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Abstract

The performance of face recognition system degrades
when the variability of the acquired faces increases. Prior
work alleviates this issue by either monitoring the face
quality in pre-processing or predicting the data uncertainty
along with the face feature. This paper proposes MagFace,
a category of losses that learn a universal feature embed-
ding whose magnitude can measure the quality of the given
face. Under the new loss, it can be proven that the magni-
tude of the feature embedding monotonically increases if the
subject is more likely to be recognized. In addition, Mag-
Face introduces an adaptive mechanism to learn a well-
structured within-class feature distributions by pulling easy
samples to class centers while pushing hard samples away.
This prevents models from overfitting on noisy low-quality
samples and improves face recognition in the wild. Ex-
tensive experiments conducted on face recognition, qual-
ity assessments as well as clustering demonstrate its su-
periority over state-of-the-arts. The code is available at
https://github.com/IrvingMeng/MagFace.

1. Introduction

Recognizing face in the wild is difficult mainly due to
the large variability exhibited by face images acquired in
unconstrained settings. This variability is associated to the
image acquisition conditions (such as illumination, back-
ground, blurriness, and low resolution), factors of the face
(such as pose, occlusion and expression) or biases of the
deployed face recognition system [36]. To cope with these
challenges, most relevant face analysis system under uncon-
strained environment (e.g., surveillance video) consists of
three stages: 1) face acquisition to select from a set of raw
images or capture from video stream the most suitable face
image for recognition purpose; 2) feature extraction to ex-
tract discriminative representation from each face image; 3)
facial application to match the reference image towards a
given gallery or cluster faces into groups of same person.
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Figure 1: MagFace learns for (a) in-the-wild faces (b) a universal
embedding by pulling the easier samples closer to the class center
and pushing them away from the origin o. As shown in our exper-
iments and supported by mathematical proof, the magnitude l be-
fore normalization increases along with feature’s cosine distance
to its class center, and therefore reveals the quality for each face.
The larger the l, the more likely the sample can be recognized.

To acquire the optimal reference image in the first stage,
a technique called face quality assessment [4, 26] is of-
ten employed on each detected face. Although the ideal
quality score should be indicative of the face recognition
performance, most of early work [1, 2] estimates quali-
ties based on human-understandable factors such as lumi-
nances, distortions and pose angles, which may not directly
favor the face feature learning in the second stage. Alter-
natively, learning-based methods [4, 15] train quality as-
sessment models with artificially or human labelled quality
values. Theses methods are error-prone as there lacks of a
clear definition of quality and human may not know the best
characteristics for the whole systems.

To achieve high end-to-end application performances in
the second stage, various metric-learning [27, 30] or classi-
fication losses [48, 25, 20, 13, 40, 9, 5] emerged in the past
few years. These works learn to represent each face im-
age as a deterministic point embedding in the latent space
regardless of the variance inherent in faces. In reality, how-
ever, low-quality or large-pose images like Fig. 1a widely
exist and their facial features are ambiguous or absent.
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Given these challenges, a large shift in the embedded points
is inevitable, leading to false recognition. For instance, per-
formance reported by prior state-of-the-art [29] on IJB-C is
much lower than LFW. Recently, confidence-aware meth-
ods [29, 7] propose to represent each face image as a Gaus-
sian distribution in the latent space, where the mean of the
distribution estimates the most likely feature values while
the variance shows the uncertainty in the feature values. De-
spite the performance improvement, these methods seek to
separate the face feature learning from data noise modeling.
Therefore, additional network blocks are introduced in the
architecture to compute the uncertainty level for each im-
age. This complicates the training procedure and adds com-
putational burden in inference. In addition, the uncertainty
measure cannot be directed used in conventional metrics for
comparing face features.

This paper proposes MagFace to learn a universal and
quality-aware face representation. The design of MagFace
follows two principles: 1) Given the face images of the
same subject but in different levels of quality (e.g., Fig. 1a),
it seeks to learn a within-class distribution, where the high-
quality ones stay close to the class center while the low-
quality ones are distributed around the boundary. 2) It
should pose the minimum cost for changing existing infer-
ence architecture to measure the face quality along with the
computation of face feature. To achieve the above goals, we
choose magnitude, the independent property to the direc-
tion of the feature vector, as the indicator for quality assess-
ment. The core objective of MagFace is to not only enlarge
inter-class distance, but also maintain a cone-like within-
class structure like Fig. 1b, where ambiguous samples are
pushed away from the class centers and pulled to the origin.
This is realized by adaptively down-weighting ambiguous
samples during training and rewarding the learned feature
vector with large magnitude in the MagFace loss. To sum
up, MagFace improves previous work in two aspects:

1. For the first time, MagFace explores the complete set
of two properties associated with feature vector, direc-
tion and magnitude, in the problem of face recognition
while previous works often neglect the importance of
the magnitude by normalizing the feature. With exten-
sive experimental study and solid mathematical proof,
we show that the magnitude can reveal the quality of
faces and can be bundled with the characteristics of
recognition without any quality labels involved.

2. MagFace explicitly distributes features structurally in
the angular direction (as shown in Fig. 1b). By dynam-
ically assigning angular margins based on samples’
hardness for recognition, MagFace prevents model
from overfitting on noisy and low-quality samples and
learns a well-structured distributions that are more
suitable for recognition and clustering purpose.

2. Related Works
2.1. Face Recognition

Recent years have witnessed the breakthrough of deep
convolutional face recognition techniques. A number of
successful systems, such as DeepFace [35], DeepID [33],
FaceNet [27] have shown impressive performance on face
identification and verification. Apart from the large-scale
training data and deep network architectures, the major
advance comes from the evolution of training losses for
CNN. Most of early works rely on metric-learning based
loss, including contrastive loss [8], triplet loss [27], n-
pair loss [30], angular loss [41], etc. Suffering from the
combinatorial explosion in the number of face triplets,
embedding-based method is usually inefficient in training
on large-scale dataset. Therefore, the main body of research
in deep face recognition has focused on devising more effi-
cient and effective classification-based loss. Wen et al. [44]
develop a center loss to learn centers for each identity to
enhance the intra-class compactness. L2-softmax [25] and
NormFace [39] study the necessity of the normalization op-
eration and appliedL2 normalization constraint on both fea-
tures and weights. From then on, several angular margin-
based losses, such as SphereFace [20], AM-softmax [38],
SV-AM-Softmax [42], CosFace [40], ArcFace [9], progres-
sively improve the performance on various benchmarks to
the newer level. More recently, AdaptiveFace [19], Ada-
Cos [49] and FairLoss [18] introduce adaptive margin strat-
egy to automatically tune hyperparameters and generate
more effective supervisions during training. Compared to
our method, all these work tend to suppress the effect of
magnitude in the loss by normalizing the feature vector.

2.2. Face Quality Assessment
Face image quality is an important factor to enable

high-performance face recognition systems [4]. Traditional
methods, such as ISO/IEC 19794-5 standard [1], ICAO
9303 standard [2], Brisque [31], Niqe [23] and Piqe [37],
describe qualities from image-based aspects (e.g., distor-
tion, illumination and occlusion) or subject-based mea-
sures (e.g., accessories). Learning-based approaches such
as FaceQNet [15] and Best-Rowden [4] regress qualities by
networks trained on human-assessed and similarity-based
labels. However, these quality labels are error-prone as hu-
man may not know the best characteristics for the recog-
nition system and therefore cannot consider all proper fac-
tors. Recently, several uncertainty-based methods are pro-
posed to express face qualities by the uncertainties of fea-
tures. SER-FIQ [36] forwards an image to a network with
dropout several times and measures face quality by the vari-
ation of extracted features. Confidence-aware face recogni-
tion methods [29, 7] propose to represent each face image
as a Gaussian distribution in the latent space and learn the
uncertainty in the feature values. Although these methods
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Figure 2: Geometrical interpretation of the feature space (without normalization) optimized by ArcFace and MagFace. (a) Two-class
distributions optimized by ArcFace, where w and w′ are the class centers and their decision boundaries B and B′ are separated by the
additive margin m. Circle 1, 2, 3 represent three types samples of class w with descending qualities. (b) MagFace introduces m(ai) which
dynamically adjust boundaries based on feature magnitudes, and ends to a new feasible reagion. (c) Effects of g(ai) and m(ai). (d) Final
feature distributions of our MagFace. Best viewed in color.

work in an unsupervised manner like ours, they require ad-
ditional computational costs or network blocks, which com-
plicate their usage in conventional face systems.

2.3. Face Clustering
Face clustering exploits unlabeled data to cluster them

into pseudo classes. Traditional clustering methods usually
work in an unsupervised manner, such as K-means [21].
DBSCAN [11] and hierarchical clustering. Several su-
pervised clustering methods based on graph convolutional
network (GCN) are proposed recently. For example, L-
GCN [43] performs reasoning and infers the likelihood of
linkage between pairs in the sub-graphs. Yang et al. [46]
designs two graph convolutional networks, named GCN-V
and GCN-E, to estimate the confidence of vertices and the
connectivity of edges, respectively. Instead of developing
clustering methods, we aim at improving feature distribu-
tion structure for clustering.

3. Methodology
In this section, we first review the definition of Arc-

Face [9], one of the most popular losses used in face recog-
nition. Based on the analysis of ArcFace, we then derive the
objective and prove the key properties for MagFace. In the
end, we compare softmax and ArcFace with MagFace from
the perspective of feature magnitude.

3.1. ArcFace Revisited
Training loss plays an important role in face represen-

tation learning. Among the various choices (see [10] for
a recent survey), ArcFace [9] is perhaps the most widely
adopted one in both academy and industry application due
to its easiness in implementation and state-of-the-art per-
formance on a number of benchmarks. Suppose that we are
given a training batch of N face samples {fi, yi}Ni=1 of n
identities, where fi ∈ Rd denotes the d-dimensional em-
bedding computed from the last fully connected layer of the

neural networks and yi = 1, · · · , n is its associated class
label. ArcFace and other variants improve the conventional
softmax loss by optimizing the feature embedding on a hy-
persphere manifold where the learned face representation is
more discriminative. By defining the angle θj between fi
and j-th class center wj ∈ Rd as wTj fi = ‖wj‖‖fi‖ cos θj ,
the objective of ArcFace [9] can be formulated as

L = − 1

N

N∑
i=1

log
es cos (θyi+m)

es cos (θyi+m) +
∑
j 6=yi e

s cos θj
, (1)

where m > 0 denotes the additive angular margin and s is
the scaling parameter.

Despite its superior performances on enforcing intra-
class compactness and inter-class discrepancy, the angular
margin penalty m used by ArcFace is quality-agnostic and
the resulting structure of the within-class distribution could
be arbitrary in unconstrained scenarios. For example, let us
consider the scenario illustrated in Fig. 2a, where we have
face images of the same class in three levels of qualities in-
dicated by the circle sizes: the larger the radius, the more
uncertain the feature representation and the more difficulty
the face can be recognized. Because ArcFace employs a
uniform margin m, each image in one class shares the same
decision boundary, i.e., B : cos(θ + m) = cos(θ′) with
respect to the neighbor class. The three types of samples
can stay at arbitrary location in the feasible region (shading
area in Fig. 2a) without any penalization by the angular mar-
gin. This leads to unstable within-class distribution, e.g., the
high-quality face (type 1) stay along the boundary B while
the low-quality ones (type 2 and 3) are closer to the center
w. This unstableness can hurt the performances on in-the-
wild recognition as well as other facial application such as
face clustering. Moreover, hard and noisy samples are over-
weighted as they are hard to stay in the feasible area and the
models may overfit to them.
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Figure 3: Visualization of feature magnitudes and difficulties for recognition. Models are trained on MS1M-V2 [14, 9] and 512 samples
of the last iteration are used for visualization. Negative losses are used to reveal the hardness for Softmax while we use cosine value of θ
(angle between a feature and its class center) for ArcFace and MagFace.

3.2. MagFace
Based on the above analysis, previous cosine-similarity-

based face recognition loss lacks more fine-grained con-
straint beyond a fixed margin m. This leads to unstable
within-class structure especially in the unconstrained case
(e.g., Fig. 2a) where the variability of each subject’s faces is
large. To address the aforementioned problem, this section
proposes MagFace, a novel framework to encode quality
measure into the face representation. Unlike previous work
[29, 7] that call for additional uncertainty term, we pur-
sue a minimalism design by optimizing over the magnitude
ai = ‖fi‖ without normalization of each feature fi. Our
design has two major advantages: 1) We can keep using the
cosine-based metric that has been widely adopted by most
existing inference systems; 2) By simultaneously enforcing
its direction and magnitude, the learned face representation
is more robust to the variability of faces in the wild. To our
best understanding, this is the first work to unify the feature
magnitude as quality indicator in face recognition.

Before defining the loss, let us first introduce two aux-
iliary functions related to ai, the magnitude-aware angu-
lar margin m(ai) and the regularizer g(ai). The design
of m(ai) follows a natural intuition: for high-quality sam-
ples xi, they should concentrate in a small region around the
cluster center w with high certainty. By assuming a positive
correlation between the magnitude and quality, we thereby
penalize more on xi in terms of m(ai) if its magnitude ai is
large. To have a better understanding, Fig. 2b visualizes the
margins m(ai) corresponding to different magnitude val-
ues. In contrast to ArcFace (Fig. 2a), the feasible region
defined by m(ai) has a shrinking boundary with respect
to feature magnitude towards the class center w. Conse-
quently, this boundary pulls the low-quality samples (circle
2 and 3 in Fig. 2c) to the origin where they have lower risk
to be penalized. However, the structure formed solely by
m(ai) is unstable for high-quality samples like circle 1 in
Fig. 2c as they have large freedom moving inside the fea-
sible region. We therefore introduce the regularizer g(ai)
that rewards sample with large magnitude. By designing
g(ai) as a monotonically decreasing convex function with

respect to ai, each sample would be pushed towards the
boundary of the feasible region and the high-quality ones
(circle 1) would be dragged closer to the class center w as
shown in Fig. 2d. In a nutshell, MagFace extends ArcFace
(Eq. 1) with magnitude-aware margin and regularizer to en-
force higher diversity for inter-class samples and similarity
for intra-class samples by optimizing:

LMag =
1

N

N∑
i=1

Li, where (2)

Li = − log
es cos (θyi+m(ai))

es cos (θyi+m(ai)) +
∑
j 6=yi e

s cos θj
+ λgg(ai).

The hyper-parameter λg is used to trade-off between the
classification and regularization losses.

The design of MagFace not only follows intuitive mo-
tivations, but also yields result with theoretical guarantees.
Assuming the magnitude ai is bounded in [la, ua], where
m(ai) is a strictly increasing convex function, g(ai) is a
strictly decreasing convex function and λg is large enough,
we can prove (see detailed requirements and proofs in the
supplementary) that the following two properties of Mag-
Face loss always hold when optimizing Li over ai:

Property of Convergence. For ai ∈ [la, ua], Li is a strictly
convex function which has a unique optimal solution a∗i .

Property of Monotonicity. The optimal a∗i is monotoni-
cally increasing as the cosine-distance to its class center
decreases and the cos-distances to other classes increase.

The property of convergence guarantees the unique op-
timal solution for ai as well as the fast convergence. The
property of monotonicity states that the feature magni-
tudes reveal the difficulties for recognition, therefore can
be treated as a metric for face qualities.

3.3. Analysis on Feature Magnitude
To better understand the effect of the MagFace loss,

we conduct experiments on the widely used MS1M-V2 [9]



dataset and investigate for the training examples at conver-
gence the relation between the feature magnitude and their
similarity with class center as shown in Fig. 3.

Softmax. The classical softmax-based loss underlies the
objective of the pioneer work [35, 34] on deep face recog-
nition. Without explicit constraint on magnitude, the value
of the negative loss for each sample is almost independent
to its magnitude as observed from Fig. 3a. As pointed in
[25, 39], softmax tends to create a radial feature distribution
because softmax loss acts as the soft version of max opera-
tor and scaling the feature magnitude does not affect the as-
signment of its class. To eliminate this effect, [25, 39] sug-
gest that using normalized feature would benefit the task.

ArcFace. ArcFace can be considered as a special case
of MagFace when m(ai) = m and g(ai) = 0. As shown
in Fig. 3b, high-quality samples with large similarity cos(θ)
to class center yield large variation in magnitude. This ev-
idence echos our motivation on the unstable structure de-
fined by a fixed angular margin in ArcFace for easy samples.
On the other hand, for low-quality samples that are difficult
to be recognized (cos(θ) is small), the fixed angular margin
determines the magnitude needs to be large enough in order
to fit inside the feasible region (Fig. 2a). Therefore, there
is a decreasing low bound for feature magnitudes w.r.t. the
quality of face as indicated by the dash line in Fig. 3b.

MagFace. In contrast to ArcFace, our MagFace opti-
mizes the feature with adaptive margin and regularization
based on its magnitude. Under this loss, it is clear to observe
from Fig. 3c that there is a strong correlation between the
feature magnitudes and their cosine similarities with class
center. Those examples at the upper-right corner are the
most high-quality ones. As the magnitude becomes smaller,
the examples are more deviated from the class center. This
distribution strongly supports the fact that the feature mag-
nitude learned by MagFace is a good metric for face quality.

4. Experiments
In this section, we examine the proposed MagFace on

three important face tasks: face recognition, quality as-
sessment and face clustering. Sec. C in the supplementary
presents the ablation study on relationships between margin
distributions and recognition performances.

4.1. Face Recognition
Datasets. The original MS-Celeb-1M dataset [14] contains
about 10 million images of 100k identities. However, it
consists of a great many noisy face images. Instead, we
employ MS1M-V2 [9] (5.8M images, 85k identities) as our
training dataset. For evaluation, we adopt LFW [16], CFP-
FP [28], AgeDB-30 [24], CALFW [51], CPLFW [50], IJB-
B [45] and IJB-C [22] as the benchmarks. All the images
are aligned to 112×112 by following the setting in ArcFace.

Method LFW CFP-FP AgeDB-30 CALFW CPLFW

Softmax 99.70 98.20 97.72 95.65 92.02
SV-AM-Softmax [42] 99.50 95.10 95.68 94.38 89.48
SphereFace [20] 99.67 96.84 97.05 95.58 91.27
CosFace [40] 99.78 98.26 98.17 96.18 92.18
ArcFace [9] 99.81 98.40 98.05 95.96 92.72
MagFace 99.83 98.46 98.17 96.15 92.87

Table 1: Verification accuracy (%) on easy benchmarks.

Baselines. We re-implement state-of-the-art baselines in-
cluding Softmax, SV-AM-Softmax [42], SphereFace [20],
CosFace [40], ArcFace [9]. ResNet100 is equipped as the
backbone. We use the recommended hyperparameters for
each model, e.g., s = 64, m = 0.5 for ArcFace.
Training. We train models on 8 1080Tis by stochastic
gradient descent. The learning rate is initialized from 0.1
and divided by 10 at 10, 18, 22 epochs, and we stop the
training at the 25th epoch. The weight decay is set to
5e-4 and the momentum is 0.9. We only augment train-
ing samples by random horizontal flip. For MagFace, we
fix the upper bound and lower bound of the magnitude as
la = 10, ua = 110. m(ai) is chosen to be a linear function
and g(ai) as a hyperbola. For detailed definition of m(ai),
g(ai) and λg , please refer to Sec. B2 in the supplementary.
In the end, our mean margin as well as other hyperparame-
ters are all consistent with ArcFace.
Test. During testing, cosine distance is used as metric on
comparing 512-D features. For evaluations on IJB-B/C, one
identity can have multiple images. The common way to rep-
resent for an identity is to sum up the normalized feature
fnormi = fi

‖fi‖ of each image and then normalize the em-

bedding for comparisons, i.e., f =
∑
i f
norm
i

‖
∑
i f
norm
i ‖ . One ben-

efit of MagFace is that we can assign quality-aware weight
‖fi‖ to each normalized feature fnormi . Therefore, we fur-
ther evaluate “MagFace+” in Tab. 2 by computing the iden-
tity embedding as f+ =

∑
i fi

‖
∑
i fi‖

.
Results on LFW, CFP-FP, AgeDB-30, CALFW and
CPLFW. We directly use the aligned images and proto-
cols adopted by ArcFace [9] and present our results in
Tab. 1. We note that performances are almost saturated.
Compared to CosFace which is the second best baseline,
ArcFace achieves 0.03%, 0.14%, 0.54% improvement on
LFW, CFP-FP and CPLFW, while drops 0.12%, 0.22% on
AgeDB-30 and CALFW. MagFace obtains the overall best
results and surpasses ArcFace by 0.02%, 0.06%, 0.12%,
0.19% and 0.15% on five benchmarks respectively.
Results on IJB-B/IJB-C. The IJB-B dataset contains 1,845
subjects with 21.8K still images and 55K frames from 7,011
videos. As the extension of IJB-B, the IJB-C dataset cov-
ers about 3,500 identities with a total of 31,334 images and
117,542 unconstrained video frames. In the 1:1 verification,
the number of positive/negative matches are 10k/8M in IJB-
B and 19k/15M in IJB-C. We report the TARs at FAR=1e-6,



(a) mean: 22.84
range: (-∞, 24)
# of faces: 3692

(b) mean: 25.13
range: [24, 26)
# of faces: 9955

(c) mean: 27.03
range: [26, 28)
# of faces: 15459

(d) mean: 29.03
range: [28, 30)
# of faces: 17565

(e) mean: 31.01
range: [30, 32)
# of faces: 20627

(f) mean: 32.99
range: [32, 34)
# of faces: 19743

(g) mean: 34.80
range: [34, 36)
# of faces: 11238

(h) mean: 36.55
range: [36, ∞)
# of faces: 1721

Figure 4: Visualization of the mean faces of 100k images sampled from the IJB-C dataset. Each mean face corresponds to a group of faces
based on the magnitude level of the features learned by MagFace.

Method IJB-B (TAR@FAR) IJB-C (TAR@FAR)
1e-6 1e-5 1e-4 1e-6 1e-5 1e-4

VGGFace2* [6] - 67.10 80.00 - 74.70 84.00
CenterFace* [44] - - - - 78.10 85.30
CircleLoss* [32] - - - - 89.60 93.95
ArcFace* [9] - - 94.20 - - 95.60
Softmax 46.73 75.17 90.06 64.07 83.68 92.40
SV-AM-Softmax [42] 29.81 69.25 84.79 63.45 80.30 88.34
SphereFace [20] 39.40 73.58 89.19 68.86 83.33 91.77
CosFace [40] 40.41 89.25 94.01 87.96 92.68 95.56
ArcFace [9] 38.68 88.50 94.09 85.65 92.69 95.74
MagFace 40.91 89.88 94.33 89.26 93.67 95.81
MagFace+ 42.32 90.36 94.51 90.24 94.08 95.97

Table 2: Verification accuracy (%) on difficult benchmarks. “*”
indicates the result quoted from the original paper.

1e-5 and 1e-4 as shown in Tab. 2.
Our implemented ArcFace is on par with the original

paper, e.g., our TARs at FAR=1e-4 differ from the au-
thors by −0.11% and +0.14% on IJB-B and IJB-C re-
spectively. Compared to baselines, our MagFace remains
the top at all FAR criteria except for FAR=1e-6 on IJB-B
as the TAR is very sensitive to the noise when the num-
ber of FP is tiny. Compared to CosFace, MagFace gains
0.50%, 0.63%, 0.32% on IJB-B at TAR@FAR=1e-6, 1e-5,
1e-4 and 1.30%, 0.99%, 0.25% on IJB-C. Compared to Arc-
Face, improvements are of 2.23%, 1.38%, 0.24% on IJB-B
and 3.61%, 0.98%, 0.07% on IJB-C respectively. This re-
sult demonstrates the superiority of MagFace on more chal-
lenging benchmarks. It is worth to mention that when multi-
ple images existed for one identity, the average embedding
can be further improved by aggregating features weighted
by magnitudes. For instance, MagFace+ outperforms Mag-
Face by 1.41%/0.98% at FAR=1e-6, 0.48%/0.41% at
FAR=1e-5 and 0.18%/0.16% at FAR=1e-4.

4.2. Face Quality Assessment
In this part, we investigate the qualitative and quantita-

tive performance of the pre-trained MagFace model men-
tioned in Tab. 2 for quality assessment.
Visualization of the mean face. We first sample 100k im-
ages form IJB-C database and divide them into 8 groups
based on feature magnitudes. We visualize the mean faces
of each group in Fig. 4. It can be seen that when magni-
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Figure 5: Distributions of magnitudes on different datasets.

tude increases, the corresponding mean face reveals more
details. This is because high-quality faces are inclined to be
more frontal and distinctive. This implies the magnitude of
MagFace feature is a good quality indicator.
Sample distribution of datasets. Fig. 5 plots the sample
histograms of different benchmarks with respect to Mag-
Face magnitudes. We observe that LFW is the least noisy
one where most samples are of large magnitudes. Due
to the larger age variation, the distribution of AGEDB-30
slightly shifts left compared to LFW. For CFP-FP, there are
two peaks at the magnitude around 28 and 34, correspond-
ing to the frontal and profile faces respectively. Given the
large variations in face qualities, we can conclude IJB-C is
much more challenging than other benchmarks. For images
(more examples can be found in the supplementary) with
magnitudes a ' 15, there are no faces or very noisy faces
to observe. When feature magnitudes increase from 20 to
40, there is a clear trend that the face changes from profile,
blurred and occluded, to more frontal and distinctive. Over-
all, this figure convinces us that MagFace is an effective tool
to rank face images according to their qualities.
Baselines. We choose six baselines of three types for quan-
titative quality evaluation. Brisque [31], Niqe [23] and
Piqe [37] are image-based quality metrics. FaceQNet [15]
and SER-FIQ [36] are face-based ones. For FaceQNet, we
adopt the released models by the authors. For SER-FIQ, we
use the “same model” version which yields the best perfor-
mance in the paper. Following the authors’ setting, we set
m = 100 to forward each image 100 times with drop-out
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(e) AgeDB-30 - ArcFace
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(f) AgeDB-30 - MagFace
Figure 6: Face verification performance for the predicted face quality values with two evaluation models (ArcFace and MagFace). The
curves show the effectiveness of rejecting low-quality face images in terms of false non-match rate (FNMR). Best viewed in color.

active in inference. As a related work, we re-implement the
recent DUL [7] method that can estimate uncertainty along
with the face feature.

Evaluation metric. Following previous work [12, 36,
4], we evaluate the quality assessment on LFW/CFP-
FP/AgeDB via the error-versus-reject curves, where images
with the lowest predicted qualities are unconsidered and
error rates are calculated on the remaining images. Error-
versus-reject curve indicates good quality estimation when
the verification error decreases consistently while increas-
ing the ratio of unconsidered images. To compute the fea-
ture for verification, we adopt the ArcFace* as well as our
MagFace models in Tab. 2.

Results on face verification. Fig. 6 shows the error-versus-
reject curves of different quality methods in terms of false
non-match rate (FNMR) reported at false match rate (FMR)
threshold of 0.001. Overall, we have two high-level ob-
servations. 1) The curves on CFP-FP and AgeDB-30 are

much more smooth than the ones obtained on LFW. This
is because CFP-FP and AgeDB-30 consist of faces with
larger variations in pose and age. Effectively dropping low-
quality faces can benefit the verification performance more
on these two benchmarks. 2) No matter computing the
feature from ArcFace (left column) or MagFace (right col-
umn), the curves corresponding to MagFace magnitude are
consistently the lowest ones across different benchmarks.
This indicates that the performance of MagFace magni-
tude as quality generalizes well across datasets as well as
face features. We then analyze the quality performance of
each type of methods. 1) The image-based quality metrics
(Brisque [31], Niqe [23], Piqe [37]) lead to relatively higher
errors in most cases as the image quality alone is not suit-
able for generalized face quality estimation. Factors of the
face (such as pose, occlusions, and expressions) and model
biases are not covered by these algorithms and might play
an important role for face quality assessment. 2) The face-



based methods (FaceQNet [15] and SER-FIQ [36]) outper-
forms other baselines in most cases. In particular, SER-FIQ
is more effective than FaceQNet in terms of the verification
error rates. This is due to the fact that SER-FIQ is built on
top of the deployed recognition model so that its prediction
is more suitable for the verification task. However, SEQ-
FIQ takes a quadratic computational cost w.r.t. the number
of sub-networks m randomly sampled using dropout. In
contrary, the neglectable overhead of computing magnitude
makes the proposed MagFace more practical in many real-
time scenarios. Moreover, the training of MagFace does not
require explicit labeling of face quality, which is not only
time consuming but also error-prone to obtain. 3) At last,
the uncertainty method (DUL) performs well on CFP-FP
but yields more verification errors on AgeDB-30 when the
proportion of unconsidered images is increased. This may
indicate that the Gaussian assumption of data variance in
DUL is over-simplified such that the model cannot general-
ize well to different kinds of quality factors.

4.3. Face Clustering
In this section, we conduct experiments on face cluster-

ing to further investigate the structure of feature representa-
tions learned by MagFace.
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Figure 7: Visualization of MagFace magnitudes of 500 samples
from IJB-B-1845 w.r.t. their confidences of being class centers.

Baselines. We compare the performances of MagFace and
ArcFace by integrating their features with various cluster-
ing methods. For fair comparisons, we constrain hyper-
parameters of the two models to be consistent (e.g., s=64,
mean margin 0.5) during training. Four clustering methods
are used in the evaluation: K-means [21], AHC [17], DB-
SCAN [11] and L-GCN [43]. For non-deterministic algo-
rithms (K-means and AHC), we report the average results
from 10 runs. For L-GCN, we train the model on CASIA-
WebFace [47] (0.5M images from 10k individuals) and fol-
low the recommended settings in the paper [43].
Benchmarks. We adopt the IJB-B [45] dataset as the
benchmark as it contains a clustering protocol of seven sub-
tasks varying in the number of ground truth identities. Fol-
lowing [43], we evaluate on three largest sub-tasks where
the numbers of identities are 512, 1,024 and 1,845, and the
numbers of samples are 18,171, 36,575 and 68,195, respec-
tively. Normalized mutual information (NMI) and BCubed

Method Net IJB-B-512 IJB-B-1024 IJB-B-1845
F NMI F NMI F NMI

K-means [21] ArcFace 66.70 88.83 66.82 89.48 66.93 89.88
MagFace 66.75 88.86 67.33 89.62 67.06 89.96

AHC [17] ArcFace 69.72 89.61 70.47 90.54 70.66 90.90
MagFace 70.24 89.99 70.68 90.67 70.98 91.06

DBSCAN [11] ArcFace 72.72 90.42 72.50 91.15 73.89 91.96
MagFace 73.13 90.61 72.68 91.30 74.26 92.13

L-GCN [43] ArcFace 84.92 93.72 83.50 93.78 80.35 92.30
MagFace 85.27 93.83 83.79 94.10 81.58 92.79

Table 3: F-score (%) and NMI (%) on clustering benchmarks.

F-measure [3] are employed as the evaluation metrics.
Results. Tab. 3 summarizes the clustering results. We
can observe that with stronger clustering methods from K-
means to L-GCN, the overall clustering performance can be
improved. For any combination of clustering and protocol,
MagFace always achieves better performance than ArcFace
in terms of both F-score and NMI metrics. This consis-
tent superiority demonstrates the MagFace feature is more
suitable for clustering. Notice that we keep the same hyper-
parameters for clustering. The improvement of using Mag-
Face must come from its better within-class feature distribu-
tion, where the high-quality samples around the class center
are more likely to be separated across different classes.

We further explore the relationship between feature mag-
nitudes and the confidences of being class centers. Fol-
lowing the idea mentioned in [46], the confidence of be-
ing a class center for each sample is estimated based on
its neighbor structure defined by face features. The sam-
ples with dense and pure local connection have high con-
fidence, while those with sparse connections or residing in
the boundary among several clusters have low confidence.
From Fig. 7, it is easy to observe that the MagFace magni-
tude is positively correlated with confidence of class center
on the IJB-B-1845 benchmark. This result reflects that the
MagFace feature exhibits the expected within-class struc-
ture, where high quality samples distribute around class
center while low quality ones are far away from the center.

5. Conclusion
In this paper, we propose MagFace to learn unified fea-

tures for face recognition and quality assessment. By push-
ing ambiguous samples away from class centers, MagFace
improves the within-class feature distribution from previous
margin-based work for face recognition. The adequate theo-
retical and experimental results convince that MagFace can
simultaneously access quality for the input face image. As a
general framework, MagFace can be potentially extended to
benefit other classification tasks such as fine-grained object
recognition, person re-identification. Moreover, the pro-
posed principle of exploring feature magnitude paves the
way to estimate quality for other objects, e.g., person body
in reid or action snippet in activity classification.
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A. Proofs for MagFace

Recall the MagFace loss for a sample i is

Li = − log
es cos (θyi+m(ai))

es cos (θyi+m(ai)) +
∑n
j=1,j 6=yi e

s cos θj

+ λgg(ai)

(3)

Let A(ai) = s cos(θyi + m(ai)) and B =∑n
j=1,j 6=yi e

s cos θj and rewrite the loss as

Li = − log eA(ai)

eA(ai)+B
+ λgg(ai) (4)

We first introduce and prove Lemma 1.

Lemma 1. Assume that fi is top-k correctly classified and
m(ai) ∈ [0, π/2]. If the number of identities n is much
larger than k (i.e., n� k), the probability of θyi+m(ai) ∈
[0, π/2] approaches 1.

Proof. Denote the angle between feature fi and center class
Wj , j ∈ {1, · · · , n} as θj . Assuming the distribution of θj
is uniform, it’s easy to prove P (θj +m(ai) ∈ [0, π/2]) =
π/2−m(ai)

π . Let p = π/2−m(ai)
π . If fi is top-k correctly

classified, the probability of θyi +m(ai) ∈ [0, π/2] is the
same as the probability of there are at least k θ to satisfy
θ +m(ai) ∈ [0, π/2]. Then the probability is

P (θyi +m(ai) ∈ [0, π/2]) =

n∑
i=k

(
n

i

)
pi(1− p)(n−i)o

= 1−
k−1∑
i=0

(
n

i

)
pi(1− p)(n−i)

(5)

When n is a large integer and n � k, each
(
n
i

)
pi(1 −

p)(n−i), i = 1, 2, · · · k − 1 converges to 0. Therefore, prob-
ability of θyi +m(ai) ∈ [0, π/2] approaches 1.

Lemma 1 is fundamental for the following proofs. The
number of identities is large in real-world applications (e.g.,
3.8M for MS1Mv2 [14, 9]). Therefore, the probability of
θyi +m(ai) ∈ [0, π/2] approaches 1 in most cases.

A.1. Requirements for MagFace

In MagFace, m(ai), g(ai), λg are required to have the
following properties:

1. m(ai) is an increasing convex function in [la, ua] and
m′(ai) ∈ (0,K], where K is a upper bound;

2. g(ai) is a strictly convex function with g′(ua) = 0;

3. λg ≥ sK
−g′(la) .

A.2. Proof for Property of Convergence

We prove the property of convergence by showing the
strict convexity of the function Li (Property 1) and the ex-
istence of the optimum (Property 2).

Property 1. For ai ∈ [la, ua], Li is a strictly convex func-
tion of ai.

Proof. The first and second deriviates of A(ai) are

A′(ai) = −s sin(θyi +m(ai))m
′(ai)

A′′(ai) = −s cos(θyi +m(ai))(m
′(ai))

2

− s sin(θyi +m(ai))m
′′(ai)

(6)

According to Lemma 1, we have cos(θyi + m(ai)) ≥ 0
and sin(θyi +m(ai)) ≥ 0. Because we define m(ai) to be
convex and g(ai) to be strictly convex for ai ∈ [la, ua],
m′′(ai) ≥ 0 and g′′(ai) > 0 always hold. Therefore,
A′′(ai) ≤ 0.

The first and second order derivatives of the loss Li are

∂Li
∂ai

= − B

eA(ai) +B
A′(ai) + λgg

′(ai)

∂2Li
(∂ai)2

= − B

(eA(ai) +B)2

(
(eA(ai) +B)A′′(ai)−BeA(ai)A′(ai)

2
)

+ λgg
′′(ai)

= − B

eA(ai) +B
A′′(ai) +

B2

(eA(ai) +B)2
eA(ai)A′(ai)

2

+ λgg
′′(ai)

As B > 0, eA(ai) + B > 0, it’s easy to prove that first
two parts of ∂2Li

(∂ai)2
are non-negative while the third part is

always positive. Therefore, ∂2Li
(∂ai)2

> 0 and Li is a strictly
convex function with respect to ai.

Property 2. A unique optimal solution a∗i exists in [la, ua].

Proof. Because the loss function Li is a strictly convex
function, we have ∂Li

∂a1i
> ∂Li

∂a2i
if ua ≥ a1i > a2i ≥ la. Next

we prove that there exist a optimal solution a∗i ∈ [la, ua]. If
it exists, then it is unique because of the strict convexity.

As ∂Li
∂ai

(ai) = Bs
eA(ai)+B

sin(θyi + m(ai))m
′(ai) +

λgg
′(ai) and considering the constraints m′(ai) ∈ (0,K],

g′(ua) = 0, λg ≥ sK
−g′(la) , the values of derivatives of la, ua

are

∂Li
∂ai

(ua) =
Bs

eA(ai) +B
sin(θyi +m(ai))m

′(ua) > 0

∂Li
∂ai

(la) =
Bs

eA(ai) +B
sin(θyi +m(ai))m

′(la) + λgg
′(la)

< sK + λgg
′(la) ≤ 0

(7)

As ∂Li
∂ai

is monotonically and strictly increasing, there must
exist a unique value in [la, ua] which have a 0 derivative.
Therefore, an optimal solution exists and is unique.



Method Hyperparameters Margin CFP-FP IJB-C (TAR@FAR)
lm um λg la ua mean max min 1e-6 1e-5 1e-4 1e-3

ArcFace - - - - - 0.50 - - 97.32 83.88 91.59 95.00 96.86
MagFace 0.45 0.65 35 10 110 0.50 0.49 0.52 97.23 81.12 91.44 94.95 96.96

0.40 0.80 35 10 110 0.50 0.46 0.53 97.47 85.82 92.06 95.12 96.92
0.35 1.00 35 10 110 0.50 0.42 0.54 97.40 84.35 91.65 95.05 97.02
0.25 1.60 35 10 110 0.50 0.35 0.61 97.30 81.64 91.09 94.91 96.87

Table 4: Verification accuracy (%) on CFP-FP and IJB-C with different distributions of margins. Backbone network: ResNet50.

A.3. Proof for Property of Monotonicity

To prove the property of monotonicity, we first show that
optimal a∗i increases with a smaller cosine-distance to its
class center (Property 3). As B can reveal the overall cos-
distances to other class centers, we further prove that in-
creasing B can lead to a larger optimal feature magnitude
(Property 4).

Property 3. With fixed fi and Wj , j ∈ {1, · · · , n}, j 6= yi,
the optimal feature magnitude a∗i is monotonically decreas-
ing if the cosine-distance to its class center Wyi increases.

Proof. Assuming there are two class center W 1
yi ,W

2
yi and

their cosine distances to feature fi are θ1yi , θ
2
yi . Assuming

θ1yi < θ2yi (i.e., class center W 1
yi has a smaller distance with

feature fi) and the corresponding optimal feature magni-
tudes are a∗i,1, a

∗
i,2.

The first derivate of Li is

∂Li
∂ai

= − B

eA(ai) +B
A′(ai) + λgg

′(ai)

=
Bsm′(ai)

es cos(θyi+m(ai)) +B
sin(θyi +m(ai)) + λgg

′(ai)

(8)

For θyi +m(ai) ∈ (0, π/2], we have cos(θ1yi +m(ai)) >
cos(θ2yi+m(ai)) and sin(θ1yi+m(ai)) < sin(θ2yi+m(ai)).
With m′(ai) > 0, it’s obvious that

Bsm′(ai)

e
s cos(θ1yi

+m(ai))+B
sin(θ1yi +m(ai)) <

Bsm′(ai)

e
s cos(θ2yi

+m(ai))+B
sin(θ2yi +m(ai)).

Therefore, we have
∂Li(θ

1
yi

)

∂ai
<

∂Li(θ
2
yi

)

∂ai
. Based on the

property of optimal solution for strictly convex function, we

have 0 =
∂Li(θ

1
yi

)

∂a∗i,1
=

∂Li(θ
2
yi

)

∂a∗i,2
>

∂Li(θ
1
yi

)

∂a∗i,2
, which leads to

a∗i,1 > a∗i,2.

Property 4. With other things fixed, the optimal feature
magnitude a∗i is monotonically decreasing with a decreas-
ing inter-class distance B.

Proof. Assume B1 > B2 > 0 with optimum a∗i,1, a
∗
i,2.

Similar to the proof before, it’s easy to show

B1sm
′(ai)

es cos(θyi
+m(ai))+B1

sin(θyi +m(ai)) >
B2sm

′(ai)

es cos(θyi
+m(ai))+B2

sin(θyi +m(ai)).

Therefore, we have ∂Li(B1)
∂ai

> ∂Li(B2)
∂ai

. Based on the prop-
erty of optimal solution for strictly convex function, we
have 0 = ∂Li(B1)

∂a∗i,1
= ∂Li(B2)

∂a∗i,2
< ∂Li(B1)

∂a∗i,2
, which leads to

a∗i,1 < a∗i,2.

B. Experimental Settings
B.1. Training settings for Figure 3

We adopt ResNet50 as the backbone network. Models
are trained on MS1Mv2 [14, 9] for 20 epochs with batch
size 512 and initial learning rate 0.1, dropped by 0.1 every
5 epochs. 512 samples of the last iteration are used for vi-
sualization.

B.2. Settings of m(ai), g(ai) and λg

In our experiments, we define function m(ai) as a linear
function defined on [la, ua] with m(la) = lm,m(ua) = um
and g(ai) = 1

ai
+ 1

u2
a
ai. Therefore, we have

m(ai) =
um − lm
ua − la

(ai − la) + lm

λg ≥
sK

−g′(la)
=

su2al
2
a

(u2a − l2a)
um − lm
ua − la

(9)

C. Ablation Study on Margin Distributions
In this section, effects of the feature distributions during

training are studied. With (λg, la, ua) fixed to (35, 10, 110),
we carefully select various combinations of lm, um to align
the mean margin on the training dataset to ArcFace (0.5)
in our implementation. Features are distributed more sepa-
rated if with a larger maximum margin and a smaller mini-
mum margin.

Table 4 shows the recognition results with various hyper-
parameters. With (lm, um) = (0.45, 0.65), the penalty of
magnitude loss degrades the performance of the recogni-
tion. With (lm, um) = (0.25, 1.60), the performance is
also worse than then baseline as hard samples are assigned
to small margins (a.k.a., hard/noisy samples are down-
weighted). Parameter (0.40, 0.80) balances the feature dis-
tribution and margins for hard/noisy samples, and therefore
achieves a significant improvement on benchmarks.

D. Extended Visualization of Figure 6
We present a extended visualization of figure 6 in fig-

ure 8 which has more examples of faces with feature mag-
nitudes. All the faces are sample from the IJB-C bench-
mark. It can be seen that faces with magnitudes around
28 are mostly profile faces while around 35 are high-
quality and frontal faces. That is consistent with the pro-
file/frontal peaks in the CFP-FP benchmark and indicates
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Figure 8: Extended Visualization of Figure 6.

that faces with similar magnitudes show similar quality pat-
terns across benchmarks. In real applications, we can set a
proper threshold for the magnitude and should be able to fil-
ter similar low-quality faces, even under various scenarios.

Besides directly served as qualities, our feature magni-
tudes can also be used as quality labels for faces, which
avoids human labelling costs. These labels are more suit-
able for recognition, and therefore can be used to boost
other quality models.
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