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Abstract

Predicting multiple plausible future trajectories of the
nearby vehicles is crucial for the safety of autonomous
driving. Recent motion prediction approaches attempt to
achieve such multimodal motion prediction by implicitly
regularizing the feature or explicitly generating multiple
candidate proposals. However, it remains challenging since
the latent features may concentrate on the most frequent
mode of the data while the proposal-based methods depend
largely on the prior knowledge to generate and select the
proposals. In this work, we propose a novel transformer
framework for multimodal motion prediction, termed as
mmTransformer. A novel network architecture based on
stacked transformers is designed to model the multimodal-
ity at feature level with a set of fixed independent propos-
als. A region-based training strategy is then developed to
induce the multimodality of the generated proposals. Ex-
periments on Argoverse dataset show that the proposed
model achieves the state-of-the-art performance on mo-
tion prediction, substantially improving the diversity and
the accuracy of the predicted trajectories. Demo video
and code are available at https://decisionforce.
github.io/mmTransformer.

1. Introduction
Predicting the future trajectories of nearby vehicles is

critical for the Autonomous Vehicle systems to understand
the surrounding and make informative decisions. Multi-
modal prediction, which aims to generate multiple plausible
trajectories of the target vehicle, plays a key role to handle
the uncertainty in motion prediction and improve the safety
of motion planning. Due to the uncertain future events, traf-
fic vehicles could perform differently even under the same
scene. However, there is only one ground truth trajectory
collected in each driving scene. Hence one challenge for
enabling multimodal prediction lies in how to learn to cover
all the possible outcomes in a given scene with limited train-
ing samples.

? Co-first authors with equal contributions.

Figure 1. Examples of multimodal motion prediction in complex
driving scenarios. For each moving vehicle near the ego car, three
plausible future trajectories are predicted by the proposed model.

Recent motion prediction methods mainly follow prob-
abilistic approaches [20, 17, 30] or proposal-based ap-
proaches [35, 28, 5, 11] to address the aforementioned is-
sue. The probabilistic approaches implicitly model the un-
certainty of the trajectory through defining the underlying
possible models as a latent variable. They either achieve the
multimodal prediction with generator conditioned on differ-
ent latent variables, or directly constrain the output over a
probability distribution(e.g., GMM) to get diverse results.
These methods depend heavily on the predefined prior dis-
tribution and the well-designed loss function, which might
be prone to the optimization instability and the mode col-
lapse issue. Unlike probabilistic approaches which gen-
erate multimodal outputs through modeling the latent dis-
tribution of the modality, the proposal-based approaches
[11, 35, 5, 27] perform in an alternative way, which first de-
fines candidate points or trajectories as proposals, and then
regress or classify these proposals to the ground truth. With
predefined proposals, these methods alleviate optimization
burden and narrow down the feasible space of solutions. Al-
though these methods achieve good performance, they still
have the following two issues: 1) The result relies heavily
on the quality of the predefined anchors since the heuristic
methods are applied to sample the candidate points. 2) The
multimodal prediction can not be guaranteed since multi-
modal nature of trajectory prediction is not well captured
with only one ground truth provided during the training.

In this work, we propose a novel end-to-end multimodal
motion prediction framework called MultiModal Trans-
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former (mmTransformer), where the proposals are first
randomly initialized and then refined to incorporate con-
textual information. mmTransformer is designed based on
the transformer architecture, which proves to be effective
in modeling sequential data. The whole model can be
viewed as stacked transformers in which the past trajec-
tories, the road information, and the social interaction are
aggregated hierarchically with several transformer encoder-
decoder modules. Two multimodal prediction examples of
the whole traffic scenes are shown in Fig 1.

We develop two new mechanisms to ameliorate the uni-
modal effects brought by identical features. First, we in-
troduce a trajectory proposal mechanism to the field of mo-
tion prediction. Specifically, queries in the decoders of mm-
Transformer are represented as trajectory proposals, which
asymptotically aggregate multiple channels of contextual
information from encoders, and make independent predic-
tions. Since these proposals are orthogonal with each other,
each of them will carry customized features, which pro-
motes the diversity and multimodality. Second, a region-
based training strategy (RTS) is developed to explicitly en-
sure the multimodality, which negotiates the conflicts be-
tween the uniqueness of ground truth and multimodal na-
ture of predictions. We divide the surrounding space into
several regions and group trajectory proposals into differ-
ent sets, with each set being assigned to one region. During
training, only the set of proposals assigned to the region
where ground truth locates will be utilized to optimize the
framework. This new strategy enforces individual proposal
to focus on a specific mode, without compromising the la-
tent features learned by other proposals.

The contributions of this paper are summarized as fol-
lows: (1) To the best of our knowledge, mmTransformer
is the first model using stacked transformers for trajectory
proposals to aggregate multiple channels of contextual in-
formation and achieve multimodal prediction. (2) To pre-
serve the multimodal nature of motion forecasting, we de-
sign a novel region-based training strategy, which ensures
that each individual proposal is capable of capturing a spe-
cific mode. (3) Extensive experiments show the substantial
improvement brought by the proposed model architecture
and the tailored region-based training strategy. Our model
ranked the 1st on the Leaderboard of Argoverse benchmark
dated on 16 Nov 2020, and remains competitive on the
leaderboard.

2. Related Work
Motion Prediction. Recently deep learning-based meth-
ods have been widely used for motion prediction [1, 15, 8,
2, 11]. The typical pipeline is to first create the input rep-
resentation by rasterizing [10, 34] or vectorizing [7, 22, 12]
surrounding information and then use deep neural network
(e.g., CNN, Long Short-Term Memory(LSTM), graph neu-

ral network[33, 16]) to extract informative features. Finally,
the trajectory is directly generated by model [12] or based
on prior knowledge [11, 35, 5].

To this end, motion prediction methods can be roughly
divided into two categories: feature-based and proposal-
based methods. For the first kind of methods, most of
them focus on how to extract useful information from the
environment. CNN Encoder-Decoder is proposed in [33]
to extract features from vehicles’ past positions and direc-
tions and directly regress the future positions. Graph neu-
ral networks [22] have emerged in response to problems
that scenes cannot be easily represented by matrices of pix-
els or simple vectors. SoPhie [29] have leveraged features
extracted from the physical environment, attention mecha-
nisms, and adversarial training. However, for these feature-
based methods it is difficult to guarantee the multimodal
prediction of the model. As for another kinds of models
[35, 28, 5, 11], where the candidate trajectory set is first gen-
erated based on prior knowledge and candidate point and
then optimize and reduce these candidate trajectory by de-
signed cost function or post-processing to obtain final pre-
diction. Although these methods successfully modeling the
multimodality, there are still many unsolved problems. As
these methods focus on the manipulation of the predicted
trajectories or candidates, the meanings of latent features
are typically neglected, which may hurts the stability of the
model. As a result, performance will be significantly in-
fluenced by the robustness of prior hypothesis made by the
author.

Different from above, our model achieves the multi-
modal prediction at both feature and proposal levels. The
region-based training strategy further refines the proposals
which reduces the correlation of the proposals and guaran-
tees the diversity of the predicted trajectories. Meanwhile,
by explicitly considering modality into proposal during
training process, mmTransformer has a more interpretable
pipeline.

Transformer. Transformer is a novel attention-based
method which was firstly introduced in [31]. It has been
successfully deployed in several applications (e.g., neural
machine translation and image caption generation [9, 25]).
The most important part of transformer is the self-attention
mechanism. The advantage of the attention mechanism in
transformer lies in its capability of learning high quality
features through taking the whole context into considera-
tion. Some of the recent methods in the field of trajectory
forecasting adopt the attention mechanisms in sequence and
interaction modeling [21, 13, 26]. For example, an interac-
tion transformer [21] is introduced to model the interaction
between traffic vehicles. Ind-TF [13] replaces RNN with
vanilla transformer to model the trajectory sequences. Un-
like these methods that use transformer as a part of their
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Figure 2. Overview of mmTransformer: The proposed mmTransformer uses stacked transformers as the backbone, which aggregates
the contextual information on the fixed trajectory proposals. Proposal feature decoder further generates the trajectories and corresponding
confidence scores by decoding each proposal feature through the trajectory generator and selector, respectively. Besides, the trajectory
generator and trajectory selector are two feed-forward network, which have the same structure with the FFN in the transformer [31]. The
detailed network architecture can be found in appendix.

feature extractor, a fully transformer based architecture is
used in our case to solve the multimodal motion prediction
problem.

3. Multimodal Motion Prediction Framework
Motion prediction aims to accurately predict the future

motion of target vehicles, given the history trajectories of
traffic vehicles in the scene and other contextual informa-
tion such as road and traffic information. To tackle the mul-
timodal motion prediction, we firstly learn a feature set Y
comprising various proposal features y ∈ Y . Each y is
generated from Fθ(x), where x is the scene information,
involving motion history and surrounding context. With the
set of proposal features, we can generate multiple future tra-
jectories S = {si ∈ RT×2 : 1 ≤ i ≤ K} by Gφ(y), in which
T denotes future horizon andK denotes the total number of
predictions. Additionally, prediction set S ⊂ S where S is
the entire space of possible S, and Fθ(·) and Gφ(·) are pa-
rameterized by θ and φ, respectively.

We aim to construct an appropriate set of proposal fea-
tures Y ⊂ Y to ensure both accuracy and multimodal-
ity. Therefore, we introduce a novel mmTransformer to ob-
tain informative proposals and then apply the region-based
training strategy to ensure the multimodality of proposals.

3.1. Stacked Transformers

Transformer has demonstrated outstanding performance
in dealing with sequential data. In order to apply trans-
former to trajectory prediction, we need to extend the model

to incorporate a variety of the contextual information, be-
cause the vanilla transformer only supports encoding single
type of data (e.g., the corpus token in the language trans-
former [9], and image in the visual transformer [4]). A
naive solution is to concatenate all types of inputs such as
past trajectory and lane information into a sequence of con-
textual embeddings and input them to the transformer. As
the transformer requires a fixed size of the input, a naive
solution will consume a large amount of resources. Addi-
tionally, since different types of information will compound
in such design and be aggregated by the attention layers, the
quality of the latent feature might be compromised. There-
fore, we consider the alternative of incorporating multiple
channels of information separately.

Under the circumstance of different inputs, the challenge
lies in how to incorporate multiple channels of information
as input to the transformer. we propose to define the queries
of transformer decoder as trajectory proposals, tailored to
our multimodal trajectory prediction task. This design is in-
spired by the parallel version of transformer used in [4].
Its strength is that parallel trajectory proposals can inte-
grate the information from the encoder independently, al-
lowing each single proposal to carry disentangled modality
information. The stacked architecture adapts to the multi-
input circumstance with several tailored feature extractors,
integrating different contextual information hierarchically.
Specifically, the structure of the stacked transformers con-
sists of three individual transformer units, motion extractor,
map aggregator, and social constructor respectively, each
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taking the updated trajectory proposals from the previous
transformer as the input of its decoder to refine the propos-
als. The framework is illustrated in Fig 2.

For simplicity, the transformer modules retain the struc-
ture introduced by [4]. Since the transformer decoder is
permutation-invariant, the K proposals must be distinct to
each other in order to represent different modes and gener-
ate different trajectories. A learned positional encoding is
added before each decoder layer of the transformer mod-
ules. We illustrate the three components in more detail as
follows.
Motion Extractor. The encoder input of motion extractor is
the history trajectories of observed vehicles as H = {hi ∈
RTobs×2 : 1 ≤ i ≤ Nvehicle}, whereNvehicle is the number
of the observed vehicles, including the target vehicle, and
Tobs is the length of history observation. The decoder inputs
are the trajectory proposals Y = {yi ∈ Rn : 1 ≤ i ≤ K},
textcolorredwhich are initialized by a set of learnable po-
sitional encoding, feature size of each encoding is n. The
outputs of decoder can be considered as proposal features.
It is noted that all the observed vehicles share the same ar-
chitecture of motion extractor, the same for map aggregator.
Map Aggregator. As the behaviors of vehicles depend
largely on the topology of the map, such as road structure,
we utilize this transformer to fuse the geometric and seman-
tic information from high definition map to refine features
of the input proposals. Following [12], we encode each cen-
terline segment into vectorized representation, and use the
subgraph module in [12] to process each vectorized poly-
lines. After that, the latent features of the polylines are fed
to the map aggregator to explicitly model the scene. Bene-
fiting from the interpretability of encoder-decoder attention
module inside transformer, the proposal can retrieve the cor-
responding map features based on its preassigned modality.
Social Constructor. Unlike the previous transformers, so-
cial constructor encodes the vehicle features among all ob-
served vehicles, aiming to model the interactions between
them. In particular, the vehicle feature of each observed
vehicle is obtained by summarizing all the proposals for
each of vehicles via a multi-layer perception (MLP). The
vehicle feature can be also viewed as distribution of future
movements for each traffic vehicle. Since our objective is to
forecast the future trajectory of the target vehicle, we only
utilize the decoder of social constructor to update the pro-
posals for target vehicles, instead of all vehicles, in pursuit
of higher efficiency.

As a whole, the motivation behind our framework is to
establish the intra-relation inside data (e.g., extracting the
map topology with the encoder of map aggregator), and
integrate contextual information from different encoders
asymptotically to update each proposal and highlight its
pre-assigned modality.

Intuitively, stacked transformers can be divided into two

Figure 3. Overview of the region-based training strategy. We first
distribute each proposal to one of the M regions. These propos-
als, shown in colored rectangles, learn corresponding proposal fea-
ture through the mmTransformer. Then we select the proposals
assigned to the region where the GT endpoints locate, generate
their trajectories as well as their associated confidence scores, and
calculate the losses for them.

parts. First part only encodes the information of each ve-
hicle individually by the motion extractor and the map
aggregator, without any interaction information being in-
volved. Then the social constructor is applied to aggregate
the nearby information and model the dependency among
all the vehicles. Thus, the order is logically sequential, i.e.,
the social relation should be constructed based on individual
vehicle features. Additionally, the order of the other trans-
formers has been verified empirically by experimental re-
sults shown in Table 2. Based on this stacked architecture,
our model can capture the latent connection between con-
textual information and the diverse proposal features which
ensures the multimodal predictions.

3.2. Proposal Feature Decoder

The final Proposal Feature Decoder comprises two
branches, namely, the Trajectory Generator for trajectory
prediction and the Trajectory Selector branch for proposal
scoring. For each of the K target proposals, we apply a
three-layer MLP G(·) to generate the prediction as follows,

S = {si ∈ RT×2 : si = G(yi),yi ∈ Y, 1 ≤ i ≤ K} (1)

where yi ∈ Y is the ith proposal feature generated from
social constructor, s is a tensor of predicted trajectory, T is
the number of future time steps.

For scoring, we apply the MLP, W(·), with the same
structure as regression branch to generate the K confidence
scores for each of the trajectory proposals.

C = {ci ∈ R : ci =W(yi), 1 ≤ i ≤ K, } (2)

3.3. Region-based Training Strategy

As shown in previous work [35], direct regression for all
the trajectory proposals leads to the mode average problem,
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which hampers the multimodalily property of the model.
One feasible solution to overcome the mode average prob-
lem is to calculate the regression loss and classification loss
only using the proposal with the minimum final displace-
ment error. We term this as the vanilla training strategy.
Although our model achieves competitive results under this
training strategy using 6 trajectory proposals, the predic-
tion results are confined to a local region around the ground
truth trajectory due to the small number of proposals are
used. However, the modality collapsing issue occurs when
we attempt to increase the number of proposals to improve
diversity.

To address the limitation of the vanilla training strategy,
we propose a novel training strategy called region-based
training strategy (RTS), which groups trajectory proposals
into several spatial clusters based on the spatial distribution
of the ground truth endpoints, and optimizes the framework
to improve the prediction results within each cluster.

The strategy is illustrated in Fig 3. For each single sce-
nario, we first rotate the scene to align the heading direction
of the target vehicle to +y axis, and make all coordinates
centered at the last observation point of the target vehicle.
Based on that, we partition the sample space of target ve-
hicles into M regions, without any overlaps between them.
The detailed analysis of region shape and region number
is illustrated in Section 4.3 and the procedure of the par-
tition is illustrated in appendix. After that, we equally di-
vide the total K proposals of mmTransformer into M parts,
with each of them assigned to a specific region. As a re-
sult, each region will possessN individual proposals, where
N = K/M . It is noted that the pre-processing in our work
ensures that all the samples can share the same partition
map.

During the training, we utilize the regression loss and
classification loss in a similar way to vanilla training strat-
egy. The difference is that we calculate the loss for all the
proposals that are assigned to the region where ground truth
endpoint locate, rather than the one closest to the ground
truth. In this way, we improve the multimodal results in
a region-based manner, which optimizes the predictions in
one region without affecting any other regions.

3.4. Training Objective

Since all the modules are differentiable, our framework
yields fully supervised end-to-end training. The final loss
of our model is composed of regression loss, scoring loss,
and an auxiliary loss for multi-task learning. They are the
Huber loss for regression, the KL divergence for scoring tra-
jectories, and an auxiliary loss for the region classification
respectively. The detail of losses is as follows:

Regression Loss. Lreg is the Huber loss over per-step co-

ordinate offsets.

Lreg =
1

N

N∑
i=1

LHuber(si, sgt), (3)

where si is the i-th predicted trajectory generated by pro-
posal feature decoder, and the sgt is the ground truth trajec-
tory.
Confidence Loss.To assign each trajectory a confidence
score, we follow the [35] to tackle this scoring problem of
trajectory prediction via a maximum entropy model,

τ(y) =
exp (W(y))∑N
i=1 exp (W(yi))

, (4)

Yregion = {y1, . . . ,yN},

where Yregion ⊂ Y is a subset of proposal features selected
by the region-based training strategy from Y .

λ(s) =
exp (−D(s, sgt))∑N
i=1 exp (−D(si, sgt))

, (5)

where D(si) of each predicted trajectory si is defined
by the L2 distance of its endpoint to ground truth endpoint,
D(si, sj) = ‖si,T − sj,T‖2.

Lconf =
1

N

N∑
i

DKL(λ(si)||τ(yi)). (6)

As we want the distribution of the predicted score to stay
close to the target distribution calculated in Eq 5, We use
the Kullback-Leibler Divergence as the loss function.
Classification Loss. We introduces region classification
loss to ensure model can identify correct region. When the
proposal number K is large, we find that using such auxil-
iary loss Lcls helps to regularize the confidence loss, which
accelerates the convergence of mmTransformer + RTS. The
details of Lcls is provided in appendix.
Intermediate Layer Losses. In order to accelerate the
training process, we add Proposal Feature Decoder and the
aforementioned combination of losses after each decoder
layer of social constructor.
Total Loss. Since the total loss function can be viewed as
the summation of multiple distinct tasks, we use multi-task
learning approach in [18, 23] to balance them.

L =
1

σ2
1

Lreg +
1

σ2
2

Lconf +
1

σ2
3

Lcls +

3∑
i=1

log(σi + 1), (7)

where σi, i ∈ {1, 2, 3} are learnable loss weights.
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Methods minADE minFDE MR(%)
NN [6] 1.7129 3.2870 53.69

LSTM ED [6] 2.34 5.44 -
TNT [35] (4th) 0.9358 1.5384 13.28

LGCN [22] (7th) 0.8679 1.3640 16.34
LA [27] (21th) 0.9436 1.5486 21.79

WIMF [19] (8th) 0.8995 1.4220 16.69
mmTrans. (5th) 0.8435 1.3383 15.42

mmTrans.+RTS (1st) 0.8704 1.3688 13.00

Table 1. Comparison with state-of-the-art methods on the Argov-
erse test set (K=6). Here, mmTrans. stands for 6-proposal mm-
Transformer, while mmTrans.+RTS stands for 36-proposal mm-
Transformer trained with RTS.

3.5. Inference

During inference, all the K proposals are used to gener-
ate final results. In order to merge multimodal predictions, a
selection algorithm inspired by the non-maximum suppres-
sion algorithm is used to reject near-duplicate trajectories
based on the euclidean distances of endpoints (the detailed
procedure can be found in appendix).

4. Experiments

4.1. Experimental Setup

Dataset. We perform experiments on Argoverse motion
forecasting benchmark [6], which involves 340k 5s long
trajectory sequences and corresponding contextual informa-
tion. The sequences are split into 205,942 training, 39,472
validation and 78,143 testing cases, respectively. Given a 2-
second history trajectory and the context as inputs, the goal
is to forecast the future movements of the target vehicle over
the next 3 seconds. For each scenario, local map informa-
tion can be represented as a set of centerline-based poly-
lines from HD map. Besides, past trajectories and locations
of the adjacent vehicles and the ego-car are also included in
order to model the interaction between them.
Metrics. We evaluate our model in terms of the widely used
Average Displacement Error (ADE) and Final Displace-
ment Error (FDE). Due to the multimodal nature of trajec-
tory prediction, minADE, minFDE and miss rate (MR) of
the top K (K=6) trajectories are also reported following the
evaluation criteria of the Argoverse benchmark.

4.2. Results

We compare our model with the state-of-the-art methods
in the test set of Argoverse. The scores of different meth-
ods in Table 1 were extracted before the CVPR submission
deadline (16/11/2020) from the Argoverse Leaderboard.

As shown in Table 1, we include the results of vanilla
mmTransformer and mmTransformer model trained with

Motion Map Social RTS Proposal minADE minFDE MR(%)
X 6 0.915 1.681 23.3
X X 6 0.794 1.284 14.4
X X 6 0.826 1.418 17.3
X X X 6 0.713 1.153 10.6
X X X 36 0.833 1.453 17.6
X X X X 36 0.721 1.211 9.2

Table 2. Ablation study on the effectiveness of different com-
ponents of mmTransformer on the Argoverse validation dataset.
As shown in the last two rows of Table 2, same model without
RTS shows a poorer performance when other condition remain the
same.

RTS. It shows that our models achieve the best perfor-
mance in terms of all the metrics, which indicates that our
method is capable of learning high quality proposal features
by employing stacked transformers, and achieving promis-
ing multimodal results by using the RTS. Compared to the
6-proposal mmTransformer without RTS , we observe a
slightly drop of minADE and minFDE in the 36-proposal
mmTransformer with RTS. It is the large number of pro-
posals that leads to the drop of minADE and minFDE.
We explain the reason using outcome of 36-proposal mm-
Transformer as an example: Limitted by the fixed num-
ber (6) of final outputs, we discard the redundant candi-
date proposals to retain the diversity(i.e., MR) during the
post-processing. As a side effect, the number of selected
proposals in GT region is decreased, which may hurt the
accuracy, i.e. minFDE and minADE. We regard this as a
trade-off between accuracy and diversity. Besides, the ac-
cruacy drop caused by post-processing is a common issue in
machine learning community [3], especially when selecting
final predictions from a large candidate set.
Visualization of Multimodal Motion Prediction. In Fig 4,
we showcase multimodal prediction results of mmTrans-
former on the Argoverse validation set. We can see that
mmTransformer generates trajectories covering all the plau-
sible modes in each driving scenario. Although mmTrans-
former itself is capable to make reasonable predictions (col-
umn 1,2) with trajectory proposals, it fails to achieve com-
parable performance as mmTransformer+RTS in more chal-
lenging scenarios (column 3,4), as the modalities may con-
centrate in a specific area.

4.3. Ablation Study

We first conduct ablation study to analyze the impor-
tance of each component in our model. Then, we evaluate
two different partition methods, K-means and manual parti-
tion. We finally measure impact of the number of region M
and the number of proposal in each region N on mmTrans-
former+RTS.
Importance of Each Transformer Module and RTS. To
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Results of 36-proposal mmTransformer+ RTS filtered by confidence score

Results of 6-proposal mmTransformer

Figure 4. Qualitative comparison between mmTransformer (6 proposals) and mmTransformer+RTS (36 proposals) on four driving scenarios
from Argoverse validation set. Green rectangle represents the target vehicle. The red and yellow arrows indicate the groundtruth and
predicted trajectories with high confidence scores. For a clear visualization, we filter the trajectories with scores lower than the uniform
probability in each scenario. It can be seen that most of plausible areas are covered by our prediction results.

analyze the importance of each component in mmTrans-
former, we compare the results of several models on Ar-
goverse validation set. We consider the motion extractor in
mmTransformer as the baseline model, and progressively
add other transformer modules to aggregate contextual in-
formation, and utilize RTS to encourage multimodal pre-
diction. Observations can be drawn from the experimental
results shown in Table 2.

Firstly, all the structural components contribute to the
performance of the framework. We observe that the MR
is improved from 23.3% to 10.6% by applying all the trans-
former modules (row 1-4). With the contextual informa-
tion being captured and incorporated by each module, the
model gains more comprehensive understanding of the sce-
nario. For example, the map information captured by map
aggregator brings useful road features (e.g. layout of lane
lines), which benefits the overall performance (from 23.3%
to 14.4%). Also, The model with map aggregator and social
constructor further promotes the MR to 10.6%. It is noted
that we stack these modules hierarchically rather than fol-
lowing a parallel design because of the logical relationship
between different contextual information.

Besides, RTS facilities the final results by increasing
the number of proposals to encourage multimodal predic-
tion. As shown in Table 2, the region-based training strat-
egy boosts the performance by a large margin, from 17.6%
to 9.2% in MR. We attribute the large improvement to the
large amount of proposals used by the RTS. However, train-
ing large number of proposals with vanilla strategy can not
result in the comparable performance, since the optimiza-

Partition method minADE minFDE MR(%)
K-means 0.72 1.21 9.21

Manual partition 0.73 1.23 9.13

Table 3. Impact of different partition algorithms on the Argoverse
validation dataset.

tion of a single proposal compromises the others under this
setting. The comparison results demonstrate that RTS helps
to preserve the modality information.
Spatial partitions. We evaluate two ways to divide the sur-
rounding space for RTS. The first one adopts constrained
K-means [32], while we manually split the space into fan-
shaped regions(similar with Fig 3) for the another one.
Training samples are evenly distributed in each region for
data balance. For a fair comparison, we partition the space
into 6 regions, according to the number of regions, and as-
sign 6 proposals (represented as regional proposals) to each
region. Compared to K-means based partition algorithm,
manual partition can successfully divide some blurry sam-
ples to correct region. Since we assume that the misclassi-
fied samples may perturb the learning of regional proposal,
manual partition can, therefore, achieve slightly higher per-
formance, as shown in Table 3. How to classify the samples
to help training remains to be an open topic.
Number of Proposals. We further conduct experiments to
explore the appropriate number of proposals and regions
utilized in mmTransformer+RTS. We hypothesis that the
number of regions (M ) and the number of proposals in each

7



R0

R1R3

R4

R2

R5

MR Matrix of Region Proposals 

Pr
op

os
al

s 
 a

ss
ig

n 
to

 e
ac

h 
re

gi
on

Region

Figure 5. Visualization of the multimodal prediction results on Argoverse validation set. We utilize all trajectory proposals of mmTrans-
former to generate multiple trajectories for each scenario and visualize all the predicted endpoints in the figures (left three columns). For
clear illustration, we filter the points with confidences lower than the uniform probability(1/K). The background represents all the pre-
dicted results and colored points indicate the prediction results of a specific group of proposals (regional proposals). We observe that the
endpoints generated by each group of regional proposals are within the associated region. Miss Rate (MR) matrix of regional proposals is
shown on the upper right, where the value in each cell (i, j) represents the MR calculated by proposals assigned to region i and ground
truth in region j. The proposals possess high accuracy when the GT is located in their region. For reference, the layout of the regions
produced by constrained K-means[32] is shown in the bottom right.

N

MR(%) M
3 6 9

1 28.87 20.67 23.86
6 11.65 9.21 9.37
8 12.96 9.23 9.31

Table 4. Impact of number of region M and the number of pro-
posal in each region N on the Argoverse validation dataset.

region (N ) jointly control the concentration and coverage of
predicted trajectories. We find that the ratio betweenM and
N affects the performance significantly when total num-
ber of proposal is not very large. Specifically, the perfor-
mance drops when the ratio is far way from 1. However, the
performance increases marginally and even becomes worse
when the total number of proposal is large, regardless of the
changing of ratio. According to our experiments, the model
gives the most desirable performance when M and N both
equal to 6.

Visualization of Region-based Training Strategy. Fig 5
illustrates the effectiveness of RTS (36 proposals). We con-
duct the experiments on Argoverse validation set. As shown
in the MR matrix of Fig 5, cell (i, j) represents the missing
rate of proposals assigned to i-th region (named as region
proposals) in predicting all cases that belong to j-th region.
The low MR in diagonal indicates that the regional pro-
posals have learned specialization in assigned region. We
observe that each proposal tends to generate the trajectory

which ends in the preassigned region, which demonstrates
that mmTransformer has learned different modalities in a
region-based manner.

5. Conclusion

We develop a transformer-based motion prediction
model called mmTransformer for accurate multimodal pre-
diction. A novel partition training method is introduced to
improve the multimodal prediction. The experiments show
the competitive result on the Argoverse benchmark.
Acknowledgement: This project was partially supported
by the Centre for Perceptual and Interactive Intelligence
(CPII) Ltd under the Innovation and Technology Fund. The
authors would like to thank Xin Zhang for his insightful dis-
cussions.

Appendix

A. Implementation Details

Following previous transformer-based approaches [4,
31], we utilize AdamW[24] as the optimizer, with the ini-
tial learning rate, weight decay and gradient max norm set
to 1× 10−3, 1× 10−4 and 0.1 respectively. All parameters
in mmTransformer are initialized using Xavier initialization
[14]. All transformer modules in mmTransformer contain
128 hidden units. Each transformer module has two encoder
layers and two decoder layers, except for the decoder of so-
cial constructor, which contains four layers. The map infor-
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Figure 6. The detailed structure of the transformer module.

mation in our implementation covers the 65m× 65m local
region, centered at the position of target agent at the last ob-
servation point. Besides, the heading direction of the target
agent at last observation point is aligned to +y axis, as men-
tioned before. To enhance the robustness of the model, we
further conduct data augmentation by flipping the trajecto-
ries horizontally and randomly masking the trajectories at
the first ten time steps.

B. Detailed Architecture

The detailed architecture of the transformer used in mm-
Transformer is visualized in Fig 6. Surrounding information
is passed to the encoder to derive memory of the contextual
features. Besides, spatial positional encodings are added to
the queries and keys at each multi-head self-attention layer.
Then, the decoder receives proposals (randomly initialized),
positional encoding of proposals, as well as encoder mem-
ory, and produces the refined trajectory proposals through
multiple multi-head self-attention and decoder-encoder at-
tention layers. It is noted that the first self-attention layer in
the first decoder layer of motion extractor can be skipped.

C. Classification Loss

The idea is to encourage the trajectory proposals which
are assigned to the ground truth region to have higher
scores. Specifically, each logit in loss term is the sum of
the scores belonging to the corresponding region

P = {pi ∈ R : pi =

i+N∑
j=i

cj}, (8)

Step 1 Step 2 Step 3

Figure 7. Visualization of the partition procedure.

where i ∈ {1, N + 1, 2N + 1, . . . , (M − 1)N + 1}, then
we apply the cross entropy loss to calculate the penalty as

Lcls = −
M∑
i=1

δ(i− gt) log pi, (9)

where the gt is the ground truth region index and δ is a
indicator function. The auxiliary loss benefits to the gener-
alization and convergence of our model.

D. The Procedure of Partition Algorithm
Let’s take K-means as a example to described partition

procedure. Step1: Extract all normalized GT trajectory end-
points, using normalization described in line 435 of our pa-
per. Step2: Apply constrained K-means [32] to divide these
samples into M clusters equally. Step3: Find the vertices
of each region with convex hull algorithm; gather these ver-
tices to form the regions. The procedure is visualized in
Fig 7

E. Inference
During the inference stage, we utilize NMS algorithm to

filter duplicated trajectories. The detail of NMS algorithm
goes as follow: we first sort the predicted trajectories ac-
cording to their confidence scores in descending order, and
then pick them greedily. Specifically, we set a threshold
and exclude trajectories that are close to any of the selected
trajectories. We keep repeating above two steps until col-
lecting sufficient predicted trajectories.
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