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Abstract

Quantizing deep neural networks is an effective method
for reducing memory consumption and improving inference
speed, and is thus useful for implementation in resource-
constrained devices. However, it is still hard for extremely
low-bit models to achieve accuracy comparable with that
of full-precision models. To address this issue, we propose
learnable companding quantization (LCQ) as a novel non-
uniform quantization method for 2-, 3-, and 4-bit models.
LCQ jointly optimizes model weights and learnable com-
panding functions that can flexibly and non-uniformly con-
trol the quantization levels of weights and activations. We
also present a new weight normalization technique that al-
lows more stable training for quantization. Experimental
results show that LCQ outperforms conventional state-of-
the-art methods and narrows the gap between quantized
and full-precision models for image classification and ob-
ject detection tasks. Notably, the 2-bit ResNet-50 model on
ImageNet achieves top-1 accuracy of 75.1% and reduces
the gap to 1.7%, allowing LCQ to further exploit the poten-
tial of non-uniform quantization.

1. Introduction
Deep neural networks (DNNs) have been successfully

applied to image-based tasks such as image classification
and object detection, but their implementation in resource-
constrained mobile or edge devices remains difficult, ow-
ing to the large number of required multiply–accumulate
(MAC) operations and parameters. To mitigate this prob-
lem, various techniques for compressing DNNs while main-
taining performance have been proposed, such as prun-
ing [9], knowledge distillation [15], low-rank approxima-
tion [10], and network quantization [16]. Among these,
network quantization is important as a way to effectively
improve both memory consumption and inference speed.
However, network quantization is known to degrade perfor-
mance of the original model in proportion to the amount of
bit-width reduction.

In network quantization, the weights or activations of
DNNs are typically discretized by a quantization function.

Weight/Activation distribution Quantized distribution

Non-uniform quantization

CompressingClipping to [-1,1] Rounding Expanding

Learnable companding

Figure 1: An overview of the proposed method. Our
non-uniform quantizer quantizes weights or activations with
four functions, those for clipping, compressing, rounding,
and expanding. In particular, a composite function consist-
ing of those except for the clipping function is generally
called the companding function. We formulate the com-
panding function in a learnable form with a set of parame-
ters Θ and jointly optimize it with clipping parameter α and
the other parameters in the model.

Although the quantization function is not differentiable, a
straight-through estimator (STE) [1] can be used to approx-
imate the gradient calculation for backpropagation. Quanti-
zation functions are divided into two types: uniform and
non-uniform quantization, in which input values are re-
spectively linearly and nonlinearly discretized. Because the
weight or activation distribution is empirically dissimilar to
the uniform distribution, non-uniform quantization can be
expected to further reduce quantization and prediction er-
rors than can uniform quantization via proper optimization.
For example, previous works on non-uniform quantization
have attempted to use fixed and logarithmic quantization
levels [16,22] or learnable quantization levels that minimize
quantization errors [30].

However, it is not easy to estimate effective quantiza-
tion levels accurately, especially in low-bit models, where
accuracy is often inferior to that of uniform quantization
methods. This paper thus aims to exploit the potential of
non-uniform quantizers and further bridge the accuracy gap
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between quantized and full-precision models.
We propose a non-uniform quantization method called

learnable companding quantization (LCQ). Figure 1 shows
an overview of LCQ. Our method is based on a companding
(compressing and expanding) technique [21] that is widely
used in telecommunication and signal processing to reduce
the bit-width of input signals by nonlinearly limiting their
dynamic range. We assume that companding is effective
for quantization of DNNs in two aspects. The first is that
the scale remains unchanged between inputs and outputs by
using a nonlinear function and its inverse function, and that
maintaining scale reduces quantization error and stabilizes
training via backpropagation. The second is that if the com-
panding function is differentiable, its parameters can be op-
timized to directly minimize task loss. Then, since the pa-
rameters are updated with a sum of the two gradients from
the paths of before and after rounding, they can be trained
with a large quantization influence. Specifically, we for-
mulate a learnable piecewise linear function as a nonlinear
compressing function, allowing flexible and non-uniform
control of quantization levels by optimization.

We also propose a new weight normalization method that
improves accuracy by restoring the standard deviation of
quantized weights to its original level, and we discuss a
training trick for efficient inference with lookup tables.

Our main contributions are summarized as follows:

• We propose a LCQ method as a novel non-uniform
quantization method, which optimizes non-uniform
quantization levels to minimize task loss by training
the learnable companding function.

• We present a simple normalization method for weight
quantizers called limited weight normalization (LWN)
that results in stable training and better solutions.

• We evaluate LCQ on various networks for image clas-
sification and object detection tasks, and the results
show promising performance on the CIFAR-10/100,
ImageNet, and COCO datasets.

2. Related Works
To quantize weights and activations in training, two oper-

ations are often applied in sequence: “clipping” and “quan-
tizing” of inputs. Quantization errors occur in each process,
so various methods have been proposed to reduce them.1

Clipping technique. To perform quantization, clipping
is first applied to constrain the value range of inputs. The
simplest way to determine the clipping threshold is to use a
given fixed value, but doing so does not adapt to variations
in the dynamic range of the input values during training.
To address this issue, Jacob et al. [11] proposed a method
that uses as the threshold the maximum value of the in-
put tracked by the exponential moving averaging. Choi et

1Relations to LCQ are also explained in the supplementary material A.

al. [2] proposed a method that treats the threshold as a learn-
able parameter, optimizing it to minimize the task loss along
with the weights. Zhao et al. [31] used a simulated gradi-
ent to estimate the near-optimal threshold in every iteration.
Several prior works [4,16,27] have proposed improved for-
mulations of the learnable threshold approach, updating the
parameter with a gradient calculated from residuals between
the pre-quantized and quantized values.

Uniform quantization. Uniform quantization maps a
clipped value to one of equally spaced discrete levels. Al-
though such mapping is performed with a nondifferentiable
step function, STE [1] is often applied to approximate the
gradient calculation and to enable parameter updates based
on backpropagation. Gong et al. [5] proposed a method for
mitigating gradient approximation errors incurred by using
STE, representing the quantization function as a concate-
nation of several tanh functions and training their shape
parameter to gradually converge on the step function. Li
et al. [14] applied uniform quantization to object detec-
tion models with batch normalization folding. Zhuang et
al. [33] proposed a progressive two-stage quantization ap-
proach. Jung et al. [12] introduced parameterized quantiza-
tion intervals and optimized them to minimize task loss. Liu
et al. [19] used a scheme that does not apply STE, instead
using a weighted average of pre- and post-quantization val-
ues to gradually shift to the quantized values. Zhuang et
al. [32] proposed a training scheme using an auxiliary mod-
ule connected to a low-bit network, providing it with the
gradient from other loss.

Non-uniform quantization. Since DNN weights and
activities are empirically non-uniformly distributed, non-
uniform quantization, which discretizes inputs into unequal
levels, should work effectively. Han et al. [7] uses k-means
clustering as a method of quantization to share weights. Xu
et al. [29] applies the same clustering strategy, but by grad-
ually sharing weights in a layer-by-layer manner. Miyashita
et al. [22] introduced non-uniform quantization using a
powers-of-two (PoT) function and showed that multiplica-
tion in DNNs can be replaced by cheaper bit-shift opera-
tions. Polino et al. [25] formulated quantization levels as
learnable parameters and trained them with gradient descent
and distillation methods. Zhang et al. [30] proposed param-
eterized bases for quantization levels and sequentially es-
timated an analytical solution that minimizes quantization
error. Li et al. [16] proposed an additive PoT quantizer to
solve the problem of PoT functions that map extremely low
quantization levels to larger input values.

3. Method
In this section, we first provide a brief background of

network quantization. We then discuss details of the pro-
posed method, including formulation of the LCQ quantizer,
the LWN method, and a training trick for efficient inference.
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Figure 2: Examples of the evolutionary process for the compressing (left) and companding (right) functions via training
the LCQ quantizer for the ResNet-20 model on the CIFAR-10 dataset. Note that the 2- and 3-bit results of the companding
function are generated using the compressing function with a corresponding number of bits.

3.1. Preliminaries

The goal of network quantization is to replace floating-
point weights and activations for DNNs with lower bit-
width ones to reduce memory consumption and speed up
MAC operations. For uniform quantization, a standard uni-
form quantizer QU (x;α) quantizes an input x ∈ R as

QU (x;α) = sgn(x) · α

{
qb

(
|x|
α

)
, |x| < α,

1, |x| ≥ α,
(1)

where α ∈ R>0 is a clipping parameter, qb(·) is a uniform
quantization function, and the subscript b ∈ N is the bit-
width. This clipping operation reduces quantization error
by multiplying the quantized value by α again to return it
to its original value range. Letting the clipped input be v ∈
[0, 1), qb(v) can be represented as

qb(v) =
bs · ve
s

, (2)

where the scaling factor s becomes s = 2b−1 − 1 in the
case of signed quantization or s = 2b − 1 in the case of
unsigned quantization, and b·e is a rounding function. The
quantization function qb(v) is not differentiable, because it
contains a rounding function, but can be relaxed by STE [1]
as ∂qb(v)/∂v = 1. Similarly, the gradient for input x does
not vanish through the quantizer due to ∂QU (x;α)/∂x = 1
for |x| < α. When applying this quantizer to convolu-
tional neural networks (CNNs), the weights and activations
are independently quantized, just before the convolutional
operations. Then MAC operations in the convolution can
be transformed to execute with integer precision, which can
speed up the inference process [11].

3.2. Learnable Companding Quantization

As Fig. 1 shows, our proposed LCQ is a non-uniform
quantization method, without clipping, which mainly con-

sists of three functions: a compressing function fΘ(·), a
uniform quantization function qb(·), and an expanding func-
tion f−1

Θ (·). A composite function formed from these three
is generally called the companding function. Note that
Θ = {θ1, θ2, . . . , θK} is a common set of parameters for
both functions. Here, we denote the LCQ quantizer as

QL(x;α,Θ) = sgn(x) · α

{
g
(
|x|
α

)
, |x| < α,

1, |x| ≥ α,
(3)

where

g(v) = (f−1
Θ ◦ qb ◦ fΘ)(v) (4)

is the companding function. We then use a learnable piece-
wise linear function as the compressing function fΘ(·) and
train its parameters Θ to minimize task loss. The piecewise
linear function is suited to fine-grained control of quantiza-
tion levels, because it flexibly changes its slopes in propor-
tion to the number of breakpoints (or intervals). For exam-
ple, Fig. 2 shows the evolutionary processes of the piece-
wise linear function (Fig. 2a) and its companding function
(Fig. 2b) at the different bit-widths. These figures show
that the quantization levels and intervals of the companding
function can be finely determined by changes in the slope of
each interval of the piecewise linear function. In this way,
we generate accurate low-bit DNNs by giving the model the
capability to directly tune the quantization levels.

3.2.1 Detailed formulation

Specifically, such a piecewise linear function needs to be
monotonically increasing and to satisfy the constraint of an
input range of [0, 1) to account for the quantization func-
tion. In our formulation, we first let the breakpoints that
form the k-th interval (where k ∈ {1, 2, . . . ,K}) be equally
spaced, meaning all interval lengths ∆ = 1/K. We then
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prepare learnable parameters θk ∈ Θ and use the soft-
max function to restrict their value range to [0, 1], as in
θ̃k = exp(θk)/

∑K
i=1 exp(θi). We further define the slope

of the k-th interval as γk = θ̃k/∆, the total length of the
k-th interval as dk = k∆, and the cumulative sum of the
output levels as βk =

∑k
i=1 θ̃i, and we set d0 = 0 and

β0 = 0. With the above preparation, the piecewise linear
compressing and expanding functions can be formulated as

fΘ(v) =

K∑
k=1

(γk(v − dk−1) + βk−1)1[dk−1,dk)(v), (5)

f−1
Θ (v) =

K∑
k=1

(
v − βk−1

γk
+ dk−1

)
1[βk−1,βk)(v), (6)

where 1C(v) is an indicator function that returns 1 if v ∈ C

and 0 otherwise. We finally use a gradient descent algorithm
to optimize θk through γk and βk.

3.2.2 Backpropagation for companding

By the chain rule, the gradient of our quantizer QL(·) with
respect to θk can be written as

∂QL
∂θk

=

(
∂QL
∂γk

∂γk

∂θ̃k
+
∂QL
∂βk

∂βk

∂θ̃k

)
∂θ̃k
∂θk

. (7)

Here, the gradients of QL(·) with respect to γk and βk
should be carefully calculated, because the compressing and
expanding function may use intervals with different corre-
spondences when going through the quantization function.
For simplicity, let vq be the output of the quantization and
compressing function, i.e., vq = (q ◦ fΘ)(v). Then the gra-
dients of the companding function g(v) can be represented
as

∂g(v)

∂γk
'

K∑
i=1

(
v − dk−1

γi
I(k,i) −

vq − βk−1

γ2
k

I(i,k)

)
, (8)

∂g(v)

∂βk
'

K∑
i=1

(
I(k,i)

γi
−
I(i,k)

γk

)
, (9)

where

I(i,j) = 1[di−1,di)
(v) · 1[βj−1,βj)

(vq). (10)

Note that we use the STE [1] approximation for the deriva-
tive of the quantization function, and that vq may exceed the
upper bound on the value range [0, 1) due to rounding, but
in that case an inifinitesimal value ε is subtracted from vq to
keep it within the range. The gradient ofQL(·) with respect
to γk can then be written as

∂QL
∂γk

'

{
sgn(x) · α · ∂g(

|x|
α )

∂γk
, |x| < α,

0, |x| ≥ α.
(11)

Similarly, ∂QL/∂βk is the replacement of γk by βk in
Eq. (11). Since the gradient contains the clipping param-
eter α, the clipping effect is considered in the optimization
of θk.

The gradient of g(·) with respect to the clipped in-
put v is similarly affected by the quantization function as
∂g(v)/∂v =

∑K
i=1

∑K
j=1 γi/γj · I(i,j). However, since we

have empirically found that the gradient may be too large
when γj is small and γi is large, and that such a gradient
makes the training unstable, we use ∂g(v)/∂v = 1 instead.
Then the gradient of the quantizer QL with respect to the
input x becomes ∂QL/∂x = 1 for |x| < α and 0 other-
wise, like the uniform quantizer. This strategy of not mod-
ifying (“straight-throughing”) the gradient for inputs has
been used for other non-uniform quantization methods as
well [16, 30].

3.2.3 Backpropagation for clipping

We estimate the clipping parameter α based on training, as
in previous works [4,16,27]. We specifically update α based
on the gradient of our quantizer QL(·), represented as

∂QL
∂α

' sgn(x)

{
g
(
|x|
α

)
− |x|α , |x| < α,

1, |x| ≥ α.
(12)

Note that α is jointly trained with companding parameters
Θ. When parameterizing the compressing function, break-
points related to the input interval are set to be equally
spaced rather than trained, thereby preventing changes in
the clipping parameter from having a significant effect on
breakpoint locations, which would reduce the training effi-
ciency. Using equal spacing is less flexible, but this can be
compensated for by increasing the number of breakpoints
(or intervals).

3.3. Limited Weight Normalization

Li et al. [16] reported that clipping parameter training
for each layer is stabilized when the weights are standard-
ized with their mean and standard deviation before applying
the quantizer. There are two main reasons for this: because
the weight distribution is zero-centered, satisfying the sym-
metry assumption in signed quantization, and because the
clipping parameters are less sensitive to variations in the
standard deviation.

However, considering that the quantized model is initial-
ized with pretrained, full-precision weights to obtain good
accuracy in many quantization methods [4, 12, 16], weight
normalization causes a gap for the output scale of the linear
layer before and after quantization, which may negatively
affect training. Therefore, we also propose a method called
limited weight normalization (LWN), which limits only the
effective scope of normalization to the weight quantizer.
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LWN can be formulated as

w̃ = σw ·Q∗
(
w − µw
σw

)
, (13)

where w ∈ R is an input weight, µw and σw are the sample
mean and standard deviation of the weights, respectively,
and Q∗(·) is any signed quantizer. Note that the gradients
for µw and σw are not used to update all learnable parame-
ters, as in [16]. The only difference between LWN and [16]
is whether the standard deviation is multiplied after quanti-
zation or not. This simple method has the effect of not only
restoring the standard deviation to its pre-normalized level
in forward propagation, but also making the gradients for
learnable quantizer parameters depend on the standard de-
viation in backpropagation. We have empirically observed
that this method is more stable and gives better solutions.

3.4. Training for the LUT-based Inference

In general, non-uniform quantization functions, includ-
ing the companding function, output floating-point values,
so the multiplication between weights and activations is also
performed in floating-point, which is inefficient. To speed
up the operations during inference in deployment scenar-
ios, it is often used to replace the multiplication with a
memory access to a precomputed lookup table (LUT), as
shown in Fig. 3. However, our method requires one LUT
per convolutional or fully-connected layer, and thus incurs
additional memory costs. For example, with bw and ba for
the number of bits in the signed weights and in the un-
signed activations, the number of LUT elementsm becomes
m = (2bw−1 − 1)(2ba − 1).2 Therefore, the additional
memory cost per layer is simply 4m bytes for multiplication
at the 32-bit floating-point precision. The memory cost of
LUTs should be reduced as much as possible, because this
cost relates to the memory access speed and the accumulator
capacity on dedicated devices such as field-programmable
gate arrays (FPGAs).

To reduce the memory cost of LUTs, we apply the b′-bit
uniform quantization function qb′(·) immediately after the
companding function g(·), where b′ ∈ {t ∈ N | t > b}
is the other bit-width (below, we call this the “outer” bit-
width for clarity). Although this re-quantization introduces
an extra quantization error, the effect on the accuracy is al-
most negligible if the outer bit-width is sufficiently larger
than the original bit-width b, considering that quantization-
aware training tends to quantize to around 8 bits with nearly
no degradation in accuracy [11]. Specifically, instead of
Eq. (3) for training, we use a slightly modified version of

2Note that the sign bit is reduced because it can be applied afterwards,
and the number of zeros is also reduced.
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Figure 3: An example of the memory access with a LUT
for inference (3-bit case). The weights can be pre-converted
to the encoded low-bit indices. The LUT has precomputed
multiplicative values for all output combinations generated
by the weight and activation quantizers, and does not in-
clude zeros because they can simply be skipped.

the quantizer QL(·),

Q′L(x;α,Θ) = sgn(x) · α

{
(qb′ ◦ g)

(
|x|
α

)
, |x| < α,

1, |x| ≥ α.
(14)

Note that since STE [1] is used for qb′(·), all the backpropa-
gation formulas in Sec. 3.2 can also be applied to the quan-
tizer Q′L(·) as-is.3 Since all the scalar multiplications (e.g.,
by the clipping parameter α, the scaling factor s and the
standard deviation σw in LWN) after re-quantization can be
moved after convolution at the inference time, the convolu-
tion can be performed with integer precision. For the inte-
ger multiplication in the convolution, the bit-width of LUT
elements is equal to the sum of the outer bit-width of activa-
tions and the one of weights. Therefore, the more the outer
bit-width is reduced, the more the bit-width of the LUT el-
ements is reduced. For example, letting the outer bit-widths
for weights and activations be b′w and b′a, as before, the
memory cost of a LUT can be represented as 2−3(b′w+b′a)m
bytes. The memory cost for b′w = b′a = 8 is two times
smaller than the one for the 32-bit floating-point case. The
effect of changing the outer bit-width on accuracy is evalu-
ated in the ablation study in Sec. 4.5.

4. Experiments

This section evaluates the effectiveness of our method
in comparison with conventional state-of-the-art uniform
and non-uniform quantization methods using various mod-
els, such as ResNet [8], MobileNet-V2 [26], and Reti-

3The training algorithm for a convolutional layer using Q
′
L(·) is sum-

marized in the supplementary material B.
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naNet [17].4 We then report the results of ablation studies.
To evaluate our method, we used the CIFAR-10/100 [13]

and ImageNet (ILSVRC-2012) [3] datasets for image clas-
sification tasks and the MS COCO [18] dataset for an ob-
ject detection task. The CIFAR-10/100 dataset contains 50k
training images and 10k test images, with 10/100 classes.
The ImageNet dataset contains 1.2M training images and
50k test images, with 1,000 classes. For the COCO dataset
with 80 object classes, following [17,32] we used the train-
val35k split (115k training images) and minival split (5k
test images). All experiments were implemented using Py-
Torch [24] and Cupy [23], and for the object detection task
we also used Detectron2 [28].

4.1. Implimention Details

Unless otherwise specified, we used the following set-
tings in all experiments.

Basic settings. We used signed and unsigned quantiz-
ers for weights and activations, respectively. Note that a
2-bit signed quantization for weights implies ternarization.
We instead applied the uniform quantizer QU (·) only for 2-
bit weights (not for 2-bit activations), because ternarization
eliminates the effect of companding. Although quantization
of the first and last layers significantly impacts accuracy, as
in [16] we applied 8-bit quantization to both for further effi-
ciency. For both weights and activations, the number of in-
tervals in the companding function and the outer bit-widths
were set to K = 16 and b′ = 8, respectively.

Optimization. We used the stochastic gradient descent
algorithm with a Nesterov momentum of 0.9 and cosine
learning rate decay without restart [20]. All weights in the
quantized model were initialized with pretrained weights at
full precision, and we did not use the progressive initializa-
tion strategy [12, 33]. The clipping parameters for weights
and activations were initialized as 3.0 and 8.0, respectively,
and all companding parameters were initialized as 0; this
is equivalent to the uniform quantization setting. All gra-
dients with respect to the clipping function for the weights
were not zeroed out by applying STE [1], as in [16].

Architecture. Our unsigned activation quantizer can
place a learnable upper bound on the inputs, but not a learn-
able lower bound. However, a lower bound can be applied
by adding a learnable bias term just before the unsigned
quantization. Implementationally, the bias term can be in-
troduced by using batch normalization. As in [4], therefore,
we used ResNet [8] with pre-activation as a target architec-
ture satisfying this condition. We also used the same con-
figuration as that of ResNet for the inverted residual blocks
of MobileNet-V2 [26].

4A discussion of the validity of the comparison between LCQ and uni-
form quantization methods is provided in the supplementary material C.

4.2. Evaluation on CIFAR-10

We performed experiments for ResNet-20/56 on the
CIFAR-10 dataset, training the quantized models over 300
epochs with an initial learning rate of 0.04 for the weights
and 0.02 for the clipping and companding parameters, and
with a mini-batch size of 128. The weight decay was set to
10−4. We adopted standard data augmentation techniques,
namely random crop and horizontal flip.

Table 1: Top-1 accuracy (%) for the 2/3/4-bit ResNet on
the CIFAR-10 dataset.

Model Method W2/A2 W3/A3 W4/A4

ResNet-20
(FP: 93.4)

PACT [2] 89.7 91.1 91.7
LQ-Nets [30] 90.2 91.6 -
APoT [16] 91.0 92.2 92.3
LCQ (Ours) 91.8 92.8 93.2

ResNet-56
(FP: 94.5)

APoT [16] 92.9 93.9 94.0
LCQ (Ours) 93.5 94.6 94.7

Table 1 compares the accuracy of the proposed and con-
ventional methods at three bit-widths for the CIFAR-10
dataset. In the table, for example, “W2/A2” indicates the
case where the weights and activations are both quantized
to 2 bits, “FP” indicates accuracy in the full precision case,
and “-” indicates no reported result. For ResNet-20, our
LCQ shows better performance than do the uniform quanti-
zation method PACT [2] and the non-uniform quantization
methods LQ-Nets [30] and APoT [16] at all bit-widths from
2 to 4. Figure 2b shows examples of trained quantization
levels for the 2/3-bit ResNet-20. As shown in the 3-bit case
in the figure, quantization levels for an input of around 0.4
are relatively dense and indicate an important value range
for loss reduction. The LCQ results were also better for
ResNet-56 than was the APoT method. Although APoT
has fine-grained quantization levels due to the powers-of-
two combination, unlike LCQ, the levels are not learnable.

4.3. Evaluation on ImageNet

We evaluated the performance of LCQ for ResNet-
18/34/50 and MobileNet-V2 on the ImageNet dataset. With
an initial learning rate of 0.1 for the weights and an initial
learning rate of 0.01 for the clipping and companding pa-
rameters, the models were trained over 120 epochs with a
mini-batch size of 1024 for ResNet-18/34 and 512 for both
ResNet-50 and MobileNet-V2. In addition, we applied a
warm-up method [6] for the first 5 epochs and increased the
learning rate linearly from 10−4 to the initial value. The
weight decay was set to 4 × 10−5. The training images
were resized, cropped to 224 × 224 pixels and randomly
flipped horizontally. The test images were center-cropped
to 224× 224 pixels.

Table 2 compares quantization performance with state-

6



Table 2: Top-1 accuracy (%) for the 2/3/4-bit ResNet on
the ImageNet dataset.

Model Method W2/A2 W3/A3 W4/A4

ResNet-18
(FP: 70.4)

LQ-Nets [30] 64.9 68.2 69.3
DSQ [5] 65.2 68.7 69.6
QIL [12] 65.7 69.2 70.1
APoT [16] 67.3 69.9 70.7
LSQ [4] 67.6 70.2 71.1
LCQ (Ours) 68.9 70.6 71.5

ResNet-34
(FP: 74.2)

LQ-Nets [30] 68.8 71.9 -
DSQ [5] 70.0 72.5 72.8
QIL [12] 70.6 73.1 73.7
APoT [16] 70.9 73.4 73.8
LSQ [4] 71.6 73.4 74.1
LCQ (Ours) 72.7 74.0 74.3

ResNet-50
(FP: 76.8)

PTG. [33] 70.0 - 75.7
LQ-Nets [30] 71.5 74.2 75.1
APoT [16] 73.4 75.8 76.6
LSQ [4] 73.7 75.8 76.7
Auxi [32] 73.8 - -
LCQ (Ours) 75.1 76.3 76.6

of-the-art conventional methods. For almost all models,
LCQ outperformed the conventional uniform [4, 5, 12, 32,
33] and non-uniform [16,30] methods on the ImageNet val-
idation set. Accuracy improvements over the conventional
methods at 2 bits were particularly remarkable, with a max-
imum improvement of 1.3% points for both ResNet-18 and
ResNet-50. These results suggest that fine-tuning of the
quantization levels by the companding function improved
accuracy in relatively large datasets.

Table 3: Accuracy (%) of the 4-bit MobileNet-V2 on the
ImageNet dataset.

Model Method Top-1 acc. Top-5 acc.

MobileNet-V2
(FP: 71.9)

DSQ [5] 64.8 -
LLSQ [31] 67.4 88.0
LCQ (Ours) 70.8 89.7

As Table 3 shows, we observed that LCQ achieved rel-
atively good accuracy even for a compact and efficient ar-
chitecture, 4-bit MobileNet-V2 (W4/A4). Due to the low
redundancy, the accuracy difference from the full-precision
model was more than 1% point and was not as close as in
the case of the ResNet models in Table 2.

4.4. Evaluation on COCO

We used RetinaNet [17] with ResNet as the backbone
to evaluate the proposed method on the COCO dataset.
An initial learning rate of 0.005 was used for the weights
and 0.001 for both the clipping and companding parame-
ters. The weight decay was set to 10−4 and the warm-up
method [6], which increases the learning rate linearly from
0 to the initial value, was used for first 1k iterations. The

batch size was set to 16 and the models were trained over
90k iterations. We resized both training and test images
to have 800 pixels on shorter edges, randomly flipping the
training images horizontally as data augmentation. Follow-
ing the observation in [32], the prediction head of RetinaNet
was not shared between features of different resolutions, ex-
cept for the final layers for regression and classification. In
addition, we inserted the batch normalization just before all
convolutional layers for both the feature pyramid network
(FPN) and the prediction heads, and synchronously updated
all batch statistics during training. We did not quantize only
the last layers. All other settings were in accordance with
the original settings in [17].

Table 4: APs for the 4-bit RetinaNet on the COCO dataset.

Backbone Method AP AP50 AP75 APS APM APL

ResNet-18

FP 33.2 52.3 34.8 18.7 35.6 43.7
FQN [14] 28.6 46.9 29.9 14.9 31.2 38.7
Auxi [32] 31.9 50.4 33.7 16.5 34.6 42.3
APoT [16] 32.4 51.2 34.0 18.4 34.6 42.2
LCQ (Ours) 32.7 51.7 34.2 18.6 35.2 42.3

ResNet-34

FP 37.2 57.0 39.4 21.4 40.4 48.9
FQN [14] 31.3 50.4 33.3 16.1 34.4 41.6
Auxi [32] 34.7 53.7 36.9 19.3 38.0 45.9
LCQ (Ours) 36.4 55.9 38.7 21.2 40.0 46.6

ResNet-50

FP 38.3 58.3 40.9 21.5 42.4 49.5
FQN [14] 32.5 51.5 34.7 17.3 35.6 42.6
Auxi [32] 36.1 55.8 38.9 21.2 39.9 46.3
LCQ (Ours) 37.1 57.0 39.6 21.2 40.8 47.1

Table 4 compares the COCO average precision (AP)
metrics for the 4-bit RetinaNet (W4/A4) with the different
backbones. “FP” indicates the full precision case. LCQ
showed more favorable results than did the conventional
methods for all the 4-bit models, especially for ResNet-34,
which differed by 1.7% points in AP over Auxi [32] with
the uniform quantization.

Table 5: APs for the 3-bit RetinaNet on the COCO dataset.

Backbone Method AP AP50 AP75 APS APM APL

ResNet-18

FP 33.2 52.3 34.8 18.7 35.6 43.7
PACT [2] 25.3 41.8 26.0 13.0 26.8 34.6
APoT [16] 31.2 50.1 32.8 18.0 33.5 40.6
LCQ (Ours) 31.3 50.2 33.1 17.6 33.8 40.4

ResNet-34
FP 37.2 57.0 39.4 21.4 40.4 48.9
APoT [16] 35.2 54.9 37.1 19.7 39.1 45.3
LCQ (Ours) 35.5 55.3 37.6 20.5 39.0 45.0

ResNet-50
FP 38.3 58.3 40.9 21.5 42.4 49.5
APoT [16] 36.1 56.0 38.7 21.2 40.4 44.9
LCQ (Ours) 36.1 56.2 38.4 21.7 39.9 46.1

Table 5 shows the results of the 3-bit RetinaNet
(W3/A3), where we observed that LCQ achieved compa-
rable APs to those of the non-uniform quantization method,
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Figure 4: Relation between accuracy and number of inter-
vals K in LCQ for the ResNet-20 model on CIFAR-100.

APoT [16] (our implementation).
These results show that LCQ can quantize the convolu-

tional layers with less performance degradation even for the
FPN architecture and heads connected to the regression and
classification layers.

4.5. Ablation Studies

Number of intervals. The piecewise linear function
in the companding function requires the number of inter-
vals K as a predefined hyperparameter. We tested the rela-
tion between number of intervals and prediction accuracy in
the ResNet-20 model for the CIFAR-100 dataset under the
same experimental conditions as in Sec. 4.2. Figure 4 shows
the relative accuracy difference with respect to K = 4 for
each different number of bits when the number of intervals
is increased from 4 to 16. The accuracy with 2, 3, and 4
bits for K = 4 was 65.2, 67.4, and 67.6, respectively. For
numbers of bits, accuracy tends to improve as the number
of intervals increases, and we found that accuracy tends to
significantly improve with fewer bits. Since the compand-
ing function provides more flexibility in controlling quanti-
zation levels as the number of intervals increases, we infer
that this flexibility is related to accuracy.

Table 6: Comparison of Top-1 accuracy (%) w.r.t. LWN.

Model & Data Method W2/A2 W3/A3 W4/A4

ResNet-20
on CIFAR-10

LCQ w/o LWN 91.4 92.6 93.1
LCQ w/ LWN 91.8 92.7 93.2

ResNet-18
on ImageNet

LCQ w/o LWN 68.6 70.4 71.5
LCQ w/ LWN 68.9 70.5 71.5

Effect of LWN. We used ResNet-18/20 and the CIFAR-
10 and ImageNet datasets to investigate the effectiveness of
LWN on accuracy. Table 6 shows the results for different
bit-widths. Note that when LWN was not used, we instead
applied the conventional method [16], which only applies
standardization to pre-quantized weights. We observed that
the results show a relatively large improvement at 2 bits and
a minor improvement at 3- and 4-bits. Thus, LWN is a sim-
ple yet reliable method that can contribute to accuracy.

Outer bit-widths. Table 7 shows the top-1 accuracy and

Table 7: Comparison of the different outer bit-widths.

Model & Data b′w/b
′
a Acc. (%) LUT size (bytes)

ResNet-20
on CIFAR-10

(bw = ba = 3)

8 / 8 92.8 42.0
6 / 6 92.8 31.5
4 / 4 92.6 21.0

ResNet-18
on ImageNet

(bw = ba = 3)

8 / 8 70.6 42.0
6 / 6 70.5 31.5
4 / 4 70.4 21.0

the memory cost of LUTs per layer for the 3-bit ResNet-
18/20 model and the CIFAR-10 and ImageNet datasets
for the outer bit-widths (b′w for weights and b′a for activa-
tions) described in Sec. 3.4. We observed that accuracy
for CIFAR-10 remained the same from 8 to 6 bits, but de-
graded at 4 bits. In contrast, accuracy for ImageNet showed
a clearer decrease compared with that for CIFAR-10 and
tended to decrease linearly as the number of outer bit-widths
decreased. However, there is still an advantage for both
cases, especially at 4 bits, as accuracy degradation is as
small as 0.2% points and the memory cost of a LUT is half
that of the 8-bit case.

5. Conclusion

We proposed LCQ as a non-uniform quantization
method that can optimize quantization levels via a learn-
able companding function. We formulated the compand-
ing function so that quantization levels can be flexibly and
non-uniformly controlled by training. We also found that
we can stabilize quantization training by limiting the effec-
tive scope of normalization to only the weight quantizer
(LWN). In addition, we reduced the memory cost of the
LUTs required for the efficient inference by applying the re-
quantization technique. Various experiments involving im-
age classification and object detection tasks for extremely
low-bit models showed that LCQ achieved performance
better than or comparable to conventional uniform and non-
uniform quantization methods. We also conducted three ab-
lation studies. The results showed that there is a likely pro-
portional relationship between the number of intervals in
the companding function and its accuracy, that LWN con-
tributes to accuracy, and that accuracy can be maintained to
some extent by reducing the outer bit-widths related to the
LUT size. While we showed that non-uniform quantization
has strong potential, fast inference on resource-constrained
devices requires an efficient hardware accelerator in prac-
tice, so we plan to tackle this problem in future works.
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Supplementary Material for “Learnable Companding Quantization for Accurate Low-bit Neural Networks”

A. Relations between LCQ and the conven-
tional methods

We clarify the difference between our proposed method
and some similar conventional methods as follows: LSQ [4]
uses a learnable clipping function similar to our method,
however, they use a uniform quantization function. There-
fore, the quantization levels are not learnable. Since the
input distribution of DNNs is usually not uniform, non-
uniform quantization is better than uniform quantization to
reduce the quantization error. QIL [12] uses also the uni-
form quantization method that non-linearly transforms the
input (corresponding to our “compressing function”) and
then uniformly quantizes it, however, it does not apply the
expanding function as we proposed. Without the expand-
ing function, the quantization error is likely to be large.
APoT [16] uses non-uniform quantization, however, their
quantization levels are not learnable. DQ [25] learns non-
uniform quantization levels, however, their levels are opti-
mized with simple heuristic gradients, while our levels are
optimized with gradients based on the derivative of the com-
panding function. LQ-Nets [30] also learns non-uniform
quantization levels, however, it does not use gradients to
optimize the levels, unlike our method.

B. Training algorithm for LCQ
When training quantized DNNs with LCQ, we indepen-

dently apply the LCQ quantizer to the weights and activa-
tions for the convolutional or fully-connected layers. Al-
gorithm S1 summarizes the LCQ training procedure for a
convolutional layer as an example. Note that “∗” denotes
a convolutional operation, and that the LCQ parameters are
given independently on a layer-by-layer basis.

C. Validity of comparing LCQ and uniform
quantization methods

Our method assumes that multiplication is replaced by
memory access to LUTs during inference, and the speed of
the memory access depends on an efficient hardware accel-
erator design. Therefore, with respect to the comparison
between the proposed and conventional methods, it is diffi-
cult to evaluate theoretical metrics (e.g., FLOPs) for com-
putational efficiency, and also to evaluate the actual speedup
without dedicated hardware support. However, since there
is almost no difference between our method and conven-
tional methods in terms of memory usage, we compare them
in terms of accuracy at the same bit-widths. This accuracy
comparison is worthwhile because it allows us to evaluate
the model’s portability to memory-constrained devices.

We then show the additional memory usage by LUTs is

Algorithm S1 Training a convolutional layer with LCQ.

Input: full precision weights w and full precision in-
puts/activations a, and the corresponding parameters:
the clipping parameters (αw, αa), the companding pa-
rameters (θw, θa), the bit-widths (bw, ba) and the outer
bit-widths (b′w, b

′
a).

Output: updated parameters w, αw, αa, θw and θa.
1: Compute the quantized weights using Eq. (13) and

Eq. (14): wq ← Quantize(w,αw, θw, bw, b
′
w).

2: Compute the quantized activations using Eq. (14):
aq ← Quantize(a, αa, θa, ba, b

′
a).

3: Compute the convolution outputs: y ← wq ∗ aq .
4: Compute the loss L and the gradients ∂L

∂y .

5: Compute the gradients for the weights ∂L
∂y

∂y
∂w .

6: Compute the gradients for the clipping parameters
∂L
∂y

∂y
∂αa

and ∂L
∂y

∂y
∂αw

based on Eq. (12).
7: Compute the gradients for the companding parameters

∂L
∂y

∂y
∂θa

and ∂L
∂y

∂y
∂θw

based on Eq. (7) and Eq. (11).
8: Update w, αa, αw, θw and θa with the corresponding

gradients, respectively.

Table S1: Comparison of memory usage with/without LUT
in bytes. bw/ba indicates the bit-width for weights and ac-
tivations, respectively.

Model bw/ba w/ LUT w/o LUT Diff.

ResNet-18
(44.59 MB in FP32)

2/2 3.19 MB 3.19 MB 114 B
3/3 4.52 MB 4.52 MB 798 B
4/4 5.85 MB 5.85 MB 3990 B

ResNet-34
(83.15 MB in FP32)

2/2 5.63 MB 5.63 MB 210 B
3/3 8.16 MB 8.16 MB 1470 B
4/4 10.70 MB 10.69 MB 7350 B

ResNet-50
(97.46 MB in FP32)

2/2 7.73 MB 7.73 MB 312 B
3/3 10.52 MB 10.52 MB 2184 B
4/4 13.33 MB 13.32 MB 10920 B

MobileNet-V2
(13.37 MB in FP32) 4/4 2.41 MB 2.40 MB 10920 B

almost negligible. For the models and bit-widths used in
the experiments in this paper, Table S1 shows the memory
usage of the LCQ models (w/ LUT) and the uniform quan-
tization models (w/o LUT). Note that we set 8 as the outer
bit-width for both weights and activations. Clearly, there
is almost no difference in their memory usage for all the
combinations of the models and the bit-widths.
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