 73.3 70.7
S = 4 74.9 68.8 55.1 73.3 70.9

Table 6. Ablation of the value of S in the EGI local search.

BreakFast F@0.1 F@0.25 F@0.5 Edit Acc

sigmoid 72.7 66.9 52.7 71.8 69.4
softmax 73.2 67.2 52.0 71.6 69.7
Eqn. (4) 74.9 69.0 55.2 73.3 70.7

Table 7. Ablation of possible probability mass functions in EGI
local search.

the local-searched structures is related to the initial struc-
tures, as local search focuses on searching for receptive
fields within a finer local search space. We visualize the
searching process of the iterative local search in Fig. 5. The
dilation rates for each layer gradually converge to a suit-
able state during the iterative searching process. Tab. 7 veri-
fies different ways to get the approximated probability mass
function PMF (di) from weight w. Eqn. (4) is more supe-
rior than the sigmoid function and softmax function as it
maintains the probability distribution while the other two
functions change the distribution non-linearly.

4.3. Observations

In this section, we try to exploit the common knowledge
contained in the global-to-local searched structures.

Connections between Receptive Fields and Data. We
want to know if receptive field combinations vary among
data. Therefore, we evaluate the generalization ability of
the searched structures on the subsets of the same dataset
and different datasets, respectively. Within the BreakFast
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dilations of one structure, which contains four stages.
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Figure 8. Visualization of average dilation rates in each stage and
the range of performance of global-searched structures.

dataset, we perform the global-to-local search on one fold
and then evaluate the searched structures on other folds.
Tab. 9 shows that there is almost no obvious performance
gap on different folds, indicates that receptive field combi-
nations almost have no difference within a dataset. How-
ever, when search and evaluate structures across different
datasets, different structures searched on different datasets
have a large performance gap as shown in Tab. 8. We can
conclude that different data distribution will result in dif-
ferent receptive field combinations. We visualize the struc-
tures searched from different datasets in Fig. 7. The struc-
ture searched on 50Salads dataset trends to have larger re-
ceptive fields, while the structure searched on the GTEA
dataset has smaller receptive fields. The number of video
frames shown in Tab. 2 is positively correlated with recep-
tive fields. Longer videos need larger receptive fields to cap-
ture the context. We also show more searched structures in
the supplementary.

Receptive Fields for Different Stages. Our global-to-
local search is based on MS-TCN. MS-TCN contains four
stages, and all stages share the same receptive field combi-
nation in human designing. The visualized searched struc-
tures shown in Fig. 7 demonstrate that different stages have
different receptive field combinations, which conflicts with
human designing. We further count the average receptive
fields of each stage among all individuals. The range of
performance and the average dilation rates of each stage are
shown in Fig. 8. The average dilation rate in the first stage
of MS-TCN tends to be large on high-performance struc-

Arch-50Salads Arch-GTEA Arch-BF

50Salads 75.4 68.8 72.6
GTEA 82.4 88.9 85.6
BF 75.1 72.5 76.4

Table 8. Cross-validation performance (F@0.1) of searched struc-
tures among different datasets. Arch-dataset indicates the structure
is searched on which dataset.

BreakFast Arch-1 Arch-2 Arch-3 Arch-4

fold1 76.4 76.3 76.2 75.7
fold2 74.1 75.3 75.1 74.6
fold3 76.1 76.6 76.1 75.4
fold4 71.7 72.1 72.0 71.8

Table 9. Cross-validation performance (F@0.1) of searched struc-
tures among different folds of the BreakFast dataset. Arch-n
means the structure is searched on fold n.

50Salads F@0.1 F@0.25 F@0.5 Edit Acc

Spatial CNN [27] 32.3 27.1 18.9 24.8 54.9
Bi-LSTM [47] 62.6 58.3 47.0 55.6 55.7
Dilated TCN [26] 52.2 47.6 37.4 43.1 59.3
ST-CNN [27] 55.9 49.6 37.1 45.9 59.4
TUnet [42] 59.3 55.6 44.8 50.6 60.6
ED-TCN [26] 68.0 63.9 52.6 59.8 64.7
TResNet [18] 69.2 65.0 54.4 60.5 66.0
TricorNet [8] 70.1 67.2 56.6 62.8 67.5
TRN [28] 70.2 65.4 56.3 63.7 66.9
TDRN [28] 72.9 68.5 57.2 66.0 68.1
MS-TCN [10] 76.3 74.0 64.5 67.9 80.7
Ours-MS-TCN 80.3 78.0 69.8 73.4 82.2

Table 10. Comparison with SOTA methods on the 50Salads
dataset.

tures. In contrast, the average dilation rate in the third stage
of MS-TCN is relatively small on high-performance struc-
tures. We assume that the first stage of MS-TCN requires
large receptive fields to get the long-term context for coarse
prediction, while the following stages need small receptive
fields to refine the results locally.

5. Conclusion

We propose a global-to-local search scheme to search
for effective receptive field combinations in a coarse-to-fine
scheme. The global search discovers effective receptive

8



field combinations with better performance than hand de-
signings but completely different patterns. The expectation
guided iterative local search scheme enables searching fine-
grained receptive field combinations in the dense search
space. Our proposed global-to-local search can be plugged
into existing action segmentation methods to achieve SOTA
performance.
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