
Human-like Controllable Image Captioning with Verb-specific Semantic Roles

Long Chen2,3∗ Zhihong Jiang1∗ Jun Xiao1† Wei Liu4

1Zhejiang University 2Tencent AI Lab 3Columbia University 4Tencent Data Platform
zjuchenlong@gmail.com, {zju jiangzhihong, junx}@zju.edu.cn, wl2223@columbia.edu

CS:
Cap: a man riding a wave on a 
surfboard.

CS:
Cap: a man riding a wave on a 
surfboard in his hand in the sky.

CS: level 3 (15-19)
Cap: a group of people sitting next 
to each other in front of a tree.

CS: level 4 (20-25)
Cap: a group of men and two boys 
are standing in front of a refrigerator 
in front of a house.

CS: sit; Arg1, Arg2
Cap: a man sitting on a bench.

CS: sit; Arg1, Arg2, LOC

CS: read; <Arg0,	2>, Arg1
Cap: a man on a playground 
reading a book.

CS: read; Arg0, Arg1, <LOC,	2>
Cap: a man reading a book on a 
bench in a park.

Cap: a man sitting on a bench next 
to a playground.

(a) Content-controlled Signal (b) Structure-controlled Signal

(c) Verb-specific Semantic Roles 

✓

✗

✓

✗
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✓
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Figure 1: The CS and Cap in each sample denote the control signal and generated caption, respectively. (a): The captions are generated by
model SCT [16], which uses a set of visual regions as control signals. When control signals don’t meet the event-compatible requirement
(e.g., objects hand and sky), SCT generates lower quality captions (red cross). (b): The captions are generated by model LaBERT [19],
which uses different length-levels as control signals. When control signals don’t meet the sample-suitable requirement (e.g., level 4), the
LaBERT generates lower quality captions. (c): The captions are generated by our framework with VSR as control signals. For brevity, we
abbreviate < role,1 > to role in all samples. Arg and LOC denote “argument” and “location”, respectively. For verb sit, Arg1 and
Arg2 are “thing sitting” and “sitting position”, respectively. For verb read, Arg0 and Arg1 are “reader” and “thing read”, respectively.

Abstract

Controllable Image Captioning (CIC) — generating im-
age descriptions following designated control signals — has
received unprecedented attention over the last few years.
To emulate the human ability in controlling caption gener-
ation, current CIC studies focus exclusively on control sig-
nals concerning objective properties, such as contents of
interest or descriptive patterns. However, we argue that al-
most all existing objective control signals have overlooked
two indispensable characteristics of an ideal control sig-
nal: 1) Event-compatible: all visual contents referred to in
a single sentence should be compatible with the described
activity. 2) Sample-suitable: the control signals should be
suitable for a specific image sample. To this end, we pro-
pose a new control signal for CIC: Verb-specific Seman-
tic Roles (VSR). VSR consists of a verb and some semantic

∗ denotes equal contributions, † denotes the corresponding author.

roles, which represents a targeted activity and the roles of
entities involved in this activity. Given a designated VSR, we
first train a grounded semantic role labeling (GSRL) model
to identify and ground all entities for each role. Then, we
propose a semantic structure planner (SSP) to learn human-
like descriptive semantic structures. Lastly, we use a role-
shift captioning model to generate the captions. Extensive
experiments and ablations demonstrate that our framework
can achieve better controllability than several strong base-
lines on two challenging CIC benchmarks. Besides, we can
generate multi-level diverse captions easily. The code is
available at: https://github.com/mad-red/VSR-guided-CIC.

1. Introduction
Image captioning, i.e., generating fluent and meaningful

descriptions to summarize the salient contents of an image,
is a classic proxy task for comprehensive scene understand-
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ing [21]. With the release of several large scale datasets and
advanced encoder-decoder frameworks, current captioning
models plausibly have already achieved “super-human” per-
formance in all accuracy-based evaluation metrics. How-
ever, many studies have indicated that these models tend to
produce generic descriptions, and fail to control the caption
generation process as humans, e.g., referring to different
contents of interest or descriptive patterns. In order to en-
dow the captioning models with human-like controllability,
a recent surge of efforts [16, 10, 19, 78, 48, 77, 27, 20] re-
sort to introducing extra control signals as constraints of the
generated captions, called Controllable Image Captioning
(CIC). As a byproduct, the CIC models can easily generate
diverse descriptions by feeding different control signals.

Early CIC works mainly focus on subjective control sig-
nals, such as sentiments [41], emotions [42, 22], and per-
sonality [14, 54], i.e., the linguistic styles of sentences. Al-
though these stylized captioning models can eventually pro-
duce style-related captions, they remain hard to control the
generation process effectively and precisely. To further im-
prove the controllability, recent CIC works gradually put a
more emphasis on objective control signals. More specifi-
cally, they can be coarsely classified into two categories: 1)
Content-controlled: the control signals are about the con-
tents of interest which need to be described. As the example
shown in Figure 1 (a), given the region set ( , , ) as a
control signal, we hope that the generated caption can cover
all regions (i.e., man, wave, and surfboard). So far,
various types of content-controlled signals have been pro-
posed, such as visual relations [27], object regions [16, 35],
scene graphs [10, 78], and mouse trace [48]. 2) Structure-
controlled: the control signals are about the semantic struc-
tures of sentences. For instance, the length-level [19], part-
of-speech tags [20], or attributes [79] of the sentence (cf.
Figure 1 (b)) are some typical structure-controlled signals.

Nevertheless, all existing objective control signals (i.e.,
both content-controlled and structure-controlled) have over-
looked two indispensable characteristics of an ideal control
signal towards “human-like” controllable image captioning:
1) Event-compatible: all visual contents referred to in a
single sentence should be compatible with the described ac-
tivity. Imaging how humans describe images — our brains
always quickly structure a descriptive pattern like “STH DO
STH AT SOMEPLACE” first, and then fill in the detailed de-
scription [56, 46, 30, 71], i.e., we have subconsciously made
sure that all the mentioned entities are event-compatible
(e.g., man, wave, surfboard are all involved in activity
riding in Figure 1 (a)). To further see the negative impact
of dissatisfying this requirement, suppose that we deliber-
ately utilize two more objects (hand and sky, i.e., , )
as part of the control signal, and the model generates an
incoherent and illogical caption. 2) Sample-suitable: the
control signals should be suitable for the specific image

Agent Food Container Tool

child pancake plate fork

Agent Food Container Tool

women salad bowl fork

EATING

Figure 2: Two image
examples of a verb and
its semantic roles. The
verb eating captures
the scope of the activ-
ity, and agent, food,
container, tool are
all reasonable semantic
roles for this activity.

sample. By “suitable”, we mean that there do exist rea-
sonable descriptions satisfying the control signals, e.g., a
large length-level may not be suitable for an image with a
very simple scene. Unfortunately, it is always very diffi-
cult to decide whether a control signal is sample-suitable in
advance. For example in Figure 1 (b), although the two con-
trol signals (i.e., length-levels 3 and 4) are quite close, the
quality of respectively generated captions varies greatly.

In this paper, we propose a new event-oriented objective
control signal, Verb-specific Semantic Roles (VSR), to meet
both event-compatible and sample-suitable requirements si-
multaneously. VSR consists of a verb (i.e., predicate [8])
and some user-interested semantic roles [31]. As shown in
Figure 2, the verb captures the scope of a salient activity in
the image (e.g., eating), and the corresponding semantic
roles1 (e.g., agent, food, container, and tool) cat-
egorize how objects participate in this activity, i.e., a child
(agent) is eating (activity) a pancake (food) from
a plate (container) with a fork (tool). Thus, VSR
is designed to guarantee that all the mentioned entities are
event-compatible. Meanwhile, unlike the existing structure-
controlled signals which directly impose constraints on the
generated captions, VSR only restricts the involved seman-
tic roles, which is theoretically suitable for all the images
with the activity, i.e., sample-suitable.

In order to generate sentences with respect to the desig-
nated VSRs, we first train a grounded semantic role labeling
(GSRL) model to identify and ground all entities for each
role. Then, we propose a semantic structure planner (SSP)
to rank the given verb and semantic roles, and output some
human-like descriptive semantic structures, e.g., Arg0reader
– read – Arg1thing – LOC in Figure 1 (c). Finally, we com-
bine the grounded entities and semantic structures, and use
an RNN-based role-shift captioning model to generate the
captions by sequentially focusing on different roles.

Although these are no available captioning datasets with
the VSR annotations, they can be easily obtained by off-
the-shelf semantic role parsing toolkits [53]. Extensive ex-
periments on two challenging CIC benchmarks (i.e., COCO

1We use PropBank-style annotations of semantic roles (e.g., Arg0,
Arg1) in all experiments (cf. Figure 1). The FrameNet-style annotations
of semantic roles (e.g., Agent) here are just for a more intuitive illustra-
tion. In the PropBank-style annotations, Arg denotes “argument”, MNR de-
notes “manner”, DIR denotes “directional”, and LOC denotes “location”.
We leave more details in the supplementary material.
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Entities [16] and Flickr30K Entities [47]) demonstrate that
our framework can achieve better controllability given des-
ignated VSRs than several strong baselines. Moreover, our
framework can also realize diverse image captioning and
achieve a better trade-off between quality and diversity.

In summary, we make three contributions in this paper:
1. We propose a new control signal for CIC: Verb-specific

Semantic Roles (VSR). To the best of our knowledge,
VSR is the first control signal to consider both event-
compatible and sample-suitable requirements2.

2. We can learn human-like verb-specific semantic struc-
tures automatically, and abundant visualization exam-
ples demonstrate that these patterns are reasonable.

3. We achieve state-of-the-art controllability on two chal-
lenging benchmarks, and generate diverse captions by
using different verbs, semantic roles, or structures.

2. Related Work
Controllable Image Captioning. Compared with conven-
tional image captioning [63, 68, 9, 25, 13], CIC is a more
challenging task, which needs to consider extra constraints.
Early CIC works are mostly about stylized image caption-
ing, i.e., constraints are the linguistic styles of sentences.
According to the requirements of parallel training samples,
existing solutions can be divided into two types: models
using parallel stylized image-caption data [41, 11, 54, 1]
or not [22, 42]. Subsequently, the community gradually
shifts the emphasis to controlling described contents [16,
77, 27, 10, 78, 48, 35] or structures [20, 19, 75, 76] of the
sentences. In this paper, we propose a novel control signal
VSR, which is the first control signal to consider both the
event-compatible and sample-suitable requirements.
Diverse and Distinctive Image Captioning. Diverse im-
age captioning, i.e., describing the image contents with di-
verse wordings and rich expressions, is an essential property
of human-like captioning models. Except from feeding dif-
ferent control signals to the CIC models, other diverse cap-
tioning methods can be coarsely grouped into four types: 1)
GAN-based [17, 52, 32]: they use a discriminator to force
the generator to generate human-indistinguishable captions.
2) VAE-based [65, 7]: the diversity obtained with them is
by sampling from a learned latent space. 3) RL-based [39]:
they regard diversity as an extra reward in the RL training
stage. 4) BS-based [62]: they decode a list of diverse cap-
tions by optimizing a diversity-augmented objective.

Meanwhile, distinctive image captioning is another close
research direction [18, 60, 37, 36, 64], which aims to gen-

2When using control signals extracted from GT captions, existing con-
trol signals can always meet both requirements and generate reasonable
captions. However, in more general settings (e.g., construct control signals
without GT captions), the form of VSR is more human-friendly, and it is
easier to construct signals which meet both requirements compared with
all existing forms of control signals, which is the main advantage of VSR.

erate discriminative and unique captions for individual im-
ages. Unfortunately, due to the subjective nature of diverse
and distinctive captions, effective evaluation remains as an
open problem, and several new metrics are proposed, such
as SPICE-U [67], CIDErBtw [64], self-CIDEr [66], word
recall [58], mBLEU [52]. In this paper, we can easily gener-
ate diverse captions in both lexical-level and syntactic-level.
Semantic Roles in Images. Inspired from the semantic role
labeling task [6] in NLP, several tasks have been proposed
to label the roles of each object in an activity in an image:

Visual Semantic Role Labeling (VSRL), also called situ-
ation recognition, is a generalization of action recognition
and human-object interaction, which aims to label an image
with a set of verb-specific action frames [73]. Specifically,
each action frame describes details of the activity captured
by the verb, and it consists of a fixed set of verb-specific
semantic roles and their corresponding values. The values
are the entities or objects involved in the activity and the se-
mantic roles categorize how objects participate in the activ-
ity. The current VSRL methods [23, 73, 40, 33, 72, 57, 15]
usually learn an independent action classifier first, and then
model the role inter-dependency by RNNs or GNNs.

Grounded Semantic Role Labeling (GSRL), also called
grounded situation recognition, builds upon the VSRL task,
which requires the models not only to label a set of frames,
but also to localize each role-value pair in the image [49, 55,
70, 23]. In this paper, we use the GSRL model as a bridge
to connect the control signals (VSR) and related regions. To
the best of our knowledge, we are the first captioning work
to benefit from the verb lexicon developed by linguists.

3. Proposed Approach
For human-like controllable image captioning, we first

propose the Verb-specific Semantic Roles (VSR) as the con-
trol signal for generating customized captions. As shown in
Figure 3, we formally represent a control signal VSR as:

VSR = {v,< s1, n1 >, ..., < sm, nm >}, (1)

where v is a verb capturing the scope of a salient activity
in the image (e.g., ride), si is a semantic role of verb v
(e.g., LOC), and ni is the number of interested entities in the
role si. For example, for VSR = {ride, < Arg0,1 >,<
Arg1,1 >,< Loc,2 >}, we hope to generate a caption
which not only focuses on describing the ride activity, but
also contains one entity respectively in the role Arg0rider
and Arg1steed, and two entities in the role LOC. Thus, VSR
can effectively control the amount of information carried in
the whole sentence and each role, i.e., the level of details.

It is convenient to construct VSRs automatically or man-
ually. For the verbs, they can be accurately predicted by an
off-the-shelf action recognition network with a predefined
verb vocabulary. For the verb-specific semantic roles, they

3



ride, <𝐀𝐫𝐠𝟎𝐫𝐢𝐝𝐞𝐫,	1>,
<𝐀𝐫𝐠𝟏𝐬𝐭𝐞𝐞𝐝,	1>,
<LOC,	2	>

G
SR

L

a man riding a horse on the beach next to the water

VSR
(Arg0 – ride – Arg1 – LOC)

S-level SSP
(Arg0	– ride – Arg1 – LOC-2 – LOC-1) 

R-level SSP

Role-shift

𝐀𝐫𝐠𝟎𝐫𝐢𝐝𝐞𝐫 :
𝐀𝐫𝐠𝟏𝐬𝐭𝐞𝐞𝐝:
LOC-1:
LOC-2:

ride

Figure 3: The whole architecture of our proposed VSR-guided CIC model. This framework consists of three components: 1) a GSRL
model to ground the entities for each role; 2) an SSP to learn a semantic structure; 3) a role-shift captioning model to generate the caption.

can be easily retrieved from the verb lexicon such as Prop-
Bank or FrameNet. Then, the users can easily select a sub-
set of roles or an automatic sampling to generate a subset of
roles, and randomly assign the entity number for each role.

Given an image I and a control signal VSR, the control-
lable image captioning model aims to describe I by a tex-
tual sentence y = {y1, ..., yT }, i.e., modeling the probabil-
ity p(y|I,VSR). Inspired from the human habit of describ-
ing images, we decompose this task into two steps: struc-
turing a descriptive pattern and filling in detailed captions:

p(y|I,VSR) = p(y|pattern)p(pattern|I,VSR). (2)

Further, we utilize two sequences S = (sb1, ..., s
b
K) and

R = (r1, ..., rK) to model the descriptive patterns. Specif-
ically, S is a semantic structure of the sentence and each
sbi ∈ S is a sub-role. By “sub-role”, we mean that each
role si ∈ VSR can be divided into ni sub-roles, and when
ni = 1, role si itself is a sub-role. Thus, VSR in Figure 3
can be rewritten as Arg0, Arg1, LOC-1, and LOC-2. R is
a sequence of visual features of the corresponding grounded
entities for each sub-role in S (e.g., ri is the features of vi-
sual regions referring to sbi ). Particularly, for presentation
conciseness, we regard the verb in VSR as a special type
of sub-role, and since there are no grounded visual regions
referring to the verb, we use the global image feature as the
grounded region feature in R. Meanwhile, we use R̃ to
denote a set of all elements in the sequence R. Thus, we
further decompose this task into three components:

p(y|I,VSR) = p(y|S,R)︸ ︷︷ ︸
Captioner

p(S,R|R̃,VSR)︸ ︷︷ ︸
SSP

p(R̃|I,VSR)︸ ︷︷ ︸
GSRL

.

(3)
In this section, we first introduce each component of

the whole framework of the VSR-guided controllable im-
age captioning model sequentially in Section 3.1 (cf. Fig-
ure 3), including a grounded semantic role labeling (GSRL)
model, a semantic structure planner (SSP), and a role-shift
captioning model. Then, we demonstrate the details about
all training objectives and the inference stage in Section 3.2,
including extending from a single VSR to multiple VSRs.

3.1. Controllable Caption Generation with VSR

3.1.1 Grounded Semantic Role Labeling (GSRL)

Given an image I , we first utilize an object detector [50] to
extract a set of object proposals B. Each proposal bi ∈ B is
associated with a visual feature fi and a class label ci ∈ C.
Then, we group all these proposals into N disjoint sets, i.e.,
B = {B1, ...,BN}3, and each proposal setBi consists of one
or more proposals. In this GSRL step, we need to refer each
sub-role in the VSR to a proposal set in B. Specifically, we
calculate the similarity score aij between semantic role si
and proposal set Bj by:

qi =
[
egv; e

g
si ; f̄

]
, aij = Fa(qi, f̄j), (4)

where egv and egsi are the word embedding features of verb v
and semantic role si, f̄ and f̄j represent the average-pooled
visual features of proposal set B and Bj , [;] is a concatena-
tion operation, and Fa is a learnable similarity function4.

After obtaining the grounding similarity scores {aij} be-
tween semantic role si and all proposal sets {Bj}, we then
select the top ni proposal sets with the highest scores as the
grounding results for all sub-roles of si. R̃ in Eq. (3) is the
set of visual features of all grounded proposal sets.

3.1.2 Semantic Structure Planner (SSP)

Semantic structure planner (SSP) is a hierarchical semantic
structure learning model, which aims to learn a reasonable
sequence of sub-roles S. As shown in Figure 3, it consists
of two subnets: an S-level SSP and an R-level SSP.
S-level SSP. The sentence-level (S-level) SSP is a coarse-
grained structure learning model, which only learns a se-
quence of all involved general semantic roles (including the
verb) in VSR (e.g., ride, Arg0rider, Arg1steed and LOC
in Figure 3). To this end, we formulate this sentence-level
structure learning as a role sequence generation task, as long
as we constrain that each output role token belongs to the

3Due to different annotation natures of specific CIC datasets, we group
proposals by different principles. Details are shown in Section 4.2.

4For conciseness, we leave the details in the supplementary material.
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given role set and each role can only appear once. Specifi-
cally, we utilize a three-layer Transformer [59]5 to calucate
the probability of roles p(st|VSR) at each time step t4:

H = Transformerenc
(
{FCa(eiv + eisi)}

)
,

p(st|VSR) = Transformerdec
(
H, eos<t

)
,

(5)

where Transformer∗ are the encoder (enc) and decoder (dec)
of the standard multi-head transformer. eiv and eisi are the
word embedding features of verb v and semantic role sj ,
respectively. FCa is a learnable fc-layer to obtain the em-
bedding of each input token. eos<t

is the sequence of embed-
dings of previous roles. Based on p(st|VSR), we can pre-
dict a role at time step t and obtain an initial role sequence,
e.g., Arg0rider – ride – Arg1steed – LOC in Figure 3.
R-level SSP. The role-level (R-level) SSP is a fine-grained
structure model which aims to rank all sub-roles within the
same semantic role (e.g., LOC-1 and LOC-2 are two sub-
roles of role Loc in Figure 3). Since the only differences
among these sub-roles are the grounded visual regions, we
borrow ideas from the Sinkhorn networks [43, 16], which
use a differentiable Sinkhorn operation to learn a soft per-
mutation matrix P . Specifically, for each role si with mul-
tiple sub-roles (i.e., ni > 1), we first select all the corre-
sponding grounded proposal sets for these sub-roles, de-
noted as B̂ = {B̂1, ..., B̂ni}. And for each proposal b∗ ∈ B̂,
we encode a feature vector z∗ = [zv∗ ; z

si
∗ ; zl∗], where zv∗

is a transformation of its visual feature f∗, zsi∗ is the word
embedding feature of the semantic role si, and zl∗ is a 4-d
encoding of the spatial position of proposal b∗. Then, we
transform each feature z∗ into ni-d, and average-pooled all
features among the same proposal set, i.e., we can obtain an
ni-d feature for each B̂i. We concatenate all these features
to get an ni × ni matrix Z. Finally, we use the Sinkhorn
operation to obtain the soft permutation matrix P 4:

P = Sinkhorn(Z). (6)

After the two SSP subnets (i.e., S-level and R-level), we
can obtain the semantic structure S (cf. Eq. (3)). Based on
the sequence of S and the set of proposal featurs R̃ from
the GSRL model, we re-rank R̃ based on S and obtainR.

3.1.3 Role-shift Caption Generation

Given the semantic structure sequence S = (sb1, ..., s
b
K) and

corresponding proposal feature sequenceR = (r1, ..., rK),
we utilize a two-layer LSTM to generate the final caption
y. At each time step, the model fouces on one specific sub-
role sbt and its grounded region set rt, and then generates
the word yt. Therefore, we take inspirations from previous

5More comparison results between Transformer and Sinkhorn net-
works [43, 16] are left in supplementary material.

CIC methods [16, 10], and predict two distributions simul-
taneously: p(gt|S,R) for controlling the shift of sub-roles,
and p(yt|S,R) to predict the distribution of a word.

As for the role-shift, we use an adaptive attention mech-
anism [38] to predict the probability of shifting4:

αgt ,α
r
t , sr

g
t = AdaptiveAttna(xt, rt), (7)

where AdaptiveAttna is an adaptive attention network, xt is
the input query for attention, srgt is a sential vector, αgt and
art are the attention weights for the sential vector and region
features, respectively. We directly use attention weight αgt
as the probability of shifting sub-roles, i.e., p(gt|S,R) =
αgt . Based on probability p(gt|S,R), we can sample a gate
value gj ∈ {0, 1}, and the focused sub-role at time step t is:

sbt ← S[i],where i = min
(

1 +
∑t−1
j=1gj ,K

)
. (8)

Due to the special nature of sub-role “verb”, we fix gt+1 =
1 when sbt is the verb.

For each sub-role sbt , we use the corresponding proposal
set features rt and a two-layer LSTM to generate word yt:

h1
t = LSTM1

(
h1
t−1, {yt−1, f̄ ,h2

t−1}
)
,

h2
t = LSTM2

(
h2
t−1, {h1

t , ct}
)
,

yt ∼ p(yt|S,R) = FCb(h2
t ),

(9)

where h1
t and h2

t are hidden states of the first- and second-
layer LSTM (i.e., LSTM1 and LSTM2), FCb is a learnable
fc-layer, and ct is a context vector. To further distinguish
the textual and visual words, we use another adaptive atten-
tion network to obtain the context vector ct4:

αvt ,α
r
t , sr

v
t = AdaptiveAttnb(xt, rt),
ct = αvt · srvt +

∑
iα

r
t,i · rt,i,

(10)

wherext is the query for adaptive attention (i.e., the input of
the LSTM1), srvt is a sential vector, and αvt and αrt are the
attention weights for the sential vector and region features.

3.2. Training and Inference

Training Stage. In the training stage, we train the three
components (GSRL, SSP and captioning model) separately:
Training objective of GSRL. For the GSRL model, we use a
binary cross-entropy (BCE) loss between the predicted sim-
ilarity scores âij and its ground truth a∗ij as the training loss:

LGSRL =
∑
ijBCE(âij , a

∗
ij). (11)

Training objective of SSP. For S-level SSP, we use a cross-
entropy (XE) loss between prediction ŝt and its ground truth
s∗t as the training objective. For R-level SSP, we use a mean
square (MSE) loss between prediction P̂t and its ground
truth P ∗

t as the training objective:

LSSSP =
∑
tXE(ŝt, s

∗
t ), L

R
SSP =

∑
t1(nt>1)MSE(P̂t,P

∗
t ),
(12)
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(a)

(b)

𝑠!"

𝑠!"/𝑠!# 𝑠$"/𝑠$#

𝑠#" 𝑠$" 𝑠%" 𝑠!& 𝑠#& 𝑠$& 𝑠%&

𝑠!" 𝑠#" 𝑠$" 𝑠%" 𝑠!& 𝑠#& 𝑠$& 𝑠%&

𝑠#" 𝑠%"𝑠#& 𝑠%&𝑠!"/𝑠!# 𝑠$"/𝑠$#

Figure 4: A toy example of merging two different semantic struc-
tures Sa and Sb into a single sub-role sequence.

where 1(nt>1) is an indicator function, being 1 if nt > 1
and 0 otherwise.
Training objective of captioning model. We follow the con-
ventions of previous captioning works and use a two-stage
training scheme: XE and RL stages. In the XE stage, we use
an XE loss between predicted words and ground truth words
as the training loss. In the RL stage, we use a self-critical
baseline [51]. At each step, we sample from p(yt|S,R) and
p(gt|S,R) to obtain the next word yt+1 and sub-role sbt+1.
Then we calcuate the reward r(ys) of the sampled sentence
ys. Baseline b is the reward of the greedily generated sen-
tence. Thus, the gradient expression of the training loss is:

∇θL = −(r(ys)−b)(∇θ log p(ys)+∇θ log p(gs)), (13)

where gs is the sequence of role-shift gates.
Inference. In testing stage, given an image and one VSR,
we sequentially use the GSRL, SSP, and captioning model
to generate the final captions. Meanwhile, our framework
can be easily extended from one VSR to multiple VSRs
as the control signal. Taking an example of two VSRs, we
first use GSRL and SSP to obtain semantic structures and
grounded regions features: (Sa,Ra) and (Sb,Rb). Then,
as shown in Figure 4, we merge them by two steps4: (a)
find the sub-roles in both Sa and Sb which refer to the
same visual regions (e.g., sa1 and sb1 refer to the same pro-
posal set); (b) insert all other sub-roles between the nearest
two selected sub-roles (e.g., s∗2 are still between s∗1 and s∗3).
Concerning the order of sub-roles from different verbs, we
follow the rank of two verbs (e.g., sa2 is in front of sb2).

4. Experiments
4.1. Datasets and Metrics

Flickr30K Entities [47]. It builds upon the Flickr30K [74]
dataset, by manually grounding each noun phrase in the de-
scriptions with one or more visual regions. It consists of
31,000 images, and each image is associated with five cap-
tions. We use the same splits as [26] in our experiments.
COCO Entities [16]. It builds upon the COCO [12] dataset
which consists of 120,000 images and each image is anno-
tated with five captions. Different from Flickr30K Entities
where all grounding entities are annotated by humans, all

annotations in COCO Entities are detected automatically.
Especially, they align each entity to all the detected propos-
als with the same object class.

Although we only assume that there exists at least one
verb (i.e., activity) in each image; unfortunately, there are
still a few samples (i.e., 3.26% in COCO Entities and 0.04%
in Flickr30K Entities) having no verbs in their captions. We
use the same split as [16] and further drop the those samples
with no verb in the training and testing stages4. We will try
to cover these extreme cases and leave it for future work.

4.2. Implementation Details

Proposal Generation and Grouping. We utilize a Faster
R-CNN [50] with ResNet-101 [24] to obtain all propos-
als for each image. Especially, we use the model released
by [3], which is finetuned on VG dataset [29]. For COCO
Entities, since the “ground truth” annotations for each noun
phrase are the proposals with the same class, we group the
proposals by their detected class labels. But for Flickr30K
Entities, we directly regard each proposal as a proposal set.
VSR Annotations. Since there are no ground truth seman-
tic role annotations for CIC datasets, we use a pretrained
SRL tool [53] to annotate verbs and semantic roles for each
caption, and regard them as ground truth annotations. For
each detected verb, we convert it into its base form and
build a verb dictionary for each dataset. The dictionary sizes
for COCO and Flickr30K are 2,662 and 2,926, respectively.
There are a total of 24 types of semantic roles for all verbs.
Experimental Settings. For the S-level SSP, the head num-
ber of multi-head attention is set to 8, and the hidden size of
the transformer is set to 512. The length of the transformer
is set to 10. For the R-level SSP, we set the maximum num-
ber of entities for each role to 10. For the RL training of
the captioning model, we use CIDEr-D [61] score as the
training reward. Due to the limited space, we leave more
detailed parameter settings in the supplementary material.

4.3. Evaluation on Controllability

Settings. To evaluate the controllability of proposed frame-
work, we followed the conventions of prior CIC works [16,
10, 78], and utilized the VSR aligned with ground truth cap-
tions as the control signals. Specifically, we compared the
proposed framework with several carefully designed base-
lines6: 1) C-LSTM: It is a Controllable LSTM model [63].
Given the features of all grounded visual regions, it first
averages all region features, and then uses an LSTM to gen-
erate the captions. 2) C-UpDn: It is a Controllable UpDn
model [3], which uses an adaptive attention to generate the
captions. 3) SCT [16]: It regards the set of visual regions as
a control signal, and utilizes a chunk-shift captioning model
to generate the captions. 4) Ours w/o verb: We ablate our
model by removing the verb information in both the SSP

6All baselines use the same visual regions as models with VSRs.
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Method Proposals
COCO Entities Flickr30K Entities

B4 M R C S RV RSR1 RSR2 B4 M R C S RV RSR1 RSR2

C-LSTM [63] GSRL 12.5 19.1 41.4 126.5 31.5 29.6 20.7 14.3 7.4 13.1 31.0 58.7 18.9 16.9 14.5 9.1
C-UpDn [3] GSRL 13.4 19.9 42.3 135.7 32.9 30.4 21.1 13.5 7.5 13.0 31.4 58.7 18.9 16.2 13.9 9.0
SCT [16] GSRL 12.4 19.0 42.1 127.6 34.6 28.7 19.5 14.8 6.9 12.7 29.7 50.6 17.7 16.1 13.7 9.1
Ours w/o verb GSRL 13.4 19.2 42.8 129.5 34.7 30.4 21.0 15.9 7.0 12.7 29.7 50.8 17.6 16.8 14.5 9.5
Ours GSRL 16.0 23.2 47.1 162.8 35.7 81.3 54.3 36.3 7.9 14.7 32.6 71.6 18.2 49.8 38.0 24.7
Ours (oracle verb) GSRL 17.5 24.0 49.0 184.3 35.7 96.8 64.5 43.6 9.0 16.0 35.4 96.5 18.6 73.3 55.5 36.1
C-LSTM [63] GT 14.6 21.1 44.3 148.2 36.3 29.7 20.7 14.2 9.3 14.7 34.3 75.7 22.4 17.0 14.8 9.6
C-UpDn [3] GT 16.5 22.9 46.7 170.0 40.4 30.5 21.3 13.6 9.4 14.7 34.5 74.8 22.5 16.2 14.0 9.2
SCT [16] GT 18.1 24.4 50.3 191.3 47.4 29.4 20.1 15.3 10.1 15.9 36.3 82.0 24.3 17.2 14.8 9.7
Ours w/o verb GT 20.1 24.3 52.8 199.5 47.3 30.6 21.0 16.2 10.3 15.8 36.8 82.2 24.0 17.8 15.3 10.4
Ours GT 23.1 28.0 55.6 235.1 48.9 71.2 47.8 34.2 10.7 18.0 37.1 97.5 21.9 57.9 44.7 28.6
Ours (oracle verb) GT 25.4 28.8 57.8 265.0 49.8 88.0 59.2 42.5 12.3 19.8 40.9 131.4 22.4 86.2 66.2 42.5

Table 1: Performance (%) compared with SOTA methods for controllable image captioning. The upper part denotes that all grounded
proposal sets come from the GSRL model, and the below part denotes that all grounded proposal sets come from ground truth annotations.

Ours: a person pulling a suitcase on a sidewalk next to a 
fire hydrant.
GT: a person pulls a suitcase down a brick walkway next 
to a fire hydrant.

VSR: pull; <𝐀𝐫𝐠𝟎𝐩𝐮𝐥𝐥𝐞𝐫,	1>, < 𝐀𝐫𝐠𝟏𝐭𝐡𝐢𝐧𝐠 𝐩𝐮𝐥𝐥𝐞𝐝,	1> 
<𝐀𝐫𝐠𝟐𝐝𝐞𝐬𝐭𝐢𝐧𝐚𝐭𝐢𝐨𝐧,	1>, <LOC,	1>

SS: Arg0 – pull – Arg1 – Arg2 – LOC

Ours: a man sitting at a table in a kitchen with a laptop.

VSR: sit; <𝐀𝐫𝐠𝟏𝐭𝐡𝐢𝐧𝐠 𝐬𝐢𝐭𝐭𝐢𝐧𝐠,	1>, <𝐀𝐫𝐠𝟐𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧,	1>, 
<LOC,	1>, <MNR,	1>

SS: Arg1 – sit – Arg2 – LOC – MNR

GT: a man sitting at a table in a kitchen with a laptop.

Ours: a dog standing in the snow with a stick in its mouth.

VSR: stand; <𝐀𝐫𝐠𝟏𝐭𝐡𝐢𝐧𝐠 𝐬𝐭𝐚𝐧𝐝𝐢𝐧𝐠,	1>, <𝐀𝐫𝐠𝟐𝐥𝐨𝐜𝐚𝐭𝐢𝐨𝐧,	1>,
<MNR,	2>,

SS: Arg1 – stand – Arg2 – MNR-1 – MNR-2

GT: a dog standing in the snow with a stick in its mouth.

Figure 5: Examples of generated image captions using the
VSR corresponding to the ground truth caption. SS denotes
the learned semantic structures.

ride 𝐀𝐫𝐠𝟎𝐫𝐢𝐝𝐞𝐫, 𝐀𝐫𝐠𝟏𝐬𝐭𝐞𝐞𝐝, 𝐃𝐈𝐑, 𝐆𝐎𝐋, 𝐋𝐎𝐂, 𝐌𝐍𝐑

1: 𝐀𝐫𝐠𝟎 – 𝐫𝐢𝐝𝐞 – 𝐀𝐫𝐠𝟏 – 𝐋𝐎𝐂 – 𝐌𝐍𝐑

2: 𝐀𝐫𝐠𝟎 – 𝐫𝐢𝐝𝐞 – 𝐀𝐫𝐠𝟏 – 𝐌𝐍𝐑 – 𝐋𝐎𝐂
eg: a person riding a horse in a field under sunset.

eg: a person riding a horse under a sunset in a field.
(✓)

(✓)𝐀𝐫𝐠𝟎, 
𝐀𝐫𝐠𝟏, 
𝐋𝐎𝐂, 
𝐌𝐍𝐑

1: 𝐀𝐫𝐠𝟎 – 𝐫𝐢𝐝𝐞 – 𝐀𝐫𝐠𝟏 – 𝐋𝐎𝐂

2: 𝐋𝐎𝐂 – 𝐀𝐫𝐠𝟎 – 𝐫𝐢𝐝𝐞 – 𝐀𝐫𝐠𝟏
eg: a man riding a surfboard on a wave.

eg: a wave with a man riding a surfboard.
(✓)

(✓)𝐀𝐫𝐠𝟎, 
𝐀𝐫𝐠𝟏, 
𝐋𝐎𝐂

sit 𝐀𝐫𝐠𝟎𝐭𝐡𝐢𝐧𝐠, 𝐀𝐫𝐠𝟏𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧, 𝐃𝐈𝐑, 𝐋𝐎𝐂, 𝐌𝐍𝐑

1: 𝐀𝐫𝐠𝟎 – 𝐬𝐢𝐭 – 𝐀𝐫𝐠𝟏 – 𝐋𝐎𝐂 – 𝐌𝐍𝐑

2: 𝐀𝐫𝐠𝟎 – 𝐬𝐢𝐭 – 𝐀𝐫𝐠𝟏 – 𝐌𝐍𝐑 – 𝐋𝐎𝐂
eg: a cat sitting on a chair next to a table with a book.

eg: a cat sitting on a chair with a book on a table.
(✓)

(✓)𝐀𝐫𝐠𝟎, 
𝐀𝐫𝐠𝟏, 
𝐋𝐎𝐂, 
𝐌𝐍𝐑

1: 𝐀𝐫𝐠𝟎 – 𝐬𝐢𝐭 – 𝐀𝐫𝐠𝟏 – 𝐃𝐈𝐑

2: 𝐀𝐫𝐠𝟎 – 𝐬𝐢𝐭 – 𝐃𝐈𝐑 – 𝐀𝐫𝐠𝟏
eg: a bench sitting in the water near a river.

eg: a bench sitting in a river in the water.
(✓)

(✓)𝐀𝐫𝐠𝟎, 
𝐀𝐫𝐠𝟏, 
𝐃𝐈𝐑

walk 𝐀𝐫𝐠𝟎𝐰𝐚𝐥𝐤𝐞𝐫, 𝐀𝐫𝐠𝟏𝐞𝐧𝐭𝐢𝐭𝐲 , 𝐃𝐈𝐑, 𝐋𝐎𝐂, 𝐌𝐍𝐑

1: 𝐀𝐫𝐠𝟎 – 𝐰𝐚𝐥𝐤 – 𝐃𝐈𝐑 – 𝐋𝐎𝐂

2: 𝐋𝐨𝐜 – 𝐀𝐫𝐠𝟎 – 𝐰𝐚𝐥𝐤 – 𝐃𝐈𝐑
eg: two women walking on a sidewalk next to a park.

eg: a park with two women walking on the street.
(✓)

(✓)𝐀𝐫𝐠𝟎, 
𝐋𝐎𝐂, 
𝐃𝐈𝐑

1: 𝐀𝐫𝐠𝟎 – 𝐰𝐚𝐥𝐤 – 𝐋𝐎𝐂 – 𝐌𝐍𝐑

2: 𝐀𝐫𝐠𝟎 – 𝐰𝐚𝐥𝐤 – 𝐌𝐍𝐑 – 𝐋𝐎𝐂
eg: a person walking on the beach with an umbrella.

eg: a person walking under an umbrella on the beach.
(✓)

(✓)𝐀𝐫𝐠𝟎, 
𝐋𝐎𝐂, 
𝐌𝐍𝐑

fly 𝐀𝐫𝐠𝟎𝐩𝐢𝐥𝐨𝐭, 𝐀𝐫𝐠𝟏𝐜𝐚𝐫𝐠𝐨, 𝐀𝐫𝐠𝟐𝐚𝐢𝐫𝐜𝐫𝐚𝐟𝐭, 𝐃𝐈𝐑, 𝐋𝐎𝐂

1: 𝐀𝐫𝐠𝟐 – 𝐟𝐥𝐲 – 𝐋𝐎𝐂

2: 𝐟𝐥𝐲 – 𝐀𝐫𝐠𝟐 – 𝐋𝐎𝐂
eg: a kite flying in the sky.

eg: flying kites in the sky.
(✓)

(✓)
𝐀𝐫𝐠𝟐, 
𝐋𝐎𝐂

1: 𝐀𝐫𝐠𝟎 – 𝐟𝐥𝐲 – 𝐋𝐎𝐂 – 𝐃𝐈𝐑

2: 𝐀𝐫𝐠𝟎 – 𝐟𝐥𝐲 – 𝐃𝐈𝐑 – 𝐋𝐎𝐂
eg: a flock of birds flying in the sky over the water.

eg: a flock of birds flying over the water in the sky.
(✓)

(✓)𝐀𝐫𝐠𝟏, 
𝐋𝐎𝐂, 
𝐃𝐈𝐑

Figure 6: Examples of the learned verb-specific semantic structures. The
first row of each sample is the verb and all reasonable semantic roles. The
second or third row is a sampled role set with two top-ranking structures.
The green (blue) tick denotes that this structure is (not) in the dataset.

and captioning model. 5) Ours (oracle verb): It is an ideal
situation, where the captioning model directly outputs the
oracle format of the verb when the attending role is the verb.
Evaluation Metrics. To evaluate the quality of the gener-
ated captions, we use five accuracy-based metrics, including
BLEU-4 (B4) [45], METEOR (M) [5], ROUGE (R) [34],
CIDEr-D (C) [61], and SPICE (S) [2]. Particularly, we eval-
uate the generated captions against the single ground truth
caption. We also propose a new recall-based metric to eval-
uate whether the roles of the generated sentence are consis-
tent with the ground truth caption (i.e., VSR). It measures
the recall rate of the verb, semantic roles, and ordered role
pairs, which are denoted as RV, RSR1 and RSR2, respectively.
Quantitative Results. The quantitative results are reported
in Table 1. From Table 1, we can observe that our frame-
work can achieve the best performance over almost all met-
rics and benchmarks. By comparing the two different pro-
posal settings (i.e., GSRL and GT), we can find that the ac-
curacy of GSRL is a major bottleneck of the whole frame-
work. Meanwhile, the ablative model (Ours w/o verb) can
only achieve slightly better performance than baseline SCT
and much worse performance than our full model, which re-

flects the importance of the verb in semantic structure learn-
ing and caption generation.
Visualizations. In Figure 5, we illustrate some examples of
the generated captions. We can observe that our framework
always learns a human-like semantic structure based on the
VSR and grounded visual regions (e.g., Arg1thing – sit
– Arg2position – LOC – MNR). According to the semantic
structures, the captioning model can generate near-perfect
descriptions. As a by-product, a well-trained SSP can auto-
matically produce several verb-specific semantic structures
for a set of user-interested roles, and we show some exam-
ples in Figure 6. For each verb and role set, we illustrate the
top two structures by using beam search. Particularly, we
are surprised to find that we can even learn some structures
that never appear in original datasets (the blue tick ones).

4.4. Evaluation on Diversity

One of the well-known advantages of controllable image
captioning is the ability to generate diverse image captions
by feeding different control signals. Thus, we also evaluate
the diversity of the captions generated by our framework.
Settings. We evaluated the quality of diverse captions in
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VSR: talk; <𝐀𝐫𝐠𝟎,	1>, < 𝐌𝐍𝐑,	1>
Caps: a man talking on a cell phone.

Arg0 MNR
Caps: a man with a cell phone walking on a street.

Arg0 DIR

VSR: walk; <𝐀𝐫𝐠𝟎,	2>, <DIR,	1>

Caps: a man talking on a cell phone walking on the street.
VSR: walk; <𝐀𝐫𝐠𝟎,	1>, <DIR,	1>VSR: talk; <𝐀𝐫𝐠𝟎,	1>, <MNR,	1>

Arg0	(talk/walk) MNR	(talk) DIR (walk)

VSR: walk; <𝐀𝐫𝐠𝟎,	1>, <DIR,	1>, <MNR,	1>
Caps: a man walking on the street with a bicycle.

Arg0 DIR MNR

VSR: talk; <𝐀𝐫𝐠𝟎,	1>, <MNR,	1>, <LOC,	1>
Caps: a man talking on a cell phone on the street.

Arg0 MNR LOC

VSR: sit; <𝐀𝐫𝐠𝟏,	1>, <𝐀𝐫𝐠𝟐,	1>
Caps: a man sitting next to a woman.

Arg1 Arg2
Caps: a man looking at a cell phone.

Arg0 Arg1

VSR: look; <𝐀𝐫𝐠0,	1>, <𝐀𝐫𝐠𝟏,	1>

Caps: two people sitting on a bench looking at a cell phone.

VSR: look; <Arg0,	1>, <Arg1,	1>VSR: sit; <Arg1,	1>, <Arg2,	1>

Arg1	(sit)/Arg0	(look) Arg2	(sit) Arg1	(look)

VSR: look; <𝐀𝐫𝐠𝟎,	1>, <𝐀𝐫𝐠𝟏,	1>, <LOC,	1>
Caps: a man looking at a cell phone on a bench.

Arg0 Arg1 LOC

VSR: sit; <𝐀𝐫𝐠𝟏,	1>, <𝐀𝐫𝐠𝟐,	1>, <LOC,	1>
Caps: a man sitting next to a woman on a bench.

Arg1 Arg2 LOC

Figure 7: Examples of diverse image caption generation conditioned on different VSRs. Best viewed in color.

Model #caps
Accuracy-based Diversity-based

B4 M R C S D-1 D-2 s-C
BS 2 18.1 24.0 48.8 185.7 43.7 45.5 61.2 53.5
SCT 2 20.5 25.8 53.0 210.0 51.6 52.2 73.7 76.0
Ours 2 24.8 29.5 57.8 251.9 53.1 48.3 70.0 68.3
BS 6 20.9 25.4 52.1 209.5 47.9 22.7 35.6 53.9
SCT 6 22.0 26.5 55.4 222.5 54.9 27.7 45.7 69.1
Ours 6 26.6 30.2 59.8 267.3 56.6 25.1 43.8 67.0

Table 2: Performance compared with two strong baselines for di-
verse image captioning on dataset COCO Entities.

two settings: 1) Given a VSR and grounded visual regions
of each role aligned with the ground truth caption, we first
use an SSP to select two semantic structures, and then re-
spectively generate two diverse captions. For fair compar-
isons, we utilize the same set of visual regions on two strong
baselines: a) BS: an UpDn model uses beam search to pro-
duce two captions, and b) SCT: an SCT model takes a per-
mutation of all region sets to generate two captions. 2) For
each verb, we can randomly sample a subset of all seman-
tic roles to construct new VSRs. Specifically, we sample
two more sets of semantic roles, and generate two diverse
captions for each role set following the same manner.
Evaluation Metrics. We used two types of metrics to eval-
uate the diverse captions: 1) Accuracy-based: we followed
the conventions of the previous works [16, 20, 65] and re-
ported the best-1 accuracy, i.e., the generated caption with
the maximum score for each metric is chosen. Analogously,
we evaluate the generated captions against the single ground
truth caption. 2) Diversity-based: we followed [10] and
used two metrics which only focus on the language simi-
larity: Div-n (D-n) [4, 20] and self-CIDEr (s-C) [66].
Quantitative Results. The quantitative results are reported
in Table 2. From Table 2, we can observe that the diverse

captions generated by our framework in both two settings
have much higher accuracy (e.g., CIDEr 267.3 vs. 222.5 in
SCT), and that the diversity is slightly behind SCT (e.g.,
self-CIDEr 67.0 vs. 69.1 in SCT). This is because SCT
generates captions by randomly shuffling regions. Instead,
we tend to learn more reasonable structures. Thus, we can
achieve much higher results on accuracy, i.e., our method
can achieve a better trade-off between quality and diversity
on diverse image captioning than the two strong baselines.
Visualizations. We further illustrate the generated captions
of two images with different VSRs in Figure 7. The captions
are generated effectively according to the given VSR, and
the diversity of VSR leads to significant diverse captions.

5. Conclusions & Future Works

In this paper, we argued that all existing objective control
signals for CIC have overlooked two indispensable char-
acteristics: event-compatible and sample-suitable. To this
end, we proposed a novel control signal called VSR. VSR
consists of a verb and several semantic roles, i.e., all com-
ponents are guaranteed to be event-compatible. Meanwhile,
VSR only restricts the involved semantic roles, which is
also sample-suitable for all the images containing the ac-
tivity. We have validated the effectiveness of VSR through
extensive experiments. Moving forward, we will plan to 1)
design a more effective captioning model to benefit more
from the VSR signals; 2) extend VSR to other controllable
text generation tasks, e.g., video captioning [69]; 3) design a
more general framework to cover the images without verbs.
Acknowledgements. This work was supported by the National Natu-
ral Science Foundation of China (U19B2043,61976185), Zhejiang Natu-
ral Science Foundation (LR19F020002), Zhejiang Innovation Foundation
(2019R52002), and Fundamental Research Funds for Central Universities.
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Appendix
The supplementary document is organized as follows:

• In Section A, we explain the meanings of different se-
mantic roles (i.e., PropBank-style annotations) in our
paper.

• In Section B, we illustrate more visualization results
generated by our CIC framework.

• In Section C, we provide the details about each subnet
component of our VSR-guided CIC model.

• In Section D, we show the details about the merging al-
gorithm of two different semantic structures from two
VSRs.

• In Section E, we report the details of our experimental
settings.

• In Section F, we compare the performance between the
Transformer structure and Sinkhorn network in S-level
SSP.

A. Meanings of Different Semantic Roles
In this paper, we mainly follow the types of semantic

roles defined in the PropBank [44]. The main arguments
with their semantic role meanings is listed in Table 3, in-
cluding numbered arguments (e.g., Arg0, Arg2)7 and ar-
gument modifiers (e.g., COM, LOC).

Although there are many kinds of arguments modifiers
in the PropBank, the most common argument modifiers of
the verbs in Flickr30k/COCO Entities are LOC, DIR, GOL
and MNR. The meaning of them as listed as follows:

• LOC: Locative modifiers indicate where some action
takes place.

• DIR: Directional modifiers show motion along some
path.

• GOL: Goal tag is for the goal of the action of the verb.

• MNR: Manner modifiers specify how an action is per-
formed.

B. More Visualization Results
We illustrate more visualization results of generated im-

age captions using the VSR corresponding to the ground
truth caption in Figure 8. Meanwhile, we show more visu-
alization results about diverse image captions conditioned
on different VSRs in Figure 9. More specifically, the VSRs
in the top row of images contain the same verb and differ-
ent semantic role sequences; the VSRs in the bottom row of
images contain a different verb or two verbs.

7Since semantic role Arg5 is very rare for the verbs of CIC datasets,
and we omit it in Table 3.

Role Type Meaning

nu
m

be
re

d
ar

gs Arg0 agent
Arg1 patient
Arg2 instrument, benefactive, attribute
Arg3 starting point, benefactive, attribute
Arg4 ending point

ar
gu

m
en

tm
od

ifi
er

s

COM comitative
LOC locative
DIR directional
GOL goal
MNR manner
TMP temporal
EXT extent
REC reciprocals
PRD secondary predication
PRP purpose
PNC purpose not cause
CAU cause
DIS discourse
ADV adverbials
ADJ adjectival
MOD modal
NEG negation
LVB light verb

Table 3: List of the main arguments in the PropBank.

C. Details of the VSR-guided CIC Model

C.1. Grounded Semantic Role Labeling

In this grounded semantic role labeling (GSRL) step, we
aim to ground each sub-role si in VSR to a proposal set
Bj ∈ B. Specifically, we calculate the similarity score aij
between sub-role si and proposal set Bj by:

qi = [W g
v Πv;W

g
s Πsi ; f̄ ],

aij = MLPa(W g
q qi �W

g
f f̄j),

(14)

where f̄ ∈ Rv×1 and f̄j ∈ Rv×1 represent the average-
pooled visual feature of proposal set B and Bj . Πv and Πsi

are the one-hot embeddings for the verb v and sub-role si,
W g

v ∈ Rdv×|V| and W g
s ∈ Rds×|SR| are learnable map-

ping matrices, |V| and |SR| are the size of the vocabulary
of verbs and semantic roles, respectively. [; ] is a concate-
nation operation. Thus, qi is a query vector combining the
verb category, semantic role type and image global features.
W g

q ∈ Ra×(dv+ds+v) andW g
f ∈ Ra×v aim to transform qi

and f̄j into a common space, and � is the element-wise
multiplication. Finally, a four-layer MLP maps the fused
feature into a score aij between 0 and 1.
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Ours: a man jumping a skateboard over a fire hydrant 

on a street.

VSR: jump; <𝐀𝐫𝐠𝟎𝐚𝐠𝐞𝐧𝐭, 1>, <𝐀𝐫𝐠𝟏𝐞𝐧𝐭𝐢𝐭𝐲 𝐢𝐧 𝐦𝐨𝐭𝐢𝐨𝐧, 1>, 

<DIR, 1>, <LOC, 1>

SS: Arg0 – jump – Arg1 – DIR – LOC

GT: a young man jumping a skateboard over a fire 

hydrant on a city street.

Ours: a group standing on a field with kites in the sky.

VSR: stand; <𝐀𝐫𝐠𝟏𝐭𝐡𝐢𝐧𝐠 𝐬𝐭𝐚𝐧𝐝𝐢𝐧𝐠, 1>, <𝐀𝐫𝐠𝟐𝐥𝐨𝐜𝐚𝐭𝐢𝐨𝐧, 1>,

<MNR, 2>

SS: Arg1 – stand – Arg2 – MNR-1 – MNR-2

GT: many people standing in a field with kites in the sky.

Ours: two people sitting at a table with wine glasses and 

wine.

VSR: sit; <𝐀𝐫𝐠𝟏𝐭𝐡𝐢𝐧𝐠 𝐬𝐢𝐭𝐭𝐢𝐧𝐠, 1>, <𝐀𝐫𝐠𝟐𝐥𝐨𝐜𝐚𝐭𝐢𝐨𝐧, 1>, 

<MNR, 2>

SS: Arg1 – sit – Arg2 – MNR-1 – MNR-2

GT: two people sitting at a table with wine glasses and 

bottles.

Ours: a dog running in the grass with a frisbee in his 

mouth.

VSR: run; <𝐀𝐫𝐠𝟎𝐫𝐮𝐧𝐧𝐞𝐫, 1>, <𝐀𝐫𝐠𝟏𝐥𝐨𝐜𝐚𝐭𝐢𝐨𝐧, 1>,

<MNR, 2>

SS: Arg0 – run – Arg1 – MNR-1 – MNR-2

GT: a dog running in the grass with a frisbee in his 

mouth.

Ours: a man riding a horse in a field at sunset.

VSR: ride; <𝐀𝐫𝐠𝟎𝐫𝐢𝐝𝐞𝐫, 1>, <𝐀𝐫𝐠𝟏𝐬𝐭𝐞𝐞𝐝, 1>, 

<LOC, 1>, <MNR, 1>

SS: Arg0 – ride – Arg1 – LOC – MNR

GT: a person riding a horse in a field with a beautiful 

sunset.

Ours: a cat sitting on a chair next to a table with a

book.

VSR: sit; <𝐀𝐫𝐠𝟏𝐭𝐡𝐢𝐧𝐠 𝐬𝐢𝐭𝐭𝐢𝐧𝐠, 1>, <𝐀𝐫𝐠𝟐𝐥𝐨𝐜𝐚𝐭𝐢𝐨𝐧, 1>, 

<LOC, 1>, <MNR, 1>

SS: Arg1 – sit – Arg2 – LOC – MNR

GT: a cat sitting in a chair at a table with a book on it.

Figure 8: Additional examples of generated image captions using the VSR corresponding to the ground truth caption. SS denotes the
learned semantic structures. Different colors show a correspondence between image regions and semantic roles. Best viewed in color.

VSR: eat; <𝐀𝐫𝐠𝟎, 2>, < 𝐀𝐫𝐠𝟏, 1>

Caps: a boy with white hair eating a red apple.

Arg1

Caps: a boy wearing a blue jacket eating a red apple.

VSR: eat; <𝐀𝐫𝐠𝟎, 1>, <Arg1, 1>VSR: wear; <𝐀𝐫𝐠𝟎, 1>, <Arg1, 1>

Arg0 (wear/eat) Arg1 (wear) Arg1 (eat)

VSR: stand; <𝐀𝐫𝐠𝟏, 2>, <𝐀𝐫𝐠𝟐, 1>

Caps: a girl with sunglasses standing in the grass.

Arg1 Arg2

Caps: a girl holding a frisbee in the grass.
Arg0 Arg1

VSR: hold; <𝐀𝐫𝐠0, 1>, <𝐀𝐫𝐠𝟏, 1>, <𝐋𝐎𝐂, 1>

Caps: a girl with sunglasses standing in the grass holding a frisbee.

VSR: hold; <Arg0, 2>, <Arg1, 1>VSR: stand; <Arg1, 2>, <Arg2, 1>

Arg1 (stand)/Arg0 (hold) Arg2 (stand) Arg1 (hold)

Caps: a boy wearing a blue jacket.
Arg0 Arg1

VSR: wear; <𝐀𝐫𝐠0, 1>, <𝐀𝐫𝐠𝟏, 1>

Arg0

LOC

VSR: walk; <𝐀𝐫𝐠𝟎, 1>, < 𝐋𝐎𝐂, 1>

Caps: a man walking on a beach.

LOC

Caps: a man walking with a surfboard on a beach.

VSR: walk; <𝐀𝐫𝐠𝟎, 1>, <MNR, 1>, <LOC, 1>

Arg0 MNR LOC

VSR: drive; <𝐀𝐫𝐠𝟎, 1>, <𝐌𝐍𝐑, 1>

Caps: a train driving under a bridge.

Arg0 MNR

Caps: a train driving on the tracks under a bridge.
Arg0 DIR

VSR: drive; <𝐀𝐫𝐠𝟎, 1>, <𝐃𝐈𝐑, 1>, <𝐌𝐍𝐑, 1>

Caps: a bridge with a train driving on the tracks.

VSR: drive; <MNR, 1>, <Arg0, 1>, <DIR, 1>

Arg0MNR DIR

Caps: a man walking on a beach with a surfboard.
Arg0 LOC

VSR: walk; <𝐀𝐫𝐠0, 1>, <𝐋𝐎𝐂, 1>, <MNR, 1>

Arg0

MNRMNR

Figure 9: Additional examples of diverse image caption generation conditioned on different VSRs. The correspondences between image
regions and noun phrases are indicated by different colors. Best viewed in color.

C.2. Semantic Structure Planner

S-level SSP. In the sentence-level (S-level) SSP, we utilize
a three-layer Transformer encoder to encode the verb v and
semantic role si in the input semantic role sequence S.

H = Transformerenc ({FCa(W e
vΠv +W e

s Πsi)}) , (15)

where Πv and Πsi are the one-hot embeddings for v and si,
W e

v ∈ Rde×|V| and W e
s ∈ Rde×|SR| are learnable map-

ping matrices.
Then, we use a three-layer Transformer decoder to au-

toregressively generate semantic role sequence (including
the verb). To prevent the occurrence of semantic role se-
quence with duplicates, we generate st with the highest
probability p(st|VSR), where st is in the input semantic

role sequence but hasn’t been generated.

p(st|VSR) = Transformerdec (H,W e
s ΠS<t

) , (16)

R-level SSP. Since each semantic role si has variable num-
ber of sub-roles (i.e., ni), we set a constant nmax as the max-
imum number of sub-roles for each semantic role. We em-
ploy the Sinkhorn operation [43] to learn a “soft” permu-
tation matrix P . For each proposal b∗ ∈ B̂, we encode a
feature vector z̃∗ by:

z̃∗ = MLPb([W r
v f∗;W

r
c Πc∗ ; Pos(b∗)]), (17)

where f∗ is the detection feature (2048-d); Πc∗ is GloVe
embedding of the region class (300-d); Pos(·) is a 4-d spa-
tial encoding of b∗. W r

x ∈ Rdv×v and W d
c ∈ Rdc×|C|
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are learnable mapping matrices, |C| is the size of vocabu-
lary of the detected classes, and MLPb is a two-layer MLP
to mapping the concatenated feature into Rnmax . The posi-
tion encoding function Pos(·) encodes the location feature:
[xmin
WI

, ymin
HI
, xmax
WI

, ymax
HI

], where xmin, ymin, xmax, ymax are the
bounding box coordinates of proposal b∗; WI and HI are
the width and height of the image I .

Then, for each proposal set B̂i ⊂ B̂, we average-pool
all the feature (i.e., {z̃∗}) of each proposal set, denoted as
zi. And we concatenate all feature representations {zi}
to get a nmax × nmax matrix Z. The square matrix Z is
converted into a “soft” permutation matrix P through the
Sinkhorn operator. The operator is K consecutive row-wise
and column-wise normalization, as follows:

S0(Z) = exp(Z),

Sk(Z) = Nc(Nr(Sk−1(Z))),

P = SK(Z),

(18)

where Nr(Z) = Z � (Z1nmax1
T
nmax

) and Nc(Z) = Z �
(1nmax1

T
nmax
Z) are the row-wise and column-wise normal-

ization operations respectively, and � is the element-wise
division, 1nmax is a column vector of nmax ones.

During inference, once K normalizations (we set K =
20 in our experiments) have been performed, the resulting
“soft” permutation matrix can be converted into the final
permutation matrix via the Hungarian algorithm [?].

C.3. Role-shift Captioning Model

Adaptive attention for the shifting probability. The first
LSTM is firstly extended to obtain a sub-role sentinel sgt ,
which models a component encoding the state of the LSTM
at the end of a sub-role. The sentinel is computed as:

lgt = σ(Wigxt +Whgh
1
t−1)

srgt = lgt � tanh(mt)
(19)

where Wig ∈ Rdl×di , Whg ∈ Rdl×dl are learnable
weights, mt ∈ Rdl is the LSTM cell memory and xt ∈
Rdi is the input of the LSTM at time t; � represents the
Hadamard element-wise product and σ is the sigmoid func-
tion.

We then compute a compatibility score between the hid-
den state h1

t and the sentinel vector srgt through a single-
layer neural network; analogously, we compute a compati-
bility score between h1

t and the regions in rt by:

α̂gt = wT
h tanh(Wsgsr

g
t +Wgh

1
t ),

α̂rt = wT
h tanh(Wsrrt + (Wgh

1
t )1

T ),
(20)

where 1 ∈ Rnt is a vector with all elements set to 1,
nt is the number of regions in rt, wT

h is a row vector,
Wsg ∈ Rda×dl , Wsr ∈ Rda×dv and wh ∈ Rda are learn-
able mapping matrices.

And then we renormalize the attention weight for sub-
role sentinel srgt over attention weights for the sentinel vec-
tor srgt and the regions in rt:

αgt =
exp α̂gt

exp α̂gt +
∑
i exp α̂rti

, (21)

where α̂rti indicates the i-th element in α̂rt .
Adaptive attention for the context feature. To further dis-
tinguish the textual and visual words, we build an adaptive
attention mechanism with a visual sentinel [38]. The vi-
sual sentinel vector models a component which the model
can fall back on when it chooses to not attend regions in rt.
Analogously to Eq. (19), it is defined as:

lvt = σ(Wisxt +Whsh
1
t−1),

srvt = lvt � tanh(mt),
(22)

where Wis ∈ Rdl×di and Whs ∈ Rdl×dl are matrices of
learnable weights. Then, the attentive weights are generated
over the visual sentinel vector srvt and the regions in rt:

[αrt ;α
v
t ] = softmax([α̂rt ;w

T
h tanh(Wsssr

v
t +Wgh

1
t )]),

(23)
whereWss ∈ Rda×dl is the learnable weights.

D. Merging Two Semantic Structures
The algorithm of merging two semantic structures (i.e.,

sub-role sequences) is shown in Algorithm 1. Given multi-
ple VSRs, we can continually use this algorithm by regard-
ing the merged semantic structure as the first input structure.

E. Details of Experimental Settings
Parameter Settings. We use the Adam [28] optimizer in
all our experiments. For the grounded semantic role label-
ing model, we initiate the learning rate to 1 × 10−5, which
decreases by a factor of 0.5 for every 3 epochs. To train
the S-level SSP and R-level SSP, the learning rate is set to
1×10−4 and decreases by a factor of 0.6 for every 3 epochs.
And the max training epoch is set to 20 for the models
above. For the role-shift captioning model, the batch size
is set to 100. The learning rate is 5× 10−4 for XE training
and 5 × 10−5 for the RL training, decreasing by a factor
of 0.8 every epoch. The hidden size of both two LSTMs is
set to 512. In the training stage, we apply early stopping
according to the CIDEr-D score in the validation dataset.
In the inference stage, we employ the beam search strategy
with a beam size of 5.
Details of Training and Test. Due to the constraint of
COCO/Flickr30k Entities, there are many captions con-
taining nouns without region annotation. Thus, we fol-
lowed [16] to fill the missing regions with most probable
detections of the image in the training of role-shift caption
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Algorithm 1 Merging Algorithm of Semantic Structures
Input: Two semantic structures and corresponding se-

quence of grounded visual regions: (Sa,Ra) and (Sb,Rb).
Output: The merged semantic structure S and grounded

visual regionsR.
1: R = Ra
2: // build a sequence of region setsRsame, which is in both
Ra andRb.

3: for each rai ∈ Ra do
4: if rai ∈ Rb then
5: Rsame.append(rai )
6: end if
7: end for
8: // if the rank of the same region sets in Rb is different

fromRa, re-rank those region sets.
9: isame = 0

10: for each rbi ∈ Rb do
11: if rbi ∈ Rsame then
12: rbi = Rsame[isame]
13: isame += 1
14: end if
15: end for
16: // insert region sets inRb \Rsame intoR.
17: for each rbi ∈ Rb do
18: if rbi /∈ Rsame then
19: insert rbi inR right before rbright

20: // rbright is the closest region set in the right of rbi in
Rb, which is also inRsame.

21: end if
22: end for
23: build S according toR

model and drop these captions in validation and test stages.
And those are also dropped in other models’ training and
test stages.

F. Transformer vs. Sinkhorn Network in the
S-level SSP.

Settings. To sort the sequence of roles from the given con-
trol signal, Sinkhorn network is another alternative network.
To further compare the Transformer and Sinkhorn network
in the S-level SSP, we design a strong baseline by replacing
the Transformer to Sinkhorn network. The results on COCO
Entities and Flickr30K Entities are reported in Table 4.
Results. From Table 4, we can observe that the model with
Transformer can achieve better performance than the model
with Sinkhorn network in all proposal settings (GSRL de-
tected proposals or ground truth proposals) and evalua-
tion metrics on both COCO Entities and Flickr30K Entities
benchmarks. This may because that the Transformer can
better encode the dependency on previous outputs (seman-

Proposal Model B4 M R C S

C
O

C
O GSRL

SN 15.5 23.0 46.5 159.3 35.1
TF 16.0 23.2 47.1 162.8 35.7

GT
SN 22.3 27.6 54.2 227.9 48.1
TF 23.1 28.0 55.6 235.1 48.9

Fl
ic

kr
30

K GSRL
SN 7.6 14.5 32.1 69.0 17.8
TF 7.9 14.7 32.6 71.6 18.2

GT
SN 9.6 17.3 35.4 86.9 21.2
TF 10.7 18.0 37.1 97.5 21.9

Table 4: Performance comparisons between Transformer (TF) and
Sinkhorn Network (SN) in S-level SSP on dataset COCO Entities
and Flickr30K Entities.

tic roles). Thus, we use Transformer for our S-level SSP.
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