
Manifold Regularized Dynamic Network Pruning

Yehui Tang1,2, Yunhe Wang2*, Yixing Xu2, Yiping Deng3, Chao Xu1, Dacheng Tao4, Chang Xu4

1 Key Lab of Machine Perception (MOE), Dept. of Machine Intelligence, Peking University.
2 Noah’s Ark Lab, Huawei Technologies. 3 Central Software Institution, Huawei Technologies.

4 School of Computer Science, Faculty of Engineering, University of Sydney.
yhtang@pku.edu.cn; yunhe.wang@huawei.com; c.xu@sydney.edu.au

Abstract

Neural network pruning is an essential approach for
reducing the computational complexity of deep models so
that they can be well deployed on resource-limited devices.
Compared with conventional methods, the recently devel-
oped dynamic pruning methods determine redundant filters
variant to each input instance which achieves higher accel-
eration. Most of the existing methods discover effective sub-
networks for each instance independently and do not utilize
the relationship between different inputs. To maximally ex-
cavate redundancy in the given network architecture, this
paper proposes a new paradigm that dynamically removes
redundant filters by embedding the manifold information of
all instances into the space of pruned networks (dubbed as
ManiDP). We first investigate the recognition complexity
and feature similarity between images in the training set.
Then, the manifold relationship between instances and the
pruned sub-networks will be aligned in the training proce-
dure. The effectiveness of the proposed method is verified
on several benchmarks, which shows better performance in
terms of both accuracy and computational cost compared to
the state-of-the-art methods. For example, our method can
reduce 55.3% FLOPs of ResNet-34 with only 0.57% top-1
accuracy degradation on ImageNet.

1. Introduction
Deep convolutional neural networks (CNNs) have

achieved state-of-the-art performance on a large variety of
computer vision tasks, e.g., image classification [15, 48,
23, 59], objection detection [10, 44, 11], and video anal-
ysis [7, 12, 21]. Besides the model performance, recent
researches pay more attention on the model efficiency, es-
pecially the computational complexity [56, 47, 46]. Since
there are considerable real-world applications required to
be deployed on resource constrained hardwares, e.g., mo-

*Corresponding author.

bile phones and wearable devices, techniques that effec-
tively reduce the cost of modern deep networks are re-
quired [31, 13, 58, 60].

To this end, a number of model compression algo-
rithms have been developed without affecting network per-
formance. For instance, quantization [53, 14, 43, 57] uses
less bits to represent network weights and knowledge dis-
tillation [19, 54, 4, 40, 55] is to train a compact network
based on the knowledge of a teacher network. Low-rank ap-
proximation [35, 24, 29] tries to decompose the original fil-
ters to smaller ones while pruning method directly discards
the redundant neurons to get a sparser network. Among
them, channel pruning (or filter pruning) [18, 49, 36, 33]
is regarded as a kind of structured pruning method, which
directly discards redundant filters to obtain a compact net-
work with lower computational cost. Since the pruned net-
work can be well employed on mainstream hardwares to ob-
tain considerable speed-up, channel pruning is widely used
in industrial products.

The conventional channel pruning methods obtain a
static network applied to all input samples, which do not
excavate redundancy maximally, as the diverse demands for
network parameters and capacity from different instances
are neglected. In fact, the importance of filters is highly
input-dependent. A few methods proposed recently prune
channels according to individual instances dynamically and
achieve better performance. For example, Gao et al. [9] in-
troduce small auxiliary modules to predict the saliencies of
channels with given input data, and prune unimportant fil-
ters at run-time. Instance-wise sparsity is adopted in [32] to
induce different sub-networks for different samples. How-
ever, the existing methods prune channels for individual in-
stances independently, which neglects the relationship be-
tween different instances. A sparsity constraint with same
intensity is usually used for different input instances, re-
gardless of the diversity of instance complexity. Besides,
the similarity between instances is also valuable informa-
tion deserving to explore.

In this paper, we explore a new paradigm for dynamic

1

ar
X

iv
:2

10
3.

05
86

1v
1

 [
cs

.C
V

]
 1

0
M

ar
 2

02
1

…

Similarity

… …

Input Images Manifold Regularization Original Network Pruned Sub-Networks

Figure 1. Diagram of the proposed manifold regularized dynamic pruning method (ManiDP). We first investigate the complexity and
similarity of images in the training dataset to excavate the manifold information. Then, the network is pruned dynamically by exploiting
the manifold regularization.

pruning to maximally excavate network redundancy corre-
sponding to arbitrary instance. The manifold information
of all samples in the given dataset is exploited in the train-
ing process and corresponding sub-networks are derived to
preserve the relationship between different instances (Fig-
ure 1). Specifically, we first propose to identify the com-
plexity of each instances in the training set and adaptively
adjust the penalty weight on channel sparsity. Then, we fur-
ther preserve the similarity between samples in the pruned
results, i.e., the sub-network for each input sample. In prac-
tice, the features with abundant semantic information ob-
tained by the network are used for calculating the simi-
larity. By exploiting the proposed approach, we can allo-
cate the overall resources more reasonably, and then ob-
tain pruned networks with higher performance and lower
costs. Experiments are throughly conducted on a series of
benchmarks for demonstrating the effectiveness of the new
method. Compared with the state-of-the-art pruning algo-
rithms, we obtain higher performance in terms of both net-
work accuracy and speed-up ratios.

The rest of this paper is organized as follows: Section 2
briefly reviews the existing channel pruning methods and
Section 3 introduces the formulations. We discuss the pro-
posed method in Section 4 and conduct extensive experi-
ments in Section 5. Finally, Section 6 summarizes the con-
clusions.

2. Related Work
Channel Pruning is a kind of coarse-grain structural

pruning method that discards the whole redundant filters to
obtain a compact network, which can achieve practical ac-
celeration without specific hardware [52, 50, 30, 33, 3]. It
contains the conventional static pruning methods and recent
dynamic algorithms, and we briefly review them as follows.

Static Pruning. A compact network shared by different
instances is desired in static pruning. Wen et al. [52] impose
structural sparsity on the weights of convolutional filters to
discover and prune redundant channels. Liu et al. [33] as-
sociates a scaling factor to each channel and the sparsity
regularization is imposed on the factors. Recently, more
methods are proposed which achieve state-of-the-art perfor-

mance on several benchmarks. For example, Molchanov et
al. [37] uses Taylor expansion to estimate the contribution
of a filter to the final output and discard filters with small
scores, while Liebenwein et al. [27] construct an impor-
tance distribution that reflects the filter importance. To re-
duce the disturbance of irrelevant factors, Tang et al. [49]
set up a scientific control during pruning filters, which can
discover compact networks with high performance. These
methods prune same filters for different input instances and
obtain a ’static’ network with limited representation capa-
bility, whose performance degrades obviously when a large
pruning rate is required.

Dynamic Pruning. Beyond the static pruning methods,
an alternative way is to determine the importance of filters
according to input data, and skip unnecessary calculation
in the test phase [42]. Dong et al. [6] use low-cost col-
laborative layers to induce sparsity on the original convo-
lutional kernels at the running time. Hua et al. [20] gener-
ate decision maps by partial input channels to identify the
unimportant regions in feature maps. However, the skipped
ineffective regions in [20] are irregular and practical accel-
eration depends on special hardware such as FPGAs and
ASICs. Gao et al. [9] introduces squeeze-excitation mod-
ules to predict the saliency of channels and skip those with
less contribution to the classification results. Complemen-
tary to them, this paper focuses on effectively training the
dynamic network to allocate a proper sub-network for each
instance, which is vital to achieve a satisfactory trade-off
between accuracy and computational cost.

3. Preliminaries
In this section, we introduce the formulations of channel

pruning for deep neural networks and the dynamic pruning
problem.

Denote the dataset with N samples as X = {xi}Ni=1,
and Y = {yi}Ni=1 are the corresponding labels. For a
CNN model with L layers, W l ∈ Rcl×cl−1×kl×kl

denotes
weight parameters of the convolution filters in the l-th layer.
F l(xi) ∈ Rcl×wl×hl

is the output feature map of the l-th
layer with cl channels, which can be calculated with con-
volution filters W l and the features F l−1(xi) in the previ-

2

ous layer, i.e., F l(xi) = ReLU(F l−1(xi) ∗ W l), where
∗ denotes the convolutional operation and ReLU(t) =
max(t, 0) is the activation function.

Channel pruning discovers and eliminates redundant
channels in a given neural network to reduce the over-
all computational complexity while retaining a comparable
performance [52, 33, 37, 27]. Basically, the conventional
channel pruning can be formulated as

min
W

N∑
i=1

Lce(xi,W) + λ ·
L∑

l=1

‖W l‖2,1 (1)

whereW denotes all the weight parameters of the network,
and Lce(xi,W) is the task-dependent loss function (e.g.,
the cross-entropy loss for classification task). ‖ · ‖2,1 is the
`21-norm that induces channel-wise sparsity on convolution
filters, i.e., ‖W l‖2,1 =

∑cl

j=1 ‖vector(W l
j,:,:,:)‖2, where

vector(·) straightens the tensor W l
j,:,:,: to vector form and

‖ · ‖2 is the `2-norm1. The trade-off coefficient λ balances
the two losses, and a larger λ induces sparser convolution
kernel W l and then obtain a more compact network.

Dynamic pruning is developed for further excavating
the correction between input instances and pruned chan-
nels [9, 42, 20]. Wherein, the importance of output channels
depends on the inputs, and different sub-networks will be
generated for each individual instance for flexibly discover-
ing the network redundancy. To this end, a control module
Gl is introduced to process the input feature F l−1(xi) and
predict the channel saliency πl(xi,W) = Gl(F l−1(xi)) ∈
Rcl in the l-th layer for input xi.2 In practice, a smaller
element in πl(xi) implies that the corresponding channel
is less important. The controller G is usually implemented
by utilizing a squeeze-excitation module as suggested in [9].
Then, redundant channels are determined through a gate op-
eration, i.e., π̂l(xi) = I(πl(xi), ξ

l), where the element
I(πl(xi), ξ

l)[j] is set to 0 when πl(xi)[j] is less than the
threshold ξl and keeps unchanged otherwise. By exploiting
the mask π̂l−1(xi) in the previous layer, the feature F l(xi)
can be efficiently calculated as:

F l(xi) = ReLU
((
F l−1(xi)� π̂l−1(xi)

)
∗W l

)
, (2)

where � denotes that each channel of feature F l−1(xi) is
multiplied by the corresponding element in mask π̂l−1(xi).
Since π̂l−1(xi) is usually very sparse and the calculation
of redundant channels are skipped, the computational com-
plexity of Eq. (2) will be significantly lower than that of the
original convolution layer.

To retain the desirable performance, the dynamic net-
work is also trained with both the cross-entropy loss

1Note that the methods using scaling factors can also be regarded as
this form as the factors can be absorbed to convolution kernels [33]

2In the following, we denote channel saliency πl(xi,W) as πl(xi)
for brevity.

Lce(xi,W) and the sparsity regularization, i.e.,

min
W

N∑
i=1

Lce(xi,W) + λ ·
L∑

l=1

‖πl(xi)‖1, (3)

where ‖πl(xi)‖1 is the `1-norm penalty on the channel
saliency πl(xi). Obviously, a larger coefficient λ also pro-
duces sparer saliency πl(xi) and thus yields more com-
pact networks with lower computational cost. Compared
to the static pruning method (Eq. (1)) that uses a same
compact network to handle all the input data, the dynamic
one (Eq. (3)) aims to prune channels for different instances
accordingly.

4. Manifold Regularized Dynamic Pruning
The main purpose of dynamic pruning is to fully ex-

cavate the network redundancy for each instance. How-
ever, the manifold information, i.e., the relationship be-
tween samples in the entire dataset has rarely been studied.
The manifold hypothesis states that the high-dimensional
data can be embedded into low-dimensional manifold, and
samples locate closely in the manifold space own analo-
gous properties. The mapping function from input samples
to their corresponding sub-networks should be smooth over
the manifold space, and then the relationship between sam-
ples need to be preserved in sub-networks. This manifold
information can effectively regularize the solution space
of instance-network pairs to help allocate a proper sub-
network for each instance. In the following, we explore the
manifold information from two complementary perspec-
tives, i.e., complexity and similarity.

4.1. Instance Complexity

For a given task, the difficulty of accurately predicting
example labels can be various, which thus implies the ne-
cessity of investigating models with different capacities for
different inputs. Intuitively, a more complex sample with
vague semantic information (e.g., images with insignificant
objects, mussy background, etc.) may need a more complex
network with a strong representation ability to extract the
effective information, while a much simpler network lower
computational cost could be enough to make the correct
prediction for a simpler instance. Actually, this intuition re-
flects the relationship between instances on a 1-dimensional
complexity space, where the different instances are sorted
according to their difficulties for the given task. To exploit
this property, we firstly measure the complexity of instances
and sub-networks, respectively, and then develop an adap-
tive objective function to align the complexity relationship
between instances and that between sub-networks.

Considering that input instances are expected to have
correct predictions made by the networks, the task-specific
loss (cross-entropy loss) Lce(xi,W) of the networks is

3

adopted to measure the complexity of current input xi. A
larger cross-entropy loss implies that the current instance
has not been fitted well, which is more complex and needs
a network with stronger representation capability for ex-
tracting the information. For a sub-network, the sparsity
of channel saliency πl(xi) determines the number of effec-
tive filters in it, and a sparser πl(xi) induce a more compact
network with lower complexity. Hence, we use the sparsity
of channel saliencies as the measurement of network com-
plexity.

Recall that in Eq. (3), the weight coefficient λ is vital to
determine the strength of sparsity penalty on channel salien-
cies. However, a same weight coefficient is assigned to all
different instances without discrimination. In fact, a simple
instance whose cross-entropy loss can be minimized easily
may desire a compact sub-network for computational effi-
ciency. On the other hand, those examples that have not
been well fitted by the current network yet would need more
network capacity to pursue the prediction accuracy, instead
of pushing the sparsity further. Thus, the weight of spar-
sity penalty that controls the network complexity should in-
crease when the cross-entropy loss decreases and vice versa.
In an extreme case, no sparsity constraint should be given
to the corresponding sub-networks for those under-fitted ex-
amples. Specifically, a set of binary learnable variables
β = {βi}Ni=1 ∈ {0, 1}N are used to indicate whether the
sub-network for input instance xi should be thinned out.
Thus the optimization objective can be formulated as:

max
β

min
W

N∑
i=1

Lce(xi,W)

+ λ′ · βi
C − Lce(xi,W)

C

L∑
l=1

‖πl(xi)‖1,

(4)

where λ′ is a hyper-parameter shared by all instances to
balance the classification accuracy and network sparsity.
‖ · ‖1 is the `1-norm that induces sparsity on channel salien-
cies and W is the set of network parameters. C is a pre-
defined threshold for instance complexity and the samples
with cross-entropy losses larger than C are considered as
over complex. Eq. (4) is optimized in a min-max paradigm,
i.e., the minimization is applied on parameterW to train the
network, while the maximization on variables β indicates
whether the corresponding sub-networks should be made
sparse. In practice, β has a closed-form solution. Note that
‖πl(xi)‖1 ≥ 0 always holds, and the optimal solution of
β only depends on the relative magnitude of cross-entropy
loss Lce(xi,W) and the complexity threshold C, i.e.,

βi =

{
1, Lce(xi,W) ≤ C,
0, Lce(xi,W) > C.

(5)

Eq (5) indicates that no sparsity is imposed on the corre-
sponding sub-network (βi = 0) if the cross-entropy loss
Lce(xi,W) of instance xi exceeds C. In practice, the net-
work is trained in mini-batch, and we empirically use the

C
ro

ss En
tro

p
y …

Consistency

…

…

During Training After Training

…

Instance Complexity Increase

Network Complexity Decrease

Figure 2. The aligning process of instance complexity and network
complexity. During training, the complexity of instances and net-
works will be automatically adjusted, and achieve consistency af-
ter training.

average cross-entropy loss over the whole dataset in the pre-
vious epoch as the threshold C. For brevity, the coefficient
for the sparsity loss is denoted as λ(xi), i.e.,

λ(xi) = λ′ · βi
C − Lce(xi,W)

C
. (6)

The value of λ(xi) is always in range [0, λ′] and it has
a larger value for simpler instances. Then, the max-min
optimization problem (Eq. (4)) can be simplified as:

min
W

N∑
i=1

Lce(xi,W) + λ(xi) ·
L∑

l=1

‖πl(xi)‖1. (7)

In the training process mentioned above, a negative feed-
back mechanism [1, 2] naturally exists to dynamically con-
trol the instance complexity and network complexity. As
shown in Figure 2, when an instance xi is sent to the net-
work and produces a large cross-entropy lossLce(xi,W), it
is considered as a complex instance and the penalty weight
λ(xi) is reduced to induce a complex sub-network. On ac-
count of the powerful representation capability of the com-
plex network, the cross-entropy loss of the same instance xi
can be easily minimized, and reduce the relative complex-
ity of the instance. If the dynamic network takes a simple
instance as input, the dynamic process is just the opposite.
This negative feedback mechanism stabilizes the training
process, and finally sub-networks with appropriate model
capability for making correct prediction are allocated to the
input instances.

4.2. Instance Similarity

Besides mapping instances to the complexity space, the
similarity between samples is also an effective clue to cus-
tomize the networks for different instances. Inspired by the
manifold regularization [51, 61], we expect that the instance
similarity can be well preserved by their corresponding sub-
networks, i.e., if two instances are similar, the allocated sub-
networks for them tend to own similar property as well.

The intermediate features F l(xi) produced by a deep
neural network can be treated as an effective representa-
tion of input sample xi. Compared to the original data,

4

ground-truth information is embedded to the intermediate
features during training, and hence the intermediate fea-
tures are more suitable to measure the similarity between
different samples. The sub-network for instance xi can be
described by the channel saliencies, which determine the
architecture of the network. Note that both the channel
saliencies πl(xi) and intermediate features F l(xi) are cor-
responding to each layer, and thus we can calculate the sim-
ilarity matrix of channel saliencies T l ∈ RN×N and simi-
larity matrix of features Rl ∈ RN×N layer-by-layer, where
the element T l[i, j] (Rl[i, j]) in the matrix reflect the sim-
ilarity between saliencies (features) derived from different
sample xi and xj . Suppose that the classical cosine simi-
larity [38] is adopted, T l is calculated as:

T l[i, j] =
πl(xi) · πl(xj)

‖πl(xi)‖2 · ‖πl(xj)‖2
, (8)

where ‖ · ‖2 denotes `2-norm. For intermediate feature
F l(xi) ∈ Rcl×wl×hl

in the l-the layer, it is first flattened
to a vector using the average pooling operation p(·), and
then the similarity matrix is:

Rl[i, j] =
p(F l(xi)) · p(F l(xj))

‖p(F l(xi))‖2 · ‖p(F l(xj))‖2
. (9)

Given the similarity matrices T l and Rl mentioned above, a
loss function Lsim is developed to impose consistency con-
straint on them, i.e.,

Lsim(X ,W) =

L∑
l=1

dis(T l, Rl), (10)

where X = {xi}Ni=1 andW denote the input data and net-
work parameters, respectively, and dis(·, ·) measures the
difference between the two similarity matrices. Here we
adopt a simple way that compares the corresponding ele-
ments of the two matrices, i.e., dis(T l, Rl) = ‖T l −Rl‖F ,
where ‖ · ‖F denotes Frobenius norm. In the practical im-
plementation of network training, the similarity matrices are
calculated over input data in each mini-batch for efficiency.

Combining the adaptive sparsity loss (Eq. (7)), the final
objective function for training the dynamic network is:

min
W

N∑
i=1

Lce(xi,W) + λ(xi) ·
L∑

l=1

‖πl(xi)‖1

+ γ · Lsim(X ,W),

(11)

where γ is a weight coefficient for the consistency loss
Lsim(X ,W). In Eq. (11), the manifold information is si-
multaneously excavated from two complementary perspec-
tives, i.e., complexity and similarity. The former imposes
the consistency between instances complexity and sub-
networks complexity, while the latter induces instances with

similar features to select similar sub-networks. Though
different perspectives are emphasized, both loss functions
describe intrinsic relationships between instances and net-
works, and can be simultaneously optimized to get an opti-
mal solution.

Based on the channel saliencies of each layer, the
dynamic pruning is applied to the given network for
different input data separately. Given N different in-
put examples {xi}Ni=1, the average channel saliencies
over different instance are first calculated as π̄l =
{π̄l[1], π̄l[2], · · · , π̄l[cl]}, where cl is the number of chan-
nels in the l-th layer. Then the elements in π̄l is sorted so
that π̄l[1] ≤ π̄l[2] ≤ · · · ≤ π̄l[cl] and the threshold is
set as ξl = πl[dηcle], where η is the pre-defined pruning
rate and d·e denotes round-off. At inference, only channels
with saliencies larger than the threshold ξl need to be calcu-
lated and the redundant features are skipped, which reduces
the computation and memory cost. Based on the threshold
ξl derived from the average saliencies π̄l, the actual prun-
ing rate are different for each instances, since the channel
saliency πl(xi) depends on the input and variant numbers
of elements are larger than the threshold ξl. A series of
sub-networks with various computational cost are obtained,
which are intuitively visualized in Figure 8 of Section 5.3.

5. Experiments
In this section, the proposed dynamic pruning method

based manifold regularization (ManiDP) is empirically in-
vestigated on image classification datasets CIFAR-10 [22]
and ImageNet (LSVRC-2012) [5]. CIFAR-10 contains
60k 32×32 colored images from 10 categories, where
50k images are used as the training set and 10k for test-
ing. The large-scale ImageNet (LSVRC-2012) dataset com-
poses of 1.28M training images and 50k validation im-
ages, which are collected from 1k categories. Prevalent
ResNet [15] models with different depths and light-weight
MobilenetV2 [45] are used to verify the effectiveness of the
proposed method.

Implementation Details. For a fair comparison, the
pruning rates for all layers in the network are the same fol-
lowing [9]. In the training phase, we increase the pruning
rate from 0 to an appointed value ξ to gradually make the
pre-trained networks sparse. The coefficient λ′ regulating
the weights of sparsity loss is set to 0.005 for CIFAR-10
and 0.03 for ImageNet, empirically. The coefficient γ for
the similarity loss is set to 10 for both two datasets. All
the networks are trained using the stochastic gradient de-
scent(SGD) with momentum 0.9. For CIFAR-10, the initial
learning rate, batch-size and training epochs are set to 0.2,
128 and 300, respectively, while they are 0.25, 1024 and 120
for ImageNet. Standard data augmentation strategies con-
taining random crop and horizontal flipping are used. For
CIFAR-10, the images are padded to size 40×40 and then

5

Table 1. Comparison of the pruned ResNet with different methods on ImageNet (ILSVRC-2012). ‘Top-1 Gap’/‘Top-5 Gap’ denotes the
gaps of errors between the pruned models and the baseline models. ‘FLOPs ↓’ is the reduction ratio of FLOPs.

Model Method Dynamic Top-1 Error (%) Top-5 Error (%) Top-1 Gap (%) Top-5 Gap (%) FLOPs ↓ (%)

ResNet-18

Baseline - 30.24 10.92 0.0 0.0 0.0
MIL [6] 7 33.67 13.06 3.43 2.14 33.3
SFP [16] 7 32.90 12.22 2.66 1.30 41.8

FPGM [17] 7 31.59 11.52 1.35 0.60 41.8
PFP [27] 7 34.35 13.25 4.11 2.33 43.1
DSA [39] 7 31.39 11.65 1.15 0.73 40.0
LCCN [6] 3 33.67 13.06 3.43 2.14 34.6

CGNet [20] 3 31.70 - 1.46 - 50.7
FBS [9] 3 31.83 11.78 1.59 0.86 49.5

ManiDP-A 3 31.12 11.24 0.88 0.32 51.0
ManiDP-B 3 31.65 11.71 1.41 0.79 55.1

ResNet-34

Baseline - 26.69 8.58 0.0 0.0 0.0
SFP [16] 7 28.17 9.67 1.48 1.09 41.1

FPGM [17] 7 27.46 8.87 0.07 0.29 41.1
Taylor [37] 7 27.17 - 0.48 - 24.2
DMC [8] 7 27.43 8.89 0.74 0.31 43.4
LCCN [6] 3 27.01 8.81 0.32 0.23 24.8

CGNet [20] 3 28.70 - 2.01 - 50.4
FBS [9] 3 28.34 9.87 1.85 1.29 51.2

ManiDP-A 3 26.70 8.58 0.01 0.0 46.8
ManiDP-B 3 27.26 8.96 0.57 0.38 55.3

Table 2. Comparison of the pruned MobileNetV2 with different methods on ImageNet (ILSVRC-2012). ‘Top-1 Gap’/‘Top-5 Gap’ denotes
the gaps of errors between the pruned models and the baseline models. ‘FLOPs ↓’ is the reduction ratio of FLOPs.

Model Method Dynamic Top-1 Error (%) Top-5 Error (%) Top-1 Gap (%) Top-5 Gap (%) FLOPs ↓ (%)

MobileNetV2

Baseline - 28.20 9.57 0.0 0.0 0.0
ThiNet [36] 7 36.25 14.59 8.05 5.02 44.7
DCP [62] 7 35.78 - 7.58 - 44.7

MetaP [34] 7 28.80 - 0.60 - 27.7
DMC [8] 7 31.63 11.54 3.43 1.97 46.0
FBS [9] 3 29.07 9.91 0.87 0.34 33.6

ManiDP-A 3 28.58 9.72 0.38 0.15 37.2
ManiDP-B 3 30.38 10.55 2.18 0.98 51.2

cropped to size 32×32. For ImageNet, images with resolu-
tion 224×224 are sent to the networks. All the experiments
are conducted with PyTorch [41] on NVIDIA V100 GPUs.

5.1. Comparison on ImageNet

The proposed method is compared with state-of-the-art
network pruning algorithms on the large-scale ImageNet
dataset. The pruning results of ResNet and MobileNetV2
are shown in Table 1 and Table 2, respectively, where the
top-1/top-5 errors of the pruned networks and the reduction
ratios of FLOPs are reported. For dynamic pruning meth-
ods, the average FLOPs of the sub-networks over the whole
test dataset are calculated as computational cost.

For ResNet in Table 1, ‘ManiDP-A’ and ‘ManiDP-B’
denote two pruned networks with different pruning rates,
respectively. The competing methods include both SOTA
static channel pruning method developed recently ([16, 17,
39, 25, 26]) and the pioneering dynamic methods ([9, 6,
20]), indicated by 7 and 3 in the table. Our method can

reduce substantial computational cost for a given network
with negligible performance degradation. For example, the
proposed ‘ManiDP-A’ can reduce 46.8% FLOPs ResNet-34
with only 0.01% performance degradation. Compared with
the SOTA pruning algorithms, our method obtains pruned
networks with less computational cost but lower test errors.
The static methods are obviously inferior to ours, e.g., the
SOTA method DSA [39] only reduces 40.0% FLOPs and
obtain a pruned network with 31.39% top-1 error (ResNet-
18), while the proposed ‘ManiDP-A’ can achieve lower test
error (31.12%) with more FLOPs reduced (51.0%). Our
method also shows superiority to the existing dynamic prun-
ing methods, e.g., FBS [9] achieves 31.83% top-1 error with
49.5% FLOPs pruned, which is worse than our method. We
can infer that the proposed ManiDP method can excavate
the redundancy of networks adequately to get compact but
powerful networks with high performance.

To validate the effectiveness of the proposed ManiDP
method on light-weight networks, we further compare it

6

Table 3. Realistic acceleration (‘Realistic Acl.’) and theoretical ac-
celeration (‘Theoretical Acl.’) of pruned Networks on ImageNet.

Model Method
Theoretical Realistic

Acl. (%) Acl. (%)

ResNet-18
ManiDP-A 51.0 35.4
ManiDP-B 55.6 40.5

ResNet-34
ManiDP-A 46.8 32.0
ManiDP-B 55.3 37.4

MobileNetV2
ManiDP-A 37.2 30.4
ManiDP-B 51.2 38.5

with SOTA methods on the efficient MobileNetV2 [45]
designed for resource-limited devices, and the results are
shown in Table 2. Our method also achieves a better
trade-off between network accuracy and computational cost
than the existing methods. For examples, the proposed
‘ManiDP-A’ reduces 37.2% FLOPs of MobileNetV2 with
only 0.38% accuracy loss, while the pruned network ob-
tained by the competing method FBS [9] sacrifices 0.87%
accuracy for pruning 33.6% FLOPs. The results show that
even light-weight networks are over parameterized when
exploring redundancy for each instances separately, which
can be further accelerated by the proposed method and de-
ployed on edge devices.

The realistic accelerations of the pruned Networks on
ImageNet are shown in Table 3, which is calculated by
counting the average inference time for handling each im-
age on CPUs. The realistic acceleration is slightly less than
the theoretical acceleration calculated by FLOPs, which is
due to practical factors such as I/O operations (e.g., access-
ing weights of networks), BLAS libraries and buffer switch,
whose impact can be further reduced by practical engineer-
ing optimization.

5.2. Comparison on CIFAR-10

On the benchmark CIFAR-10 dataset, the comparison
between the proposed ManiDP and SOTA channel pruning
methods are shown in Table 4. Compared with SOTA meth-
ods, a significantly higher FLOPs reduction is achieved by
our method with less degradation of performance. For ex-
ample, using our method, more than 60% FLOPs of the
ResNet-56 model are reduced while the test error can still
achieve 6.36% using ManiDP. Compared to the static meth-
ods (e.g., HRank [28] with 6.83% error and 50.0% FLOPs
reduction) and dynamic method (e.g., FBS [9] with 6.48%
error and 53.6% FLOPs reduction), our method shows no-
table superiority.

5.3. Ablation Studies

Effectiveness of Manifold Information. To maximally
excavate network redundancy corresponding to each in-
stance, the manifold information between instances is ex-
plored from two perspectives, i.e., complexity and similar-
ity. The impacts of whether exploiting complexity or simi-

Table 4. Comparison of the pruned ResNet with different methods
on CIFAR-10.

Depth Method Dynamic Error (%) FLOPs ↓ (%)

20

Baseline - 7.78 0.0
SFP[16] 7 9.17 42.2

FPGM [17] 7 9.56 54.0
DSA [39] 7 8.62 50.3
Hinge [25] 7 8.16 45.5
DHP [26] 7 8.46 51.8
FBS [9] 3 9.03 53.1
ManiDP 3 7.95 54.2

32

Baseline - 7.34 0.0
MIL[6] 7 9.26 31.2

SFP [16] 7 7.92 41.5
FPGM [17] 7 8.07 53.2

FBS [9] 3 8.02 55.7
ManiDP 3 7.85 63.2

56

Baseline - 6.30 0.0
SFP [16] 7 7.74 52.6

FPGM [17] 7 6.51 52.6
HRank [28] 7 6.83 50.0
DSA [39] 7 7.09 52.2
Hinge [25] 7 6.31 50.0
DHP [26] 7 6.42 50.9
FBS [9] 3 6.48 53.6
ManiDP 3 6.36 62.4

Table 5. Effectiveness of Excavating Manifold Information. The
top-1 errors of the pruned networks and the gaps from the base
networks are reported.

Model Complexity Similarity Error / Gap (%)
7 7 6.88 / 0.58

ResNet-56 3 7 6.61 / 0.31
(CIFAR-10) 7 3 6.53 / 0.23

3 3 6.36 / 0.06
7 7 28.12 / 1.43

ResNet-34 3 7 27.67 / 0.98
(ImageNet) 7 3 27.63 / 0.94

3 3 27.29 / 0.57

larity relationship is empirically investigated in Table 5, in-
dicated by 3 and 7. The classification error and the per-
formance gap compared to the base models are reported.
Without utilizing the complexity relationship means fixing
the trade-off coefficient λ(xi) between lasso loss and cross-
entropy loss, which obviously increases the error incurred
by pruning (e.g., 1.43% vs. 0.94% on ImageNet). The un-
satisfactory performance is due to the improper alignment,
i.e., cumbersome sub-networks may be assigned to sim-
ple examples, while complex instances are handled by tiny
sub-networks with limited representation capability. For
the similarity relationship, deactivating it (setting coeffi-
cient γ for similarity loss to zero) incurs larger performance
degradation (e.g., 1.43% vs. 0.98%), which validates the
effectiveness of exploring the similarity between features
of instances and the corrsponding sub-networks. Thus, ex-

7

010 4 0.001 0.005 0.01 0.1
92.2
92.4
92.6
92.8
93.0
93.2
93.4
93.6

Ac
cu

ra
y

(%
)

(a)

0 1.0 5.0 10.0 30.0 50.0
93.1

93.2

93.3

93.4

93.5

93.6

93.7

Ac
cu

ra
y

(%
)

(b)

Figure 3. Test accuracies of the pruned ResNet-56 w.r.t. (a) weight
coefficient λ′ for sparsity loss and (b) coefficient µ for similarity
loss.

0.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
78

80

82

84

86

88

90

92

94

Ac
cu

ra
y

(%
)

0.0

0.2

0.4

0.6

0.8
R

ed
uc

tio
n

R
at

e(
%

)

Accuracy
Reduced FLOPs
Reduced Memory

Figure 4. The variety of test accuracies and required Memory &
FLOPs (ResNet-56) w.r.t. pruning rate η.

ploiting both the two perspectives of manifold information
is necessary to achieve negligible performance degradation
(i.e., only 0.57% error increase on ImageNet).

Weight coefficients λ′ and γ. The weights of spar-
sity loss and similarity loss are controlled by coefficients
λ′ (Eq. (4)) and γ (Eq. 11), whose impact on the final test
accuracies is shown in Figure 3. A larger λ′ induces more
sparsity on channel saliencies, which will have less im-
pact on the network outputs when discarding channels with
small saliencies. On the other hand, the sparsity will affect
the representation ability of networks and incur accuracy
drop (Figure 3 (a)). Analogous phenomenon exists when
varying coefficient γ for similarity loss. The test accuracy
of the pruned network is improved when increasing γ un-
less it is set to an extremely large value, as the similarity
between different instances is excavated more adequately.
Note that our method is robust to both hyper-parameters and
works well in a wide range (e.g., range [0.001,0.01] for λ
and values around 10.0 for γ), empirically.

Memory/FLOPs and accuracies w.r.t. Pruning Rate.
The impact of different pruning rate is shown in Figure 4.
When a single instance is sent to the network, the memory
cost for accessing network weights can be reduced as in-
effective weights do not participate the inference process.
With a large reduction of computational cost and memory,
the pruned network can still achieve a high performance.
For example, when setting the pruning rare to 0.6% with
73.87% FlOPs and 67.42% memory reduction, the pruned
ResNet-56 can still achieve an accuracy of 93.29% (only
0.41% accuracy drop compared to the original network).

N
u

m
b

er

7000

5000

3000

1000

1.51.1 1.3 1.7
FLOPs (G)

Figure 5. FLOPs distribution of sub-networks and their corre-
sponding input instances on ImageNet.

Visualization. Different sub-networks with various
computational costs (i.e., FLOPs) are generated for each
instance by pruning different channels. Using ResNet-34
as the backbone, the FLOPs distribution of different sub-
networks over the validation set of ImageNet are shown in
Figure 8, where x-axis denotes FLOPs and the y-axis is
the number of sub-networks. The FLOPs of sub-networks
varies in a certain range w.r.t. the complexity of instances.
Most of the sub-networks own medium sizes and a small
quantity of sub-networks activate more/less channels to
handle harder/simpler instances. Some representative im-
ages handled by the corresponding sub-networks are also
shown in the figure. Intuitively, a simple example (e.g.,
‘bird’ and ‘dog’ in the red frames) that can be correctly pre-
dicted by a compact network usually contains clear targets,
while images with obscure semantic information (e.g., too
large ‘orange’ and too small ‘flower’ in the blue frames)
require larger networks with more powerful representation
ability. More visualization results are shown in the supple-
mentary material.

6. Conclusion
This paper proposes a manifold regularized dynamic

pruning method (ManiDP) to maximally excavate the re-
dundancy of neural networks. We explore the manifold
information in the sample space to discover the relation-
ship between different instances from two perspectives, i.e.,
complexity and similarity, and then the relationship is pre-
served in the corresponding sub-networks. An adaptive
penalty weight for network sparsity is developed to align
the instance complexity and network complexity, while the
similarity relationship is preserved by matching the similar-
ity matrices. Extensive experiments are conducted on sev-
eral benchmarks to verify the effectiveness of our method.
Compared with the state-of-the-art methods, the pruned net-
works obtained by the proposed ManiDP can achieve better
performance with less computational cost. For example, our
method can reduce 55.3% FLOPs of ResNet-34 with only
0.57% top-1 accuracy degradation on ImageNet.
Acknowledgment. This work is supported by National
Natural Science Foundation of China under Grant No.
61876007, and Australian Research Council under Project
DE180101438 and DP210101859.

8

References
[1] Oreste Acuto, Vincenzo Di Bartolo, and Frédérique Michel.

Tailoring t-cell receptor signals by proximal negative feed-
back mechanisms. Nature Reviews Immunology, 8(9):699–
712, 2008. 4

[2] Eulalia Belloc and Raúl Méndez. A deadenylation negative
feedback mechanism governs meiotic metaphase arrest. Na-
ture, 452(7190):1017–1021, 2008. 4

[3] Hanting Chen, Yunhe Wang, Han Shu, Yehui Tang, Chunjing
Xu, Boxin Shi, Chao Xu, Qi Tian, and Chang Xu. Frequency
domain compact 3d convolutional neural networks. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 1641–1650, 2020. 2

[4] Hanting Chen, Yunhe Wang, Chang Xu, Chao Xu, and
Dacheng Tao. Learning student networks via feature embed-
ding. IEEE Transactions on Neural Networks and Learning
Systems, 2020. 1

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 5

[6] Xuanyi Dong, Junshi Huang, Yi Yang, and Shuicheng Yan.
More is less: A more complicated network with less infer-
ence complexity. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 5840–
5848, 2017. 2, 6, 7

[7] Christoph Feichtenhofer, Axel Pinz, and Richard P Wildes.
Spatiotemporal multiplier networks for video action recog-
nition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4768–4777, 2017. 1

[8] Shangqian Gao, Feihu Huang, Jian Pei, and Heng Huang.
Discrete model compression with resource constraint for
deep neural networks. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
1899–1908, 2020. 6

[9] Xitong Gao, Yiren Zhao, Lukasz Dudziak, Robert Mullins,
and Cheng-zhong Xu. Dynamic channel pruning: Feature
boosting and suppression. In International Conference on
Learning Representations, 2018. 1, 2, 3, 5, 6, 7

[10] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE inter-
national conference on computer vision, pages 1440–1448,
2015. 1

[11] Jianyuan Guo, Kai Han, Yunhe Wang, Chao Zhang, Zhaohui
Yang, Han Wu, Xinghao Chen, and Chang Xu. Hit-detector:
Hierarchical trinity architecture search for object detection.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 11405–11414, 2020.
1

[12] Jianyuan Guo, Yuhui Yuan, Lang Huang, Chao Zhang,
Jin-Ge Yao, and Kai Han. Beyond human parts: Dual
part-aligned representations for person re-identification. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 3642–3651, 2019. 1

[13] Kai Han, Yunhe Wang, Qi Tian, Jianyuan Guo, Chunjing
Xu, and Chang Xu. Ghostnet: More features from cheap
operations. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 1580–
1589, 2020. 1

[14] Kai Han, Yunhe Wang, Yixing Xu, Chunjing Xu, Enhua Wu,
and Chang Xu. Training binary neural networks through
learning with noisy supervision. In International Conference
on Machine Learning, pages 4017–4026. PMLR, 2020. 1

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 1, 5

[16] Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and
Yi Yang. Soft filter pruning for accelerating deep convolu-
tional neural networks. In Proceedings of the 27th Inter-
national Joint Conference on Artificial Intelligence, pages
2234–2240, 2018. 6, 7

[17] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang.
Filter pruning via geometric median for deep convolutional
neural networks acceleration. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 4340–4349, 2019. 6, 7

[18] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning
for accelerating very deep neural networks. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 1389–1397, 2017. 1

[19] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015. 1

[20] Weizhe Hua, Yuan Zhou, Christopher M De Sa, Zhiru Zhang,
and G Edward Suh. Channel gating neural networks. In
Advances in Neural Information Processing Systems, pages
1886–1896, 2019. 2, 3, 6

[21] Lai Jiang, Mai Xu, Tie Liu, Minglang Qiao, and Zulin Wang.
Deepvs: A deep learning based video saliency prediction ap-
proach. In Proceedings of the european conference on com-
puter vision (eccv), pages 602–617, 2018. 1

[22] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 5

[23] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. Communications of the ACM, 60(6):84–90, 2017. 1

[24] Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Os-
eledets, and Victor Lempitsky. Speeding-up convolutional
neural networks using fine-tuned cp-decomposition. arXiv
preprint arXiv:1412.6553, 2014. 1

[25] Yawei Li, Shuhang Gu, Christoph Mayer, Luc Van Gool,
and Radu Timofte. Group sparsity: The hinge between fil-
ter pruning and decomposition for network compression. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 8018–8027, 2020. 6,
7

[26] Yawei Li, Shuhang Gu, Kai Zhang, Luc Van Gool, and Radu
Timofte. Dhp: Differentiable meta pruning via hypernet-
works. 2020. 6, 7

[27] Lucas Liebenwein, Cenk Baykal, Harry Lang, Dan Feldman,
and Daniela Rus. Provable filter pruning for efficient neural
networks. In International Conference on Learning Repre-
sentations, 2020. 2, 3, 6

9

[28] Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang,
Baochang Zhang, Yonghong Tian, and Ling Shao. Hrank:
Filter pruning using high-rank feature map. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 1529–1538, 2020. 7

[29] Shaohui Lin, Rongrong Ji, Chao Chen, Dacheng Tao, and
Jiebo Luo. Holistic cnn compression via low-rank decompo-
sition with knowledge transfer. IEEE transactions on pattern
analysis and machine intelligence, 41(12):2889–2905, 2018.
1

[30] Shaohui Lin, Rongrong Ji, Yuchao Li, Yongjian Wu, Feiyue
Huang, and Baochang Zhang. Accelerating convolutional
networks via global & dynamic filter pruning. In IJCAI,
pages 2425–2432, 2018. 2

[31] Shaohui Lin, Rongrong Ji, Chenqian Yan, Baochang Zhang,
Liujuan Cao, Qixiang Ye, Feiyue Huang, and David Doer-
mann. Towards optimal structured cnn pruning via genera-
tive adversarial learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 2790–2799, 2019. 1

[32] Chuanjian Liu, Yunhe Wang, Kai Han, Chunjing Xu, and
Chang Xu. Learning instance-wise sparsity for accelerat-
ing deep models. In Proceedings of the Twenty-Eighth In-
ternational Joint Conference on Artificial Intelligence, pages
3001–3007, 7 2019. 1

[33] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang,
Shoumeng Yan, and Changshui Zhang. Learning efficient
convolutional networks through network slimming. In Pro-
ceedings of the IEEE International Conference on Computer
Vision, pages 2736–2744, 2017. 1, 2, 3

[34] Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin
Yang, Kwang-Ting Cheng, and Jian Sun. Metapruning: Meta
learning for automatic neural network channel pruning. In
Proceedings of the IEEE International Conference on Com-
puter Vision, pages 3296–3305, 2019. 6

[35] Yongxi Lu, Abhishek Kumar, Shuangfei Zhai, Yu Cheng,
Tara Javidi, and Rogerio Feris. Fully-adaptive feature shar-
ing in multi-task networks with applications in person at-
tribute classification. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 5334–
5343, 2017. 1

[36] Jian-Hao Luo, Hao Zhang, Hong-Yu Zhou, Chen-Wei Xie,
Jianxin Wu, and Weiyao Lin. Thinet: pruning cnn filters
for a thinner net. IEEE transactions on pattern analysis and
machine intelligence, 41(10):2525–2538, 2018. 1, 6

[37] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio,
and Jan Kautz. Importance estimation for neural network
pruning. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 11264–11272,
2019. 2, 3, 6

[38] Hieu V Nguyen and Li Bai. Cosine similarity metric learning
for face verification. In Asian conference on computer vision,
pages 709–720. Springer, 2010. 5

[39] Xuefei Ning, Tianchen Zhao, Wenshuo Li, Peng Lei, Yu
Wang, and Huazhong Yang. Dsa: More efficient budgeted
pruning via differentiable sparsity allocation. In Proceed-
ings of the European conference on computer vision, 2020.
6, 7

[40] Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. Rela-
tional knowledge distillation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 3967–3976, 2019. 1

[41] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. 2017. 6

[42] Yongming Rao, Jiwen Lu, Ji Lin, and Jie Zhou. Runtime
network routing for efficient image classification. IEEE
transactions on pattern analysis and machine intelligence,
41(10):2291–2304, 2018. 2, 3

[43] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,
and Ali Farhadi. Xnor-net: Imagenet classification using bi-
nary convolutional neural networks. In European conference
on computer vision, pages 525–542. Springer, 2016. 1

[44] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object de-
tection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 779–788, 2016. 1

[45] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 4510–4520, 2018. 5, 7

[46] Pravendra Singh, Vinay Kumar Verma, Piyush Rai, and
Vinay Namboodiri. Leveraging filter correlations for deep
model compression. In Proceedings of the IEEE/CVF Win-
ter Conference on Applications of Computer Vision, pages
835–844, 2020. 1

[47] Xiu Su, Shan You, Tao Huang, Fei Wang, Chen Qian, Chang-
shui Zhang, and Chang Xu. Locally free weight sharing
for network width search. arXiv preprint arXiv:2102.05258,
2021. 1

[48] Yehui Tang, Yunhe Wang, Yixing Xu, Hanting Chen, Boxin
Shi, Chao Xu, Chunjing Xu, Qi Tian, and Chang Xu. A semi-
supervised assessor of neural architectures. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 1810–1819, 2020. 1

[49] Yehui Tang, Yunhe Wang, Yixing Xu, Dacheng Tao, Chun-
jing Xu, Chao Xu, and Chang Xu. Scop: Scientific con-
trol for reliable neural network pruning. arXiv preprint
arXiv:2010.10732, 2020. 1, 2

[50] Yehui Tang, Shan You, Chang Xu, Jin Han, Chen Qian,
Boxin Shi, Chao Xu, and Changshui Zhang. Reborn filters:
Pruning convolutional neural networks with limited data. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 34, pages 5972–5980, 2020. 2

[51] Jing Wang, Zhenyue Zhang, and Hongyuan Zha. Adaptive
manifold learning. Advances in neural information process-
ing systems, 17:1473–1480, 2004. 4

[52] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and
Hai Li. Learning structured sparsity in deep neural networks.
In Advances in neural information processing systems, pages
2074–2082, 2016. 2, 3

[53] Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and
Jian Cheng. Quantized convolutional neural networks for

10

mobile devices. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 4820–
4828, 2016. 1

[54] Yixing Xu, Yunhe Wang, Hanting Chen, Kai Han, Chun-
jing Xu, Dacheng Tao, and Chang Xu. Positive-unlabeled
compression on the cloud. arXiv preprint arXiv:1909.09757,
2019. 1

[55] Yixing Xu, Chang Xu, Xinghao Chen, Wei Zhang, Chunjing
Xu, and Yunhe Wang. Kernel based progressive distillation
for adder neural networks. arXiv preprint arXiv:2009.13044,
2020. 1

[56] Zhaohui Yang, Yunhe Wang, Xinghao Chen, Boxin Shi,
Chao Xu, Chunjing Xu, Qi Tian, and Chang Xu. Cars: Con-
tinuous evolution for efficient neural architecture search. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 1829–1838, 2020. 1

[57] Zhaohui Yang, Yunhe Wang, Kai Han, Chunjing Xu, Chao
Xu, Dacheng Tao, and Chang Xu. Searching for low-
bit weights in quantized neural networks. arXiv preprint
arXiv:2009.08695, 2020. 1

[58] Haoran You, Xiaohan Chen, Yongan Zhang, Chaojian Li,
Sicheng Li, Zihao Liu, Zhangyang Wang, and Yingyan Lin.
Shiftaddnet: A hardware-inspired deep network. arXiv
preprint arXiv:2010.12785, 2020. 1

[59] Shan You, Tao Huang, Mingmin Yang, Fei Wang, Chen
Qian, and Changshui Zhang. Greedynas: Towards fast
one-shot nas with greedy supernet. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1999–2008, 2020. 1

[60] Shan You, Chang Xu, Chao Xu, and Dacheng Tao. Learning
from multiple teacher networks. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pages 1285–1294, 2017. 1

[61] Bo Zhu, Jeremiah Z Liu, Stephen F Cauley, Bruce R Rosen,
and Matthew S Rosen. Image reconstruction by domain-
transform manifold learning. Nature, 555(7697):487–492,
2018. 4

[62] Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu,
Yong Guo, Qingyao Wu, Junzhou Huang, and Jinhui Zhu.
Discrimination-aware channel pruning for deep neural net-
works. In Advances in Neural Information Processing Sys-
tems, pages 875–886, 2018. 6

11

Label: ship

Label: airplane

(a) Complex Instance

(b) Simple instance

Figure 6. Coefficient λ(xi) that controls network sparsity for com-
plex and simple instances.

7. Supplementary Material
7.1. Coefficient λ(xi) for different instances

In the training procedure, the coefficient λ(xi) (Eq. (6)
of the main paper) controls the weight of sparsity loss ac-
cording to the complexity of each instance. Recall that
λ(xi) = λ′ · βi C−Lce(xi,W)

C ∈ [0, λ′] , where λ′ is a
fixed hyper-parameter for all instances. Using ResNet-56
as the backbone, the variable parts λ(xi)/λ

′ ∈ [0, 1] for
complex/simple examples in CIFAR-10 are shown in Fig-
ure 6. λ(xi)/λ

′ keeps small for complex examples (e.g.,
the vague ‘ship’ in (a)) and then less channels of the pre-
defined networks are pruned for keeping their representa-
tion capabilities. When sending simple examples (e.g., clear
‘airplane’ in (b)) to the dynamic network, λ(xi)/λ

′ keeps
large in most of the epochs, and thus the corresponding sub-
network becomes sparser continuously as the numbers of it-
eration increases. Note that λ(xi)/λ

′ changes dynamically
in the training process. For example, the sparsity weight
automatically decreases in the last few epochs as the cor-
responding sub-network is compact enough and should pay
more attention to accuracy (Figure 6 (b)), which ensures
that the models can fit input instances well.

7.2. Similarity Matrices

The similarity matrices Rl for intermediate features and
T l for channel saliencies are shown in Figure 7, where dif-
ferent colors denote the degree of similarity (i.e., a yel-

(a) (b)

(c) (d)

Without similarity loss

With similarity loss

Figure 7. Similarity matrices. (a) Similarity matrixRl for interme-
diate features without similarity loss. (b) Similarity matrix T l for
channel saliencies without similarity loss. (c) Similarity matrixRl

for intermediate features with similarity loss. (d) Similarity matrix
T l for channel saliencies with similarity loss.

lower point means higher degree of similarity between
two instances). The ResNet-56 model trained with/without
the similarity loss Lsim (Eq. (10) in the main paper) is
used to generate features and channel saliencies for calcu-
lating the similarity between instances randomly sampled
from CIFAR-10. When training dynamic network with-
out similarity loss Lsim, the similarity calculated by fea-
tures and that by channel saliencies are very different (Fig-
ure 7 (a), (b)). When using similarity loss (Figure 7 (c), (d)),
the similarity matrices Rl and T l are more analogous as the
similarity loss penalizes the inconsistency between similar-
ity matrices to align the similarity relationship in the two
spaces.

7.3. Visualization of instances with different com-
plexity

We sample representative images with different com-
plexity from ImageNet and intuitively show them in Fig-
ure 8. From top to bottom, the computational costs of sub-
networks used to predict labels continue to increase. In-
tuitively, simple instances that can be accurately predicted
by compacted networks usually contain clear targets, while
the semantic information in complex images are vague and

12

thus requires larger networks with powerful representation
capability.

C
o
m
p
lexity

Figure 8. Images with different complexity on ImageNet. From
top to bottom, the computational costs of sub-networks used to
predict labels continue to increase.

13

