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Abstract

We introduce the “Incremental Implicitly-Refined Classi-
fication (IIRC)” setup, an extension to the class incremental
learning setup where the incoming batches of classes have
two granularity levels. i.e., each sample could have a high-
level (coarse) label like “bear” and a low-level (fine) label
like “polar bear”. Only one label is provided at a time, and
the model has to figure out the other label if it has already
learned it. This setup is more aligned with real-life scenar-
ios, where a learner usually interacts with the same family
of entities multiple times, discovers more granularity about
them, while still trying not to forget previous knowledge.
Moreover, this setup enables evaluating models for some
important lifelong learning challenges that cannot be eas-
ily addressed under the existing setups. These challenges
can be motivated by the example ”if a model was trained
on the class bear in one task and on polar bear in another
task, will it forget the concept of bear, will it rightfully in-
fer that a polar bear is still a bear? and will it wrongfully
associate the label of polar bear to other breeds of bear?”.
We develop a standardized benchmark that enables evalu-
ating models on the IIRC setup. We evaluate several state-
of-the-art lifelong learning algorithms and highlight their
strengths and limitations. For example, distillation-based
methods perform relatively well but are prone to incorrectly
predicting too many labels per image. We hope that the
proposed setup, along with the benchmark, would provide a
meaningful problem setting to the practitioners.

1. Introduction
Deep learning algorithms have led to transformational

breakthroughs in computer vision [12, 17], natural language
processing [19, 50], speech processing [3, 5], reinforce-
ment learning [36, 44], robotics [16, 1], recommendation
systems [11, 18] etc. On several tasks, deep learning mod-
els have either matched or surpassed human performance.
However, such super-human performance is still limited

Figure 1. Humans incrementally accumulate knowledge over time.
They encounter new entities and discover new information about
existing entities. In this process, they associate new labels with
entities and refine or update their existing labels, while ensuring
the accumulated knowledge is coherent.

to some very narrow and well-defined setups. Moreover,
humans can continually learn and accumulate knowledge
over their lifetime, while the current learning algorithms
are known to suffer from several challenges when training
over a sequence of tasks [33, 15, 8, 45]. These challenges
are broadly studied under the domain of Lifelong Learn-
ing [47], also called Incremental Learning [42], Continual
Learning [48], and Never Ending Learning [35]. In the
general lifelong learning setup, the model experiences new
knowledge, in terms of new tasks, from the same domain or
different domains. The model is expected to learn and solve
new tasks while retaining useful knowledge from previous
tasks.

There are two popular paradigms in lifelong learn-
ing [49]: i) task incremental learning, where the model has
access to a task delimiter (say a task id), which distinguish
between tasks. Models for this setup are generally multi-
headed, where there exists a separate classification layer
for each task. ii) class incremental learning, where the
model does not have access to a task delimiter, so it needs
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Figure 2. IIRC setup showing how the model expands its knowledge and associates and re-associates labels over time. The top right
label shows the label model sees during training, and the bottom label (annotated as “Target”) is the one that model should predict during
evaluation. The right bottom panel for each task shows the set classes that model is evaluated on and the dashed line shows different tasks.

to discriminate between all classes from all tasks at infer-
ence time. Therefore, models developed for this paradigm
are generally single-headed. The class incremental setup is
more closely aligned with the real-life scenarios and is more
challenging than the task incremental scenario.

Several useful benchmarks have been proposed for eval-
uating models in the lifelong learning setting [4, 25]. While
useful for measuring high-level aggregate quantities, these
benchmarks take a narrow and limited view on the broad
problem of lifelong learning. One common assumption that
many class incremental setups make is “information about
a given sample (say label) can not change across tasks”. For
example, an image of a bear is always labeled as “bear”, no
matter how much knowledge the model has acquired.

While this assumption appears to be “obviously correct”
in the context of the supervised learning paradigm (where
each sample generally has a fixed label), the assumption is
not always satisfied in real-life scenarios. We often inter-
act with the same entities multiple times and discover new
information about them. Instead of invalidating the previ-
ous knowledge or outright rejecting the new information,
we refine our previous knowledge using the new informa-
tion. Figure 1 illustrates an example where a child may rec-
ognize all bears as “bear” (and hence label them as “bear”).
However, while growing up, they may hear different kinds
of bear being called by different names, and so they update
their knowledge as: “Some bears are brown bears, some
bears are polar bears, and other bears are just bears. Brown
bears and polar bears are both still bears but they are dis-
tinct”. This does not mean that their previous knowledge
was wrong (or that previous label “bear” was “incorrect”),
but they have discovered new information about an entity
and have coherently updated their knowledge. This is the
general scheme of learning in humans.

A concrete instantiation of this learning problem is that
two similar or even identical input samples have two dif-

ferent labels across two different tasks. We would want
the model to learn the new label, associate it with the old
label without forgetting the old label. Evaluating lifelong
learning models for these capabilities is generally outside
the scope of existing benchmarks. We propose the Incre-
mental Implicitly-Refined Classification (IIRC) setup to ful-
fill this gap. We adapt the publicly available CIFAR100
and ImageNet datasets to create a benchmark instance for
the IIRC setup and evaluate several well-known algorithms
on the benchmark. Our goal is not to develop a new state-
of-the-art model but to surface the challenges posed by the
IIRC setup.

The main contributions of our work are as follows:

1. We propose the Incremental Implicitly-Refined Clas-
sification (IIRC) setup, where the model starts training
with some coarse, high-level classes and observes new,
fine-grained classes as it trains over new tasks. During
the lifetime of the model, it may encounter a new sam-
ple or an old sample with a fine-grained label.

2. We provide a standardized benchmark to evaluate a
lifelong model in the IIRC setup. We adapt the com-
monly used ImageNet and CIFAR datasets, and pro-
vide the benchmark setup compatible with several ma-
jor deep learning frameworks (PyTorch, Tensorflow,
and Jax)1.

3. We evaluate well-known lifelong learning algorithms
on the benchmark and highlight their strengths and
limitations, while ensuring that the models are com-
pared in a fair and standardized setup.

1https://chandar-lab.github.io/IIRC/
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2. Incremental Implicitly-Refined Classifica-
tion (IIRC)

While class incremental learning is a challenging and
close-to-real-life formulation of the lifelong learning setup,
most existing benchmarks do not explore the full breadth
of the complexity. They tend to over-focus on catastrophic
forgetting (which is indeed an essential aspect) at the ex-
pense of several other unique challenges to the class in-
cremental learning. In this work, we highlight those chal-
lenges and propose the Incremental Implicitly-Refined Clas-
sification (IIRC) setting, an extension of the class incremen-
tal learning setting, that enables us to study these under-
explored challenges, along with the other well-known chal-
lenges like catastrophic forgetting. We provide an instanti-
ation of the setup, in the form of a benchmark, and evaluate
several well-known lifelong learning algorithms on it.

2.1. Under-explored challenges in class incremental
learning setting

In class incremental learning, the model encounters new
classes as it trains over new tasks. The nature of the class
distributions and the relationship between classes (across
tasks) can lead to several interesting challenges for the
learning model: If the model is trained on a high-level label
(say “bear”) in the initial task and then trained on a low-
level label, which is a refined category of the previous label
(say “polar bear”), what kind of associations will the model
learn and what associations will it forget? Will the model
generalize and label the images of polar bear as both “bear”
and “polar bear”? Will the model catastrophically forget
the concept of “bear”? Will the model infer the spurious
correlation: “all bears are polar bears”? What happens if
the model sees different labels (at different levels of gran-
ularity) for the same sample (across different tasks)? Does
the model remember the latest label or the oldest label or
does it remember all the labels? These challenges can not
be trivially overcome by removing restrictions on memory
or replay buffer capacity (as we show in Section 6).

2.2. Terminology

We describe the terminology used in the paper with the
help of an example. As shown in Figure 2, at the start, the
model trains on data corresponding to classes “bear”, “bus”
and “dog”. Training the model on data corresponding to
these three classes is the first task. After some time, a new
set of classes (“polar bear”, “lamp” and “whippet”) is en-
countered, forming the second task. Since “whippet” is a
type of “dog”, it is referred as the subclass, while “dog”
is refereed as the superclass. The “dog-whippet” pair is
referred to as the superclass-subclass pair. Note that not
all classes have a superclass (example “lamp”). We refer
to these classes as subclasses as well, though they do not

have any superclasses. When training the model on an ex-
ample of a “whippet”, we may provide only “whippet” as
the supervised learning label. This setup is referred to as
the incomplete information setup, where if a task sample
has two labels, only the label that belongs to the current
task is provided. Alternatively, we may provide both “whip-
pet” and “dog” as the supervised learning labels. This setup
is referred as the complete information setup, where if a
task sample has two labels, labels that belong to the cur-
rent and previous tasks are provided. Note that majority of
our experiments are performed in the incomplete informa-
tion setup as that is closer to the real life setup, requiring the
model to recall the previous knowledge when it encounters
some new information about a known entity. We want to
emphasize that the use of the word task in our setup refers
to the arrival of a new batch of classes for the model to train
on in a single-head setting, and so it is different from it’s
use to indicate a distinct classification head in the task in-
cremental learning.

As the model is usually trained in an incomplete infor-
mation setup, it would need access to a validation set to
monitor the progress in training that is still an incomplete
information set, otherwise there would be some sort of la-
bels leakage. On the other hand, after training on a specific
task, the model has to be be evaluated on a complete infor-
mation set, hence a complete information validation set is
needed to be used during the process of model development
and tweaking, so as to not overfit on the test set. We pro-
vide both in the benchmark, where we call the first one the
in-task validation set, while the latter one the post-task
validation set.

2.3. Setup

We describe the high-level design of the IIRC setup (for
a visual illustration, see Figure 2). We have access to a se-
ries ofN tasks denoted as T1, · · · , TN . Each task comprises
of three collections of datasets, for training, validation and
testing. Each sample can have one or two labels associated
with it. In the case of two labels, one label is a subclass and
the other label is a superclass. For any superclass-subclass
pair, the superclass is always introduced in an earlier task,
with the intuition that a high-level label should be relatively
easier to learn. Moreover, the number of samples for a su-
perclass is always more than the number of samples for a
subclass (it increases with the number of subclasses, up to
a limit). During training, we always follow the incomplete
information setup. During the first task, only a subset of su-
perclasses (and no sublcasses) are used to train the model.
The first task has more classes (and samples), as compared
to the other tasks and it can be seen as a kind of pretraining
task. The subsequent tasks have a mix of superclasses and
subclasses. During the training phase, the model is evalu-
ated on the in-task validation set (with incomplete informa-
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tion), and during the evaluation phase, the model is eval-
uated on the post-task validation set and the test set (both
with complete information).

3. Related Work
Lifelong Learning is a broad, multi-disciplinary, and ex-

pansive research domain with several synonyms: Incremen-
tal Learning [42], Continual Learning [48], and Never End-
ing Learning [35]. One dimension for organizing the ex-
isting literature is whether the model has access to explicit
task delimiters or not, where the former case is referred to
as task incremental learning, and the latter case, which is
closely related to our setup IIRC, is referred to as class in-
cremental learning.

In terms of learning methods, there are three main ap-
proaches [23]: i) replay based, ii) regularization based, and
iii) parameter isolation methods. Parameter isolation meth-
ods tend to be computationally expensive and require ac-
cess to a task identifier, making them a good fit for the
task incremental setup. Prominent works that follow this
approach include Piggyback [29], PackNet [30], HAT [43],
TFM [32], DAN [40], PathNet [14]. The replay and regu-
larization based approaches can be used with both task and
class incremental setups, however, replay based approaches
usually perform better in the class incremental setup [31].
Among the regularization based approaches, LwF [24] uses
finetuning with distillation. LwM [13] improves LwF by
adding an attention loss. MAS [2], EWC [21], SI [52] and
RWalk [8] estimate the importance of network parameters,
and penalize changes to important ones. As for the re-
play based approaches, iCaRL [38] is considered an impor-
tant baseline in the field. iCaRL selects exemplars for the
replay buffer using herding strategy, and alleviates catas-
trophic forgetting by using distillation loss during training,
and using a nearest-mean-of-exemplars classifier during in-
ference. EEIL [7] modifies iCaRL by learning the feature
extractor and the classifier jointly in an end to end manner.
LUCIR [20] applies the distillation loss on the normalized
latent space rather than the output space, proposes to re-
place the standard softmax layer with a cosine normaliza-
tion layer, and uses a margin ranking loss to ensure a large
margin between the old and new classes. Other works in-
clude LGM [37], IL2M [6], BIC [51], and ER [39]. GEM
is another replay-based method, which solves a constrained
optimization problem. It uses the replay buffer to constrain
the gradients on the current task so that the loss on the pre-
vious tasks does not increase. A-GEM [9] improves over
GEM by relaxing some of the constraints, and hence in-
creasing the efficiency, while retaining the performance. Fi-
nally, [10] shows that vanilla experience replay, where the
model simply trains on the replay buffer along with the new
task data, is by itself a very strong baseline. In this work,
we include variants of iCaRL, LUCIR, A-Gem, and vanilla

experience replay as baselines.
We propose a benchmark for evaluating a model’s per-

formance in the IIRC setup, as having a realistic, standard-
ized, and large-scale benchmark helps provide a fair and
reproducible comparison for the different approaches. Ex-
isting efforts for benchmarking the existing lifelong learn-
ing setups include CORe50 benchmark [25], and [4] that
proposes a benchmark for continual few-shot learning.

Our work is also related to knowledge (or concept) drift,
where the statistical properties of the data changes over time
and old knowledge can become “irrelevant” [28, 27]. Un-
like those works, we focus on learning new associations and
updating existing associations as new tasks are learnt. As
the model acquires new knowledge, the old knowledge does
not become ‘irrelevant”. Recently, BREEDS [41] proposed
a benchmark to evaluate model’s generalization capabilities
in the context of subpopulation shift. Specifically, they de-
fine a hierarchy and train the model on samples correspond-
ing to some subpopulations (e.g. “poodles” and “terriers”
are subpopulations of “dogs”). The model is then evaluated
on samples from an unseen subpopulation. e.g. it should la-
bel “dalmatians” as “dogs”. While at a quick glance, IIRC
might appear similar to BREEDS, there are several differ-
ences. IIRC focuses on the lifelong learning paradigm while
BREEDS focuses on generalization. Moreover, the training
and evaluation setups are also different. If we were to ex-
tend the dogs example to IIRC, the model may first train
on some examples of “poodles“ and “terriers” (labeled as
“dogs”). In the next task, it may train on some exampled of
“poodles” (labeled as “poodles”). When the model is eval-
uated on both tasks, it should predict both labels (“poodles”
and “dogs”) for the images of poodles.

4. Benchmark

4.1. Dataset

We use two popular computer vision datasets in our
benchmark - ImageNet [12] and CIFAR100 [22]. For both
the datasets, we create a two-level hierarchy of class labels,
where each label starts as a leaf-node and similar labels are
assigned a common parent. The leaf-nodes are the sub-
classes and the parent-nodes are the super-classes. Some
of the subclasses do not have a corresponding superclass,
so as to enrich the setup and make it more realistic. While
the datasets come with a pre-defined hierarchy (e.g. Im-
ageNet follow the WordNet hierarchy), we develop a new
hierarchy as the existing hierarchy focuses more on the se-
mantics of the labels and less on the visual similarity (e.g,
“sliding door” and “fence” are both grouped under “barri-
ers”). We refer to these adapted datasets as IIRC-ImageNet
and IIRC-CIFAR.

In IIRC-CIFAR, each superclass has similar number of
subclasses (four to eight). However, the sub-class distri-
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Figure 3. The distribution of the number of subclasses per super-
class on IIRC-Imagenet.

bution for IIRC-ImageNet is very skewed (Figure 3) and
number of sublcasses varies from 3 to 118. We explicitly
decided not to fix this imbalance to ensure that visually sim-
ilar classes are grouped together. Moreover, in the real life,
not all classes are observed at the same frequency, making
our setup more realistic. More statistics and the full class
hierarchies for both IIRC-ImageNet and IIRC-CIFAR are
provided in Appendix-C and G.

As mentioned in Section 2, we use two validation sets -
one with incomplete information (for model selection and
monitoring per-task performance) and one with complete
information (for the model evaluation after each task). Each
validation dataset comprises 10% of the training data for CI-
FAR, and 4% of the training data for ImageNet, and is fixed
through all the runs. Some aggregate information about the
splits is provided in Table 1 in Appendix.

Since we are creating the class hierarchy, superclasses
do not have any samples assigned to them. For the train-
ing set and the in-task validation set, we assign 40% of
samples from each subclass to its superclass, while retain-
ing 80% of the samples for the subclass. This means that
subclass-superclass pairs share about 20% of the samples
or, for 20% of the cases, the model observes the same
sample with different labels (across different tasks). Since
some superclasses have an extremely large number of sub-
classes, we limit the total number of samples in a super-
class. A superclass with more than eight subclasses, uses

8
number of subclasses × 40% of samples from its subclasses. We
provide the pseudo code for the dataloader in Appendix F.

Now that we have a dataset with superclasses and sub-
classes, and with samples for both kind of classes, the tasks
are created as follows: The first task is always the largest
task with 63 superclasses for IIRC-ImageNet and 10 super-
classes for IIRC-CIFAR. In the supsequent tasks, each new
task introduces 30 classes for IIRC-ImageNet and 5 classes
for IIRC-CIFAR. Recall that each task introduces a mix of
superclasses and subclasses. IIRC-ImageNet has a total of
35 tasks, while IIRC-CIFAR has a total of 22 tasks. Since
the order of classes can have a bearing on the models’ eval-
uation, we create 5 preset class orders (called task config-
urations) for IIRC-ImageNet and 10 task configurations for
IIRC-CIFAR, and report the average (and standard devia-

tion) of the performance on these configurations.
Finally, we acknowledge that while IIRC-ImageNet pro-

vides interesting challenges in terms of data diversity, train-
ing on the dataset could be difficult and time consuming.
Hence, we provide a shorter, lighter version which has just
ten tasks (with five tasks configurations). We shall call the
original version IIRC-ImageNet-full, and the lighter version
IIRC-ImageNet-lite, while referring to both collectively as
IIRC-ImageNet. Although we do not recommend the use
of this lighter version for benchmarking the model perfor-
mance, we hope that it will make it easier for others to per-
form quick, debugging experiments. We report all the met-
rics on IIRC-ImageNet-lite as well.

4.2. Metrics

Most lifelong learning benchmarks operate in the single-
label classification setup, making accuracy the appropriate
metric. In our setup, the model should be able to predict
multiple labels for each sample, even if those labels are
seen across different tasks. We considered using the Exact-
Match Ratio (MR) metric [46], a multi-label extension of
the accuracy metric. MR is defined as 1

n

∑n
i=1 I(Yi ==

Ŷi) where I is the indicator function, Ŷi are the set of
(model) predictions for the ith sample, Yi are the ground
truth labels, and n is the total number of samples. One lim-
itation is that it does not differentiate between partially in-
correct predictions and completely incorrect predictions.

Another popular metric (for multi-label classification) is
the Jaccard similarity(JS), also called “intersection over
union”[46]. JS is defined as 1

n

∑n
i=1

|Yi∩Ŷi|
|Yi∪Ŷi|

. To further
penalize the imprecise models, we weight the Jaccard simi-
larity by the per sample precision (i.e., the ratio of true pos-
itives over the sum of true positives and false positives). We
refer to this metric as the precision-weighted Jaccard simi-
larity (pw-JS).

We measure the performance of a model on task k af-
ter training on task j using the precision-weighted Jaccard
similarity, denoted Rjk, as follow:

Rjk =
1

nk

nk∑
i=1

|Yki ∩ Ŷki|
|Yki ∪ Ŷki|

× |Yki ∩ Ŷki|
|Ŷki|

, (1)

where (j ≥ k), Ŷki is the set of (model) predictions for the
ith sample in the kth task, Yki are the ground truth labels,
and nk is number of samples in the task. Rjk can be used
as a proxy for the model’s performance on the kth task as it
trains on more tasks (i.e. as the j increases).

We evaluate the overall performance of the model after
training till the task j, as the average precision-weighted
Jaccard similarity over all the classes that the model has
encountered so far. Note that during this evaluation, the
model has to predict all the correct labels for a given sample,
even if the labels were seen across different tasks (i.e. the
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Figure 4. Average performance using the precision-weighted Jaccard Similarity. (left) IIRC-Imagenet-lite and (right) IIRC-Imagenet-full.
We run experiments on five different task configurations and report the mean and standard deviation.

evaluation is performed in the complete information setup).
We denote this metric as Rj and computed it as follow:

Rj =
1

n

n∑
i=1

|Yi ∩ Ŷi|
|Yi ∪ Ŷi|

× |Yi ∩ Ŷi|
|Ŷi|

, (2)

where n is the total number of evaluation samples for all the
tasks seen so far.

5. Baselines

We evaluate several well-known lifelong learning base-
lines. We also consider two training setups where the model
has access to all the labels for a given sample (complete in-
formation setup): i) joint where the model is jointly trained
on all the classes/tasks at once and ii) incremental joint
where as the model trains across tasks, it has access to all
the data from the previous tasks in a complete informa-
tion setup. In the Finetune baseline, the model continues
training on new batches of classes without using any replay
buffer. Vanilla Experience Replay (ER) method finetunes
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Figure 5. Average performance on IIRC-CIFAR. We run experi-
ments on ten different task configurations and report the mean and
standard deviation.

the model on new classes, while keeping some older sam-
ples in the replay buffer and rehearsing on them. Experi-
ence Replay with infinite buffer (ER-infinite) is similar
to incremental joint, but in incomplete information setup as
in ER. This means that if a new label is introduced that ap-
plies to an old sample, the target for that sample will be
updated with that new label in the incremental joint base-
line but not in the ER-infinte baseline . We also have A-
GEM [9] that is a constrained optimization method in the
replay-based methods category. It provides an efficient ver-
sion of GEM [26] by minimizing the average memory loss
over the previous tasks at every training step. Another base-
line is iCaRL [38] that proposed using the exemplar re-
hearsal along with a distillation loss. LUCIR [20] is a
replay-based class incremental method that alleviates the
catastrophic forgetting and the negative effect of the im-
balance between the older and newer classes. More details
about the baselines can be found in Appendix-B.

5.1. Model Adaptations

The earlier-stated baselines were proposed for the single
label class incremental setup, while IIRC setup requires the
model to be able to make multi-label predictions. There-
fore, some changes have to be applied to the different mod-
els to make them applicable in the IIRC setup. To this end,
we use the binary cross-entropy loss (BCE) as the classifi-
cation loss. This loss is averaged by the number of observed
classes so that it doesn’t increase as the number of classes
increases during training. During prediction, a sigmoid acti-
vation is used and classes with values above 0.5 are consid-
ered the predicted labels. Using the nearest-mean-classifier
strategy for classifying samples in iCaRL is not feasible for
our setting, as the model should be able to predict a variable
number of labels. To overcome this issue, we use the output
of the classification layer, which was used during training,
and call this variant as iCaRL-CNN. We further consider a
variant of iCaRL-CNN, called iCaRL-norm, which uses co-
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Figure 6. Per task performance over the test samples of a specific task j, after training on that task (Rjj using Equation 1). (left) IIRC-
Imagenet-full and (right) IIRC-CIFAR.

sine normalization in the last layer. [20] suggests that using
this normalization improves the performance in the context
of incremental learning. Hence the classification score is
calculated as:

pi(x) = σ(η〈θ̄i , f̄(x)〉) , (3)

where σ is the sigmoid function, θ̄i are the normalized
weights of the last layer that correspond to label i, and f̄(x)
is the output of the last hidden layer for sample x. η is a
learnable scalar that controls the peakiness of the sigmoid.
It is important to have η since 〈θ̄i , f̄(x)〉 is restricted to
[−1, 1]. We can either fix the η or consider it as a learn-
able parameter. We observed that learning η works better in
practice.

6. Experiments
We design our experimental setup to surface challenges

that lifelong learning algorithms face when operating in the
IIRC setup. Our goal is neither to develop a new state-of-
the-art model nor to rank existing models. We aim to high-
light the strengths and weakness of the dominant lifelong
learning algorithms, with the hope that this analysis will
spur new research directions in the field. We use the ResNet
architecture [17], with ResNet-50 for IIRC-ImageNet and
reduced ResNet-32 for IIRC-CIFAR. Additional implemen-
tation details and hyperparameters can be found in Sec-
tion A in the Appendix. Data used to plot the figures is
provided in Appendix H for easier future comparisons.

6.1. Results and Discussion

We start by analyzing how well does the model perform
over all the observed classes as it encounters new classes.
Specifically, as the model finishes training on the jth task,
we report the average performance Rj , as measured by the
pw-JS metric using Equation 2, over the evaluation set of all
the tasks the model has seen so far (Figures 4 and 5). Recall

that when computing Rj , the model has to predict all the
correct labels for a given sample, even if the labels were
seen across different tasks. This makes Rj a challenging
metric as the model can not achieve a good performance
just by memorizing the older labels, but it has to learn the
relationship between labels.

In Figures 4 and 5, we observe that the iCaRL-CNN and
iCaRL-norm models perform relatively better than the other
methods, with iCaRL-norm having the edge in the case of
IIRC-ImageNet. However, this trend does not describe the
full picture, as the iCaRL family of models is usually pre-
dicting more labels (some of which are incorrect). This be-
haviour can be observed for the IIRC-CIFAR setup in Fig-
ure 7(c) where they tend to predict too many labels incor-
rectly, which penalize their performance with respect to the
PW-JS metric as opposed to the JS metric (see Figure A.8 in
the Appendix). We also note that A-GEM model performs
poorly in the case of IIRC-CIFAR, even when compared
to vanilla ER, and hence we didn’t run A-GEM on IIRC-
Imagenet.

One thing to notice in Figure 5, is the discrepancy be-
tween the performance of the ER-infinite baseline and the
incremental joint baseline. Recall from section 5 that al-
though both baselines don’t discard previous tasks sam-
ples, incremental joint is using the complete information
setup, and hence it updates the older samples with the newly
learned labels if applicable, while ER-infinite is using the
incomplete information setup. This result tells us that deal-
ing with the memory constraint is not sufficient by itself for
a model to be able to perform well in the IIRC setup.

In lifelong learning setups, the model should retain the
previous knowledge as it learns new tasks. Our setup is even
more challenging because the model should not only retain
previous knowledge, but it should incorporate the new la-
bels as well in this previous knowledge. In Figure A.9 and
A.10, we track how well the model performs on a specific
task, as it is trained on subsequent tasks. Unlike the stan-
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(a) ground truth (b) ER (c) iCaRL-norm (d) LUCIR

Figure 7. Confusion matrix after training on task 10 of IIRC-CIFAR. The y-axis is the correct label (or one of the correct labels). The
x-axis is the model predicted labels. Labels are arranged by their order of introduction. Only 25 labels are shown for better visibility. See
Appendix D.2 for the full resolution figures with labels.

dard class incremental setup, the model should be able to
re-associate labels across different tasks to keep perform-
ing well on a previous task. The key takeaway is that,
while the baselines are generally expected to reasonably al-
leviate catastrophic forgetting, their performance degrades
rapidly as the model trains on more tasks. ER’s poor per-
formance may be accounted for by two hypothesis: i) The
model is trained on a higher fraction of samples per class for
classes that belong to the current task, than those of previ-
ous tasks, causing bias towards newer classes. ii) The model
sometimes gets conflicting supervising signal, as the model
might observe samples that belong to the same subclass (ex.
“polar bear”), once with the superclass label from the buffer
(“bear”), and another with the subclass label from the cur-
rent task data (“polar bear’), and it doesn’t connect these
two pieces of information together. In the case of LUCIR,
we hypothesize that the model’s performance deteriorates
because the model fails to learn new class labels. We con-
firm this hypothesis in Figure 6 and Figure A.15, where we
observe that while the model is able to retain the labels en-
countered in the previous tasks, it is not able to learn the la-
bels it encounters during the new tasks. We can see as well
in Figure 6 the performance of each model on the current
task j, after training on that task (Rjj using Equation 1).
The general trend is that the less a model is regularized, the
higher it can perform on the current task, which is intuitive.

Some other important questions are whether the model
correctly associates the newly learned subclass labels to
their previously learned superclass, and whether it incor-
rectly associates the newly learned subclass label with other
previously learned subclasses (that have the same super-
class). We dig deeper into the confusion matrix (Figure 7)
for the predictions of the different models after training on
ten tasks of IIRC-CIFAR. Note that in Figure 7, the lower
triangular matrix shows the percentage the model predicts
older labels for the newly introduced classes, while the up-
per triangular matrix represents the percentage the model
predict newer labels to older classes, with the ground truth

being Figure 7(a). The ER method predictions always lie
within the newly learned labels (last five classes), as shown
in Figure 7(b)) The iCaRL-norm model, as shown in Fig-
ure 7(c), performs relatively well in terms of associating
(previosuly learned) superclasses to (newly learned) sub-
classes. For example, whales are always correctly labeled
as aquatic mammals, and pickup trucks are correctly labeled
as vehicles 94% of the time. However, these models learn
some spurious associations as well. For instance, “televi-
sion” is often mislabeled as “food containers”. Similarly,
the model in general correctly associates newer subclasses
with older superclasses, but many times it incorrectly as-
sociates the subclasses (eg associating “ aquatic mammals”
with “whales” 48% of the time and “vehicles” with “pickup
trucks” 44% of the time, while by looking at figure 7(a),
we see that they only represent 20% and 12.5% of their su-
perclasses respectively) The LUCIR model provides accu-
rate superclass labels to the subclasses. This is shown in
Figure 7(d) where LUCIR follows the trends of the ground
truth more closely than iCaRL-norm in the lower trianglu-
lar part of the confusion matrix. However, it fails to learn
new associations. We provide more instances of such plots
in the Appendix D.1, which shows that the observed trends
are quite general. The full resolution figures for Figure 7
are provided in Appendix D.2.

Finally, we provide some ablations for the effect of the
buffer size using ER in Appendix E. We can see that using
ER even with a buffer size of 100 samples per class gives
very poor performance in the case of IIRC-ImageNet, and
hence a smarter strategy is needed for this setup.

7. Conclusion

We introduced the “Incremental Implicitly-Refined Clas-
sification (IIRC)” setup, a novel extension for the class in-
cremental learning setup where incoming batches of classes
have labels at different granularity. Our setup enables study-
ing different challenges in the lifelong learning setup that
are difficult to study in the existing setups. Moreover, we
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proposed a standardized benchmark for evaluating the dif-
ferent models on the IIRC setup. We analyze the perfor-
mance of several well-known lifelong learning models to
give a frame of reference for future works and to bring out
the strengths and limitations of different approaches. We
hope this work will provide a useful benchmark for the com-
munity to focus on some important but under-studied prob-
lems in lifelong learning.
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Appendix

A. Models Hyperparameter Details
We use SGD as optimizer, as it performs better in the continual learning setups [34], with a momentum value of 0.9. For

the IIRC-CIFAR experiments, The learning rate starts with 1.0 and is decayed by a factor of 10 on plateau of the performance
of the peri-task validation subset that corresponds to the current task. For the IIRC-ImageNet experiments, the learning rate
starts with 0.5 in the case of iCaRL-CNN and iCaRL-norm, and 0.1 in the case of finetune, ER and LUCIR, and is decayed
by a factor of 10 on plateau. The number of training epochs per task is 140 for IIRC-CIFAR and 100 for IIRC-ImageNet,
with the first task always trained for double the number of epochs (due to its larger size). We set the batch size to 128 and the
weight decay parameter to 1e− 5. Moreover, We set the A-GEM memory batch size, which is used to calculate the reference
gradient, to 128. For LUCIR, the margin threshold m is set to 0.5, and λbase is set to 5. All the hyperparameters were tuned
based on the validation performance in experiments that include only the first four tasks.

During training, data augmentations are applied as follows: for IIRC-ImageNet, a random crop of size (224 × 224) is
sampled from an image, a random horizontal flip is applied, then the pixels are normalized by a pre-calculated per-channel
mean and standard deviation. In IIRC-CIFAR, a padding of size 4 is added to each size, then a random crop of size (32× 32)
is sampled, a random horizontal flip is applied, then the pixels are normalized.

We keep a fixed number of samples per class in the replay buffer (20, except otherwise indicated). Hence, the capacity
increases linearly as the model learns more classes. These samples are chosen randomly, except for iCaRL and LUCIR
which use the herding approach. IIRC-CIFAR experiments are averaged over ten task configurations and the each version of
IIRC-ImageNet is averaged over 5 task configurations (see 4 for details).

B. Baselines Details
Following are three well known baselines that we used to evaluate in the IIRC setup along other baselines including

finetune, joint and incremental joint, Vanilla Experience Re-play (ER), and Experience Replay with infinite buffer (ER-
infinite).

iCaRL: iCaRL [38] was among the first deep learning methods to use exemplar rehearsal in order to alleviate the catas-
trophic forgetting in the class incremental learning setup. iCaRL model updates the model parameters using the distillation
loss, where the outputs of the previous network are used as soft labels for the current network. Moreover, it uses the nearest-
mean-of-exemplars classifications (NMC) strategy to classify test samples during inference. Since it is difficult to use NMC
when the number of labels is variable (not a single label setup), we use the classification layer used during training during
inference as well.

Unified learning via rebalancing (LUCIR): LUCIR [20] is a class incremental method that exploits three components to
alleviate the catastrophic forgetting and reduce the negative effect of the imbalance between the old and new classes, since
the number of samples in the replay buffer is much less than the current task samples. LUCIR uses the cosine normalization
to get balanced magnitudes for classes seen so far. It also uses the less forget constraint, where the distillation loss is applied
in the feature space instead of the output space, and a margin ranking loss to ensure interclass separation.

A-GEM: A-GEM [9] is an improved version of GEM that is a constrained optimization method in the Replay-based
approach. GEM uses memory to constrain gradients so as to update the model parameters to not interfere with previous
tasks. GEM is a very computationally expensive approach that is not applicable to the large-scale setup. Hence, Averaged
GEM (A-GEM) provides an efficient version of GEM, where it only requires computing the gradient on a random subset of
memory examples, and it does not need as well to solve any quadratic program but just an inner product. Since A-GEM is a
very well known constrained optimization method that has reasonable guarantees in terms of average accuracy in comparison
to GEM, we selected it as a candidate to evaluate its performance in our more realistic large scale setting.
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C. IIRC Dataset Statistics

with duplicates without duplicates
dataset train in-task validation train in-task validation post-task validation test

IIRC-CIFAR 46,160 5,770 40,000 5,000 5,000 10,000
IIRC-Imagenet-full 1,215,123 51,873 1,131,966 48,802 51,095 49,900

Table 1. The number of samples for each split of the training set. with duplicates represents the number of samples including the dublicates
between some superclasses and their subclasses (the samples that the model see two times with two different labels). This doesn’t happen
for the post-task validation set and test set as they are in the complete information setup

dataset superclasses subclasses (under superclasses) subclasses (with no superclasses) total

IIRC-CIFAR 15 77 23 115
IIRC-Imagenet-full 85 788 210 1083

Table 2. For each dataset, these are the number of superclasses, the number of subclasses that belong to these superclasses, the number of
subclasses that don’t have a superclass, and the total number of superclasses and subclasses

dataset superclass num of subclasses superclass size subclass subclass size

IIRC-CIFAR vehicles 8 1,280 bus 320
IIRC-CIFAR small mammals 5 800 squirrel 320
IIRC-CIFAR - - - mushroom 400

IIRC-ImageNet bird 58 3,762 ostrich 956
IIRC-ImageNet big cat 6 2,868 leopard 956
IIRC-ImageNet keyboard instrument 4 1,912 grand piano 956
IIRC-ImageNet - - - wooden spoon 1,196

Table 3. Several examples for classes and the number of samples they have in the training set. The subclass on the right is a subclass that
belongs to the superclass on the left. The left side is blank for subclasses that have no superclasses.
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D. More Figures
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Figure A.8. Average performance on IIRC-CIFAR. (left) the precision-weighted Jaccard Similarity and (right) the Jaccard Similarity. We
run experiments ten times using ten different task configurations to report the performance with the mean and the standard deviation.
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(b) Task 5
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(c) Task 10
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(d) Task 15

Figure A.9. IIRC-ImageNet-full Performance on four middle tasks throughout the whole training process, to measure their catastrophic
forgetting and backward transfer. Note that a degradation in performance is not necessarily caused by catastrophic forgetting, as a new
subclass of a previously observed superclass might be introduced and the model would be penalized for not applying that label retroactively.
We run experiments on ten different task configurations and report the performance with the mean and the standard deviation.
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(b) Task 5
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(c) Task 10
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(d) Task 15

Figure A.10. IIRC-CIFAR Performance on four middle tasks throughout the whole training process, to measure their catastrophic forgetting
and backward transfer. Note that a degradation in performance is not necessarily caused by catastrophic forgetting, as a new subclass of
a previously observed superclass might be introduced and the model would be penalized for not applying that label retroactively. We run
experiments on ten different task configurations and report the performance with the mean and the standard deviation.
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D.1. Confusion Matrix Over time

(a) After task 0 (b) After task 1 (c) After task 5 (d) After task 10

Figure A.11. Ground Truth confusion matrix after introducing tasks 0, 1, 5, 10 of IIRC-CIFAR respectively. The y-axis is the correct label
(or one of the correct labels). The x-axis is the model predicted labels. Labels are arranged by their order of introduction. Only 25 labels
are shown for better visibility.

(a) After task 0 (b) After task 1 (c) After task 5 (d) After task 10

Figure A.12. ER confusion matrix after introducing tasks 0, 1, 5, 10 of IIRC-CIFAR respectively. The y-axis is the correct label (or one of
the correct labels). The x-axis is the model predicted labels. Labels are arranged by their order of introduction. Only 25 labels are shown
for better visibility.

(a) After task 0 (b) After task 1 (c) After task 5 (d) After task 10

Figure A.13. iCaRL-CNN confusion matrix after introducing tasks 0, 1, 5, 10 of IIRC-CIFAR respectively. The y-axis is the correct label
(or one of the correct labels). The x-axis is the model predicted labels. Labels are arranged by their order of introduction. Only 25 labels
are shown for better visibility.
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(a) After task 0 (b) After task 1 (c) After task 5 (d) After task 10

Figure A.14. iCaRL-norm confusion matrix after introducing tasks 0, 1, 5, 10 of IIRC-CIFAR respectively. The y-axis is the correct label
(or one of the correct labels). The x-axis is the model predicted labels. Labels are arranged by their order of introduction. Only 25 labels
are shown for better visibility.

(a) After task 0 (b) After task 1 (c) After task 5 (d) After task 10

Figure A.15. LUCIR confusion matrix after introducing tasks 0, 1, 5, 10 of IIRC-CIFAR respectively. The y-axis is the correct label (or
one of the correct labels). The x-axis is the model predicted labels. Labels are arranged by their order of introduction. Only 25 labels are
shown for better visibility.
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D.2. Full Resolution Confusion Matrix

Figure A.16. Confusion matrix (ground truth) after training on task 10 of IIRC-CIFAR. the y-axis is the correct label (or one of the correct
labels), the x-axis is the model predicted labels, The classes are arranged by their order of introduction. Only 25 classes are shown for
better visibility. The y-axis represents the true label (or one of the true labels), while the x-axis represents the model predictions.
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Figure A.17. Confusion matrix (ER) after training on task 10 of IIRC-CIFAR. the y-axis is the correct label (or one of the correct labels),
the x-axis is the model predicted labels, The classes are arranged by their order of introduction. Only 25 classes are shown for better
visibility. The y-axis represents the true label (or one of the true labels), while the x-axis represents the model predictions.
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Figure A.18. Confusion matrix (iCaRL-norm) after training on task 10 of IIRC-CIFAR. The x-axis is the model predicted labels, The
classes are arranged by their order of introduction. Only 25 classes are shown for better visibility. The y-axis represents the true label (or
one of the true labels), while the x-axis represents the model predictions.
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Figure A.19. Confusion matrix (LUCIR) after training on task 10 of IIRC-CIFAR. The x-axis is the model predicted labels, The classes are
arranged by their order of introduction. Only 25 classes are shown for better visibility. The y-axis represents the true label (or one of the
true labels), while the x-axis represents the model predictions.
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E. Effect of Buffer
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Figure A.20. Imagenet average performance using different buffer sizes, The number next to ER indicates the number of samples per class
used for the replay buffer
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Figure A.21. CIFAR average performance using different buffer sizes, The number next to ER indicates the number of samples per class
used for the replay buffer
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F. Pseudo Codes

Algorithm 1: IncrementalTrain
Require: tasks // A list of the classes to-be-introduced at each task
trainSet, validSetinTask, validSetpostTask, testSet← LoadDatasets()
model← CreateModel()
/* create an empty buffer */
buffer← CreateBuffer()
for task in tasks do

model← TrainOnTask(model, buffer, trainingSet, validSetinTask)
/* add randomly selected samples to buffer */
buffer← AddToBuffer (buffer, trainingSet)
PostTaskEvaluate(model, validSetpostTask, testSet)

end

Algorithm 2: LoadDatasets
input : rawDatatrain // The default single-label full dataset (train)
input : rawDatatest // The default single-label full dataset (test)
input : classHierarchy // A dictionary that maps each superclass to its constituent subclasses
multilabeledDatatrain← AddSuperclassLabels(rawDatatrain, classHierarchy)
multilabeledDatatest← AddSuperclassLabels(rawDatatest, classHierarchy)

multilabeledDatatrain, multilabeledDatavalidinTask
, multilabeledDatavalidpostTask

←
SplitData(multilabeledDatatrain)

trainSet← IncompleteInfoIncrementalDataset(multilabeledDatatrain)
validSetinTask ← IncompleteInfoIncrementalDataset(multilabeledDatavalidinTask

)
validSetpostTask ← CompleteInfoIncrementalTestDataset(multilabeledDatavalidpostTask

)
testSet← CompleteInfoIncrementalTestDataset(multilabeledDatatest)
output : trainSet // The incomplete information incremental learning training set
output : validSetinTask // The incomplete information incremental learning validation set (for in-task

performance)
output : validSetpostTask // The complete information incremental learning validation set (for post-task

performance)
output : testSet // The complete information incremental learning test set
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Algorithm 3: IncompleteInfoIncrementalDataset
input : multilabelData // A list of samples with each sample in the form of (image,

(superclassLabel, subclassLabel)) or (image, (subclassLabel)))
input : superclassToSubclass // a mapping that maps superclasses to their constituent subclasses
input : tasks // The classes to-be-introduced at each task
Require: subclasses // All refined subclasses (those who have a superclass as well as those who don’t)
output : a dataset object with the data changing along the tasks

Initialization:
classToDataIndices← EmptyDictionary
currentTaskId← 0
dataIndicestask ← []
for subclass in subclasses do

/* get the indices of the samples which correspond to this subclass */
dataIndicessubclass← GetSamplesIndices(mtultilabelData, subclass)
if subclass has superclass then

dataSubsetLengthsuperclass← 0.4 * Length(dataIndicessubclass)
dataSubsetLengthsubclass← 0.8 * Length(dataIndicessubclass)
dataIndicessubclass← Shuffle(dataIndicessubclass)
dataSubsetIndicessubclass← dataIndicessubclass[:dataSubsetLengthsubclass]
dataSubsetIndicessuperclass← dataIndicessubclass[-dataSubsetLengthsuperclass:]
classToDataIndices[subclass]← dataIndicessubclass
classToDataIndices[superclass]← classToDataIndices[superclass] ∪ dataSubsetIndicessuperclass

end
else if subclass has no superclass then

classToDataIndices[subclass]← dataIndicessubclass
end

end

IncrementTask:
currentTaskId← currentTaskId+ 1
dataIndicestask ← []
for class in tasks[currentTaskId] do

dataIndicestask ← dataIndicestask ∪ classToDataIndices[class]
end

GetItem:
Require: classestask // The classes present in the current task
input : index // an index in the range of length of dataIndicestask
image, labels←multilabelData[dataIndicestask[index]]
label← labels ∩ classestask
output : image // The sample image
output : label // The label corresponding to this image that exists in the current task
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Algorithm 4: CompleteInfoIncrementalTestDataset
input : multilabelData // A list of samples with each sample in the form of (image,

(superclassLabel, subclassLabel)) or (image, (subclassLabel)))
input : superclassToSubclass // a mapping that maps superclasses to their constituent subclasses
input : tasks // The classes available at each task
Require: subclasses // All refined subclasses (those who have a superclass as well as those who don’t)
output : a test dataset object which keeps collecting data along the tasks

Initialization:
classToDataIndices← empty dictionary
classesobserved← []
dataIndicesaccessible ← []
for subclass in subclasses do

/* get the indices of the samples which correspond to this subclass */
dataIndicessubclass← GetSamplesIndices(multilabelData, subclass)
classToDataIndices[subclass]← dataIndicessubclass
if subclass has superclass then

classToDataIndices[superclass]← classToDataIndices[superclass] ∪
classToDataIndices[subclass]

end
end

LoadTask
input : taskId // The index of the task to load
dataIndicesaccessible← []
classesobserved← classesobserved ∪ tasks[taskId]
for class in tasks[taskId] do

dataIndicesaccessible← dataIndicesaccessible ∪ classToDataIndices[class]
end

LoadAllObservedData
Require: classesobserved // All classes observed till now in all previous tasks
dataIndicesaccessible← []
for class in classesobserved do

dataIndicesaccessible ← dataIndicesaccessible ∪ classToDataIndices[class]
end
dataIndicesaccessible ← RemoveDuplicates(dataIndicesaccessible)

GetItem
Require: classesobserved // All classes observed till now in all previous tasks
input : index // an index in the range of task data indices
image, labels←multilabelData[dataIndicesaccessible[index]]
labels← labels ∩ classesobserved
output : image // The sample image
output : labels // The labels corresponding to this image that exist in the classesobserved

24



G. IIRC Datasets Hierarchies
G.1. IIRC-CIFAR Hierarchy

superclass subclasses

aquatic mammals beaver, dolphin, otter, seal, whale
fish aquarium fish, flatfish, ray, shark, trout

flowers orchid, poppy, rose, sunflower, tulip
food containers bottle, bowl, can, cup, plate

fruit and vegetables apple, orange, pear, sweet pepper
household furniture bed, chair, couch, table, wardrobe

insects bee, beetle, butterfly, caterpillar, cockroach
large carnivores leopard, lion, tiger, wolf

large omnivores and herbivores bear, camel, cattle, chimpanzee, elephant, kangaroo
medium sized mammals fox, porcupine, possum, raccoon, skunk

people baby, boy, girl, man, woman
reptiles crocodile, dinosaur, lizard, snake, turtle

small mammals hamster, mouse, rabbit, shrew, squirrel
trees maple tree, oak tree, palm tree, pine tree, willow tree

vehicles bicycle, bus, motorcycle, pickup truck, train, streetcar, tank, tractor

-
mushroom, clock, keyboard, lamp, telephone, television, bridge, castle, house, road,

skyscraper, cloud, forest, mountain, plain, sea, crab, lobster, snail, spider, worm, lawn
mower, rocket
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G.2. IIRC-ImageNet Hierarchy

superclass subclasses

dog

dalmatian, basenji, pug, Leonberg, Newfoundland, Great Pyrenees, Mexican hairless,
Brabancon griffon, Pembroke, Cardigan, Chihuahua, Japanese spaniel, Maltese dog,

Pekinese, Shih-Tzu, toy terrier, papillon, Blenheim spaniel, Rhodesian ridgeback,
boxer, bull mastiff, Great Dane, Saint Bernard, Eskimo dog, Tibetan mastiff, French

bulldog, malamute, Siberian husky, Samoyed, Pomeranian, chow, keeshond, toy
poodle, miniature poodle, standard poodle, Afghan hound, basset, beagle,

bloodhound, bluetick, redbone, Ibizan hound, Norwegian elkhound, otterhound,
Saluki, Scottish deerhound, Weimaraner, black-and-tan coonhound, Walker hound,
English foxhound, borzoi, Irish wolfhound, Italian greyhound, whippet, Bedlington

terrier, Border terrier, Kerry blue terrier, Irish terrier, Norfolk terrier, Norwich terrier,
Yorkshire terrier, Airedale, cairn, Australian terrier, Dandie Dinmont, Boston bull,

Scotch terrier, Tibetan terrier, silky terrier, soft-coated wheaten terrier, West Highland
white terrier, Lhasa, Staffordshire bullterrier, American Staffordshire terrier,

wire-haired fox terrier, Lakeland terrier, Sealyham terrier, German short-haired
pointer, vizsla, kuvasz, schipperke, Doberman, miniature pinscher, affenpinscher,
Brittany spaniel, clumber, cocker spaniel, Sussex spaniel, English springer, Welsh

springer spaniel, Irish water spaniel, English setter, Irish setter, Gordon setter,
flat-coated retriever, curly-coated retriever, golden retriever, Labrador retriever,

Chesapeake Bay retriever, miniature schnauzer, giant schnauzer, standard schnauzer,
Greater Swiss Mountain dog, Bernese mountain dog, Appenzeller, EntleBucher,

briard, kelpie, komondor, Old English sheepdog, Shetland sheepdog, collie, Border
collie, Bouvier des Flandres, Rottweiler, German shepherd, groenendael, malinois

bird

cock, hen, ostrich, bee eater, hornbill, hummingbird, jacamar, toucan, coucal, quail,
partridge, peacock, black grouse, ptarmigan, ruffed grouse, prairie chicken, water
ouzel, robin, bulbul, jay, magpie, chickadee, brambling, goldfinch, house finch,

junco, indigo bunting, black swan, European gallinule, goose, drake, red-breasted
merganser, pelican, albatross, king penguin, spoonbill, flamingo, limpkin, bustard,

white stork, black stork, American coot, oystercatcher, red-backed sandpiper,
redshank, dowitcher, ruddy turnstone, little blue heron, bittern, American egret,

African grey, macaw, sulphur-crested cockatoo, lorikeet, vulture, kite, bald eagle,
great grey owl

garment

suit, abaya, kimono, cardigan, feather boa, stole, jersey, sweatshirt, poncho,
brassiere, jean, gown, military uniform, pajama, apron, academic gown, vestment,
bow tie, Windsor tie, fur coat, lab coat, trench coat, hoopskirt, miniskirt, overskirt,

sarong, cloak
beverage espresso, red wine, cup, eggnog
aircraft airship, balloon, airliner, warplane, wing, space shuttle

bear brown bear, American black bear, ice bear, sloth bear
fox red fox, kit fox, Arctic fox, grey fox
wolf timber wolf, white wolf, red wolf, coyote
bag backpack, mailbag, plastic bag, purse, sleeping bag

footwear clog, cowboy boot, Loafer, running shoe, sandal
toiletry hair spray, lotion, perfume, face powder, sunscreen, lipstick

box carton, chest, crate, mailbox, pencil box, safe
rodent hamster, porcupine, marmot, beaver, guinea pig, fox squirrel
bottle beer bottle, pill bottle, pop bottle, water bottle, wine bottle, water jug, whiskey jug
fabric velvet, wool, bib, dishrag, handkerchief, bath towel, paper towel
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cup beer glass, goblet, cocktail shaker, measuring cup, pitcher, beaker, coffee mug
fungus coral fungus, gyromitra, stinkhorn, earthstar, hen-of-the-woods, bolete, agaric

musteline weasel, mink, polecat, black-footed ferret, otter, skunk, badger

truck fire engine, garbage truck, pickup, tow truck, trailer truck, moving van, police van,
recreational vehicle, forklift, harvester, snowplow, tractor

headdress crash helmet, football helmet, bearskin, bonnet, cowboy hat, sombrero, bathing cap,
mortarboard, shower cap, pickelhaube

ball baseball, basketball, croquet ball, golf ball, ping-pong ball, punching bag, rugby ball,
soccer ball, tennis ball, volleyball

car ambulance, beach wagon, cab, convertible, jeep, limousine, Model T, racer, sports
car, minivan, grille, golfcart

measuring instrument barometer, scale, odometer, rule, sundial, digital watch, hourglass, parking meter,
stopwatch, analog clock, digital clock, wall clock

tool hammer, plunger, screwdriver, shovel, cleaver, letter opener, can opener, corkscrew,
hatchet, chain saw, plane, scabbard, power drill, carpenter’s kit

watercraft schooner, catamaran, trimaran, fireboat, gondola, canoe, yawl, lifeboat, speedboat,
pirate, wreck, container ship, liner, aircraft carrier, submarine, amphibian, paddle

dish Petri dish, mixing bowl, soup bowl, tray
bus minibus, school bus, trolleybus
cart horse cart, jinrikisha, oxcart

tracked vehicle snowmobile, half track, tank
lamp candle, spotlight, jack-o’-lantern, lampshade, table lamp

optical instrument binoculars, projector, sunglasses, lens cap, loupe, Polaroid camera, reflex camera
gymnastic apparatus balance beam, horizontal bar, parallel bars

swine hog, wild boar, warthog
rabbits hare, wood rabbit, Angora

echinoderm starfish, sea urchin, sea cucumber
wild dog dingo, dhole, African hunting dog

pouched mammal wombat, wallaby, koala
aquatic mammal dugong, grey whale, killer whale, sea lion

person ballplayer, scuba diver, groom
mollusk chiton, chambered nautilus, conch, snail, slug, sea slug
weapon bow, projectile, cannon, missile, rifle, revolver, assault rifle, holster
bovid bison, water buffalo, ram, ox, bighorn, ibex, hartebeest, impala, gazelle

salamander European fire salamander, common newt, eft, spotted salamander, axolotl
frog tree frog, tailed frog, bullfrog

big cat leopard, snow leopard, jaguar, lion, tiger, cheetah
domestic cat tabby, tiger cat, Persian cat, Siamese cat, Egyptian cat

cooking utensil spatula, frying pan, wok, Crock Pot, Dutch oven, caldron, coffeepot, teapot

primate
Madagascar cat, indri, gibbon, siamang, orangutan, gorilla, chimpanzee, marmoset,

capuchin, howler monkey, titi, spider monkey, squirrel monkey, guenon, patas,
baboon, macaque, langur, colobus, proboscis monkey

fish barracouta, electric ray, stingray, hammerhead, great white shark, tiger shark,
sturgeon, gar, puffer, rock beauty, anemone fish, lionfish, eel, tench, goldfish, coho

lizard banded gecko, common iguana, American chameleon, whiptail, agama, frilled lizard,
alligator lizard, Gila monster, green lizard, African chameleon, Komodo dragon
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turtle mud turtle, terrapin, box turtle, loggerhead, leatherback turtle

spider black and gold garden spider, barn spider, garden spider, black widow, tarantula, wolf
spider, spider web

insect

ringlet, sulphur butterfly, lycaenid, cabbage butterfly, monarch, admiral, dragonfly,
damselfly, lacewing, cicada, leafhopper, cockroach, mantis, walking stick,

grasshopper, cricket, bee, ant, fly, tiger beetle, ladybug, ground beetle, long-horned
beetle, leaf beetle, weevil, dung beetle, rhinoceros beetle

green groceries

acorn, hip, ear, fig, pineapple, banana, jackfruit, custard apple, pomegranate,
strawberry, orange, lemon, Granny Smith, buckeye, rapeseed, corn, cucumber,
artichoke, cardoon, mushroom, bell pepper, mashed potato, zucchini, spaghetti

squash, acorn squash, butternut squash, broccoli, cauliflower, head cabbage
keyboard instrument accordion, organ, grand piano, upright

percussion instrument chime, drum, gong, maraca, marimba, steel drum
stringed instrument banjo, acoustic guitar, electric guitar, cello, violin, harp

wind instrument ocarina, harmonica, flute, panpipe, bassoon, oboe, sax, cornet, French horn, trombone

crustacean isopod, crayfish, hermit crab, spiny lobster, American lobster, Dungeness crab, rock
crab, fiddler crab, king crab

pen ballpoint, fountain pen, quill
display desktop computer, laptop, notebook, screen, television, monitor

electronic equipement cassette player, CD player, modem, oscilloscope, tape player, iPod, printer, joystick,
dial telephone, pay-phone, cellular telephone, mouse, hand-held computer

snake
sea snake, horned viper, boa constrictor, rock python, Indian cobra, green mamba,
diamondback, sidewinder, thunder snake, ringneck snake, hognose snake, green

snake, king snake, garter snake, water snake, vine snake, night snake
geological formation cliff, geyser, lakeside, seashore, valley, promontory, alp, volcano, coral reef, sandbar

food
dough, guacamole, chocolate sauce, carbonara, French loaf, bagel, pretzel, plate,

trifle, ice cream, ice lolly, pizza, potpie, burrito, consomme, hot pot, hotdog,
cheeseburger, meat loaf

white home appliances dishwasher, refrigerator, washer, stove
kitchen appliances microwave, toaster, waffle iron, espresso maker

wheel car wheel, paddlewheel, pinwheel, potter’s wheel, reel, disk brake
seat toilet seat, studio couch, park bench, barber chair, folding chair, rocking chair, throne

baby bed bassinet, cradle, crib

cabinet medicine chest, wardrobe, china cabinet, bookcase, chiffonier, file, entertainment
center, plate rack

table desk, pool table, dining table
bridges steel arch bridge, suspension bridge, viaduct
fence chainlink fence, picket fence, stone wall, worm fence

long structures beacon, obelisk, totem pole
movable homes mountain tent, mobile home, yurt

building planetarium, barn, cinema, boathouse, palace, monastery, castle, dome, church,
mosque, stupa, bell cote, thatch, tile roof, triumphal arch

body armor chain mail, cuirass, bulletproof vest, breastplate
mask mask, oxygen mask, gasmask, ski mask

curtain-screen window shade, shower curtain, theater curtain
bike moped, bicycle-built-for-two, tricycle, unicycle, mountain bike, motor scooter
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train passenger car, freight car, electric locomotive, bullet train, streetcar, steam
locomotive

swimsuit bikini, maillot, swimming trunks
socks mittens Christmas stocking, mitten, sock

keyboard computer keyboard, space bar, typewriter keyboard

-

African crocodile, American alligator, triceratops, trilobite, harvestman, scorpion,
tick, centipede, tusker, echidna, platypus, jellyfish, sea anemone, brain coral,

flatworm, nematode, crane, hyena, cougar, lynx, mongoose, meerkat, sorrel, zebra,
hippopotamus, Arabian camel, llama, armadillo, three-toed sloth, Indian elephant,
African elephant, lesser panda, giant panda, abacus, altar, apiary, ashcan, bakery,

Band Aid, bannister, barbell, barbershop, barrel, barrow, bathtub, binder, birdhouse,
bobsled, bolo tie, bookshop, bottlecap, brass, breakwater, broom, bucket, buckle,

butcher shop, car mirror, carousel, cash machine, cassette, chain, cliff dwelling, coil,
combination lock, confectionery, crutch, dam, diaper, dock, dogsled, doormat,

drilling platform, drumstick, dumbbell, electric fan, envelope, fire screen, flagpole,
fountain, four-poster, gas pump, go-kart, greenhouse, grocery store, guillotine, hair
slide, hamper, hand blower, hard disc, home theater, honeycomb, hook, iron, jigsaw
puzzle, knee pad, knot, ladle, lawn mower, library, lighter, loudspeaker, lumbermill,

magnetic compass, manhole cover, matchstick, maypole, maze, megalith,
microphone, milk can, mortar, mosquito net, mousetrap, muzzle, nail, neck brace,
necklace, nipple, oil filter, packet, padlock, paintbrush, parachute, patio, pedestal,

pencil sharpener, photocopier, pick, pier, piggy bank, pillow, plow, pole, pot, prayer
rug, prison, puck, quilt, racket, radiator, radio, radio telescope, rain barrel, remote

control, restaurant, rotisserie, rubber eraser, safety pin, saltshaker, scoreboard, screw,
seat belt, sewing machine, shield, shoe shop, shoji, shopping basket, shopping cart,
ski, slide rule, sliding door, slot, snorkel, soap dispenser, solar dish, space heater,

spindle, stage, stethoscope, strainer, stretcher, sunglass, swab, swing, switch, syringe,
teddy, thimble, thresher, tobacco shop, torch, toyshop, tripod, tub, turnstile, umbrella,
vacuum, vase, vault, vending machine, wallet, washbasin, water tower, whistle, wig,
window screen, wooden spoon, web site, comic book, crossword puzzle, street sign,
traffic light, book jacket, menu, hay, bubble, daisy, yellow lady’s slipper, toilet tissue
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H. Results in Tables

task model
ER iCaRL-CNN iCaRL-norm LUCIR AGEM incremental joint ER-infinite

0 0.72 (0.039) 0.71 (0.042) 0.75 (0.037) 0.74 (0.036) 0.72 (0.032) 0.71 (0.032) 0.72 (0.033)
1 0.31 (0.046) 0.47 (0.032) 0.5 (0.035) 0.5 (0.101) 0.15 (0.024) 0.7 (0.035) 0.64 (0.067)
2 0.23 (0.054) 0.36 (0.017) 0.39 (0.024) 0.35 (0.178) 0.1 (0.023) 0.67 (0.029) 0.63 (0.029)
3 0.2 (0.027) 0.3 (0.022) 0.32 (0.026) 0.3 (0.162) 0.07 (0.028) 0.66 (0.021) 0.58 (0.054)
4 0.17 (0.024) 0.26 (0.022) 0.27 (0.024) 0.27 (0.148) 0.05 (0.01) 0.66 (0.02) 0.55 (0.04)
5 0.18 (0.024) 0.23 (0.017) 0.24 (0.027) 0.25 (0.13) 0.07 (0.034) 0.65 (0.019) 0.55 (0.027)
6 0.19 (0.03) 0.21 (0.022) 0.21 (0.028) 0.23 (0.133) 0.07 (0.031) 0.64 (0.02) 0.52 (0.02)
7 0.17 (0.035) 0.19 (0.021) 0.19 (0.027) 0.19 (0.141) 0.06 (0.045) 0.63 (0.029) 0.51 (0.019)
8 0.16 (0.02) 0.18 (0.02) 0.18 (0.026) 0.18 (0.135) 0.04 (0.014) 0.63 (0.022) 0.49 (0.026)
9 0.15 (0.021) 0.17 (0.018) 0.18 (0.022) 0.15 (0.134) 0.04 (0.018) 0.63 (0.021) 0.47 (0.033)

10 0.17 (0.035) 0.16 (0.017) 0.17 (0.017) 0.14 (0.118) 0.06 (0.039) 0.62 (0.019) 0.45 (0.036)
11 0.15 (0.018) 0.16 (0.017) 0.16 (0.018) 0.13 (0.117) 0.04 (0.019) 0.62 (0.023) 0.44 (0.043)
12 0.15 (0.03) 0.16 (0.017) 0.16 (0.015) 0.12 (0.109) 0.05 (0.033) 0.62 (0.022) 0.43 (0.035)
13 0.15 (0.025) 0.15 (0.016) 0.16 (0.016) 0.13 (0.094) 0.05 (0.025) 0.62 (0.016) 0.43 (0.02)
14 0.14 (0.017) 0.15 (0.011) 0.15 (0.014) 0.11 (0.096) 0.04 (0.022) 0.62 (0.014) 0.42 (0.028)
15 0.13 (0.012) 0.15 (0.01) 0.15 (0.014) 0.11 (0.094) 0.03 (0.012) 0.62 (0.012) 0.4 (0.02)
16 0.14 (0.011) 0.15 (0.013) 0.15 (0.015) 0.09 (0.094) 0.03 (0.005) 0.63 (0.013) 0.39 (0.037)
17 0.14 (0.019) 0.15 (0.013) 0.15 (0.013) 0.07 (0.084) 0.04 (0.021) 0.63 (0.017) 0.39 (0.011)
18 0.14 (0.012) 0.15 (0.012) 0.15 (0.012) 0.06 (0.081) 0.03 (0.014) 0.63 (0.013) 0.37 (0.01)
19 0.14 (0.019) 0.15 (0.009) 0.14 (0.012) 0.06 (0.075) 0.03 (0.012) 0.63 (0.007) 0.36 (0.009)
20 0.13 (0.011) 0.15 (0.01) 0.14 (0.011) 0.06 (0.072) 0.03 (0.015) 0.63 (0.007) 0.35 (0.011)
21 0.13 (0.005) 0.15 (0.01) 0.15 (0.01) 0.06 (0.071) 0.02 (0.003) 0.63 (0.008) 0.35 (0.012)

Table 5. The average performance on IIRC-CIFAR after each task using the precision-weighted Jaccard Similarity. This table represents
the same results as in Figure 5 with the standard deviation between brackets

task model
ER iCaRL-CNN iCaRL-norm LUCIR incremental joint

0 0.7 (0.027) 0.78 (0.018) 0.8 (0.019) 0.76 (0.025) 0.73 (0.02)
1 0.13 (0.022) 0.46 (0.039) 0.49 (0.034) 0.17 (0.044) 0.73 (0.026)
2 0.12 (0.071) 0.34 (0.047) 0.38 (0.041) 0.15 (0.048) 0.73 (0.019)
3 0.08 (0.01) 0.27 (0.035) 0.31 (0.024) 0.14 (0.045) 0.73 (0.012)
4 0.08 (0.01) 0.23 (0.022) 0.27 (0.015) 0.1 (0.068) 0.73 (0.015)
5 0.07 (0.012) 0.2 (0.018) 0.25 (0.014) 0.1 (0.063) 0.73 (0.01)
6 0.07 (0.017) 0.18 (0.018) 0.23 (0.017) 0.06 (0.062) 0.73 (0.01)
7 0.06 (0.004) 0.17 (0.013) 0.22 (0.013) 0.04 (0.057) 0.73 (0.013)
8 0.07 (0.013) 0.16 (0.01) 0.21 (0.01) 0.03 (0.056) 0.72 (0.015)
9 0.06 (0.002) 0.16 (0.011) 0.2 (0.01) 0.03 (0.053) 0.72 (0.017)

Table 6. The average performance on IIRC-ImageNet-lite after each task using the precision-weighted Jaccard Similarity. This table
represents the same results as in Figure 4(a) with the standard deviation between brackets
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task model
ER iCaRL-CNN iCaRL-norm LUCIR joint

0 0.7 (0.024) 0.78 (0.009) 0.8 (0.009) 0.75 (0.017) -
1 0.13 (0.023) 0.47 (0.016) 0.51 (0.014) 0.15 (0.044) -
2 0.1 (0.024) 0.34 (0.026) 0.39 (0.02) 0.14 (0.046) -
3 0.08 (0.008) 0.27 (0.02) 0.32 (0.014) 0.13 (0.044) -
4 0.08 (0.021) 0.23 (0.014) 0.28 (0.008) 0.12 (0.061) -
5 0.1 (0.064) 0.21 (0.025) 0.26 (0.011) 0.11 (0.06) -
6 0.07 (0.008) 0.19 (0.015) 0.23 (0.011) 0.1 (0.056) -
7 0.06 (0.007) 0.17 (0.017) 0.22 (0.013) 0.11 (0.051) -
8 0.06 (0.006) 0.16 (0.016) 0.21 (0.011) 0.1 (0.045) -
9 0.06 (0.005) 0.15 (0.015) 0.2 (0.009) 0.09 (0.06) -
10 0.06 (0.015) 0.15 (0.019) 0.19 (0.014) 0.08 (0.054) -
11 0.06 (0.005) 0.14 (0.017) 0.19 (0.012) 0.08 (0.05) -
12 0.06 (0.011) 0.14 (0.012) 0.19 (0.008) 0.08 (0.047) -
13 0.06 (0.006) 0.13 (0.013) 0.19 (0.005) 0.07 (0.045) -
14 0.06 (0.007) 0.13 (0.011) 0.18 (0.006) 0.07 (0.042) -
15 0.05 (0.001) 0.13 (0.015) 0.18 (0.005) 0.07 (0.04) -
16 0.05 (0.003) 0.12 (0.018) 0.18 (0.007) 0.06 (0.036) -
17 0.05 (0.008) 0.12 (0.017) 0.17 (0.005) 0.06 (0.034) -
18 0.05 (0.01) 0.12 (0.019) 0.17 (0.008) 0.05 (0.031) -
19 0.05 (0.003) 0.11 (0.021) 0.17 (0.009) 0.05 (0.03) -
20 0.05 (0.004) 0.11 (0.022) 0.16 (0.009) 0.05 (0.028) -
21 0.04 (0.004) 0.11 (0.024) 0.16 (0.01) 0.04 (0.025) -
22 0.04 (0.004) 0.1 (0.023) 0.16 (0.009) 0.04 (0.024) -
23 0.04 (0.008) 0.1 (0.019) 0.15 (0.008) 0.04 (0.022) -
24 0.04 (0.001) 0.1 (0.018) 0.15 (0.007) 0.03 (0.023) -
25 0.03 (0.003) 0.1 (0.017) 0.14 (0.007) 0.02 (0.022) -
26 0.04 (0.004) 0.09 (0.018) 0.13 (0.007) 0.02 (0.021) -
27 0.03 (0.002) 0.09 (0.018) 0.12 (0.004) 0.02 (0.019) -
28 0.03 (0.002) 0.08 (0.016) 0.12 (0.003) 0.02 (0.018) -
29 0.03 (0.002) 0.08 (0.016) 0.11 (0.003) 0.02 (0.017) -
30 0.03 (0.005) 0.08 (0.014) 0.11 (0.003) 0.02 (0.016) -
31 0.02 (0.006) 0.08 (0.015) 0.1 (0.01) 0.02 (0.015) -
32 0.02 (0.01) 0.08 (0.016) 0.09 (0.007) 0.02 (0.014) -
33 0.02 (0.005) 0.08 (0.017) 0.09 (0.011) 0.02 (0.012) -
34 0.01 (0.001) 0.07 (0.016) 0.08 (0.01) 0.01 (0.015) 0.42 (0.018)

Table 7. The average performance on IIRC-ImageNet-full after each task using the precision-weighted Jaccard Similarity. This table
represents the same results as in Figure 4.2 with the standard deviation between brackets
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