
Neural Architecture Search with Random Labels

Xuanyang Zhang Pengfei Hou Xiangyu Zhang* Jian Sun
MEGVII Technology

{zhangxuanyang,houpengfei,zhangxiangyu,sunjian}@megvii.com

Abstract

In this paper, we investigate a new variant of neural
architecture search (NAS) paradigm – searching with ran-
dom labels (RLNAS). The task sounds counter-intuitive for
most existing NAS algorithms since random label provides
few information on the performance of each candidate ar-
chitecture. Instead, we propose a novel NAS framework
based on ease-of-convergence hypothesis, which requires
only random labels during searching. The algorithm in-
volves two steps: first, we train a SuperNet using ran-
dom labels; second, from the SuperNet we extract the sub-
network whose weights change most significantly during the
training. Extensive experiments are evaluated on multiple
datasets (e.g. NAS-Bench-201 and ImageNet) and multiple
search spaces (e.g. DARTS-like and MobileNet-like). Very
surprisingly, RLNAS achieves comparable or even better re-
sults compared with state-of-the-art NAS methods such as
PC-DARTS, Single Path One-Shot, even though the coun-
terparts utilize full ground truth labels for searching. We
hope our finding could inspire new understandings on the
essential of NAS.

1. Introduction
Recent years Neural Architecture Search [49, 2, 50, 47,

48, 29, 35, 37, 10] (NAS) has received much attention in
the community as its superior performances over human-
designed architectures on a variety of tasks such as image
classification [37, 38, 19], object detection [10, 16] and se-
mantic segmentation [27]. In general, most existing NAS
frameworks can be summarized as a nested bilevel opti-
mization, formulated as follows:

a? = argmax
a∈A

Score (a,W?
a) (1)

s.t. W?
a = argmin

W
L (a,W) , (2)

*Corresponding author. This work is supported by The National Key
Research and Development Program of China (No.2017YFA0700800) and
Beijing Academy of Artificial Intelligence (BAAI).

where a is a candidate architecture with weights Wa sam-
pled from the search space A; L(·) represents the training
loss; Score(·) means the performance indicator (e.g. accu-
racy in supervised NAS algorithms or pretext task scores in
unsupervised NAS frameworks [28]) evaluated on the val-
idation set. Briefly speaking, the NAS paradigm aims to
search for the architecture which obtains the best validation
performance, thus we name it performance-based NAS in
the remaining text.

Despite the great success, to understand why and how
performance-based NAS works is still an open question.
Especially, the mechanism how NAS algorithms discover
good architectures from the huge search space is well worth
study. A recent literature [36] analyzes the searching results
under cell-based search spaces and propose a new interpre-
tation on current performance-based methods – NAS algo-
rithms tend to select networks with fast convergence, which
also implies that there may exist high correlations between
architectures with fast convergence and with high perfor-
mance (named ease-of-convergence hypothesis for short).
Inspired by the hypothesis, we propose an alternative NAS
paradigm, convergence-based NAS, as follows:

a? = argmax
a∈A

Convergence (a,W?
a) (3)

s.t. W?
a = argmin

W
L (a,W) , (4)

where Convergence(·) is a certain indicator to measure the
speed of convergence; other notations follow the same defi-
nitions as in Eq. 1, 2.

In this paper we mainly investigate convergence-based
NAS frameworks, which is rarely explicitly explored in pre-
vious works to our knowledge. First of all, we study the
role of labels in both frameworks. In performance-based
NAS, we notice that feasible labels are critical in both search
steps: for Eq. 1 step, since we need to select the architecture
with the highest validation performance, reasonable labels
such as ground truths, or at least carefully-designed pretext
task (e.g. rotation prediction [17]) labels in unsupervised
NAS algorithms [28], are required for evaluation. And ac-
cordingly, for Eq. 2 step such corresponding labels are also
necessary in the training set to optimize the weights. While

1

ar
X

iv
:2

10
1.

11
83

4v
1

 [
cs

.C
V

]
 2

8
Ja

n
20

21

in convergence-based NAS, Eq. 3 only depends on a metric
to estimate the convergence speed, which is free of labels.
Though the optimization in Eq. 4 still needs labels, the pur-
pose of the training is just to provide the evidence for the
benchmark in Eq. 3, rather than accurate models. So, we
conclude that in convergence-based NAS the label require-
ment is much weaker than that in performance-based NAS.

The observation motivates us to take a further step: in
convergence-based NAS, can we use only random labels for
search, instead of any feasible labels like ground truths or
pretext task labels entirely? To demonstrate it, we propose
a novel convergence-based NAS framework, called Ran-
dom Label NAS (RLNAS), which only requires random la-
bels to search. RLNAS follows the paradigm of Eq. 3, 4.
In Eq. 4 step, random labels are adopted to optimize the
weight for each sampled architecture a; while in Eq. 3 step,
a customized angle metric [21] is introduced to measure the
distance between trained and initialized weights, which es-
timates the convergence speed of the corresponding archi-
tecture. To speed up the search procedure, RLNAS further
utilizes the mechanism of One-Shot NAS [3, 19] to decou-
ple the nested optimization of Eq. 3 and Eq. 4 into a two-
step pipeline: first training a SuperNet with random labels,
then extracting the sub-network with the fastest conver-
gence speed from the SuperNet using evolutionary search.

We evaluate our RLNAS in popular search spaces like
NAS-Bench-201 [15], DARTS [30] and MobileNet-like
search spaces [5]. Very surprisingly, though RLNAS does
not use any feasible labels, it still achieves comparable
or even better performances on multiple benchmarks than
many supervised/unsupervised methods, including state-of-
the-art NAS frameworks such as PC-DARTS [42], Single-
Path One-Shot [19], FairDARTS [13], FBNet [39] and Un-
NAS [28]. Moreover, networks discovered by RLNAS are
also demonstrated to transfer well in the downstream tasks
such as object detection and semantic segmentation.

In conclusion, the major contribution of the paper is that
we propose a new convergence-based NAS framework RL-
NAS, which makes it possible to search with only random
labels. We believe the potential of RLNAS may includes:

A simple but stronger baseline. Compared with the
widely used random search [24] baseline, RLNAS is much
more powerful, which can provide a stricter validation for
future NAS algorithms.

Potentially better generalization capability. Since RL-
NAS only uses random labels for search, it is not likely
biased to a certain dataset for the searched architectures,
which is also supported in our experiments.

Inspiring new understandings on NAS. Since the per-
formance of RLNAS is as good as many supervised NAS
frameworks, on one hand, it further validates the effective-
ness of ease-of-convergence hypothesis. On the other hand,

however, it suggests that the ground truth labels or NAS
on specified tasks do not help much for current NAS algo-
rithms, which implies that architectures found by existing
NAS methods may still be suboptimal.

2. Related Work
Supervised Neural Architecture Search. Supervised
neural architecture search (NAS) paradigm is the main-
stream NAS setting. Looking back at the development his-
tory, supervised NAS can be divided into two categories hi-
erarchically: nested NAS and weight-sharing NAS from the
perspective of search efficiency. In the early stage, nested
NAS [49, 2, 50, 47, 48, 29, 35, 37] trains candidate architec-
tures from scratch and update controller with corresponding
performance feedbacks iteratively. However, nested NAS
works at the cost of a surge in computation, e.g. NAS-
Net [50] costs about 1350–1800 GPU days. ENAS [34] ob-
serves the computation bottleneck of nested NAS and forces
all candidate architectures to share weights. ENAS takes
1000× less computation cost than nested NAS [34] and pro-
poses a new NAS paradigm named weight-sharing NAS.
A large number of literature [30, 9, 42, 3, 4, 5, 19] fol-
low the weight-sharing strategy due to the superiority of
search efficiency. This work is also carried out under the
weight-sharing strategy. Unlike most weight-sharing ap-
proaches, we are not focusing on the improvement of search
efficiency.

According to different optimization steps, weight-
sharing approaches can be further divided into two cat-
egories: the one joint step optimization approach named
gradient-based NAS [30, 9, 42]) and the two sequential
steps optimization approach named One-Shot NAS [3, 4,
5, 19]). The gradient-based NAS relaxes discrete search
space into a continuous one with architecture parameters,
which are optimized with end-to-end paradigms. Because
of the non-differentiable characteristic of angle, we fol-
low the mechanism of One-Shot NAS to study convergence-
based NAS.

Unsupervised Neural Architecture Search. Recently,
unsupervised learning [20, 8, 18] has received much atten-
tion, and the unsupervised paradigm has also appeared in
the field of NAS. [43] used unsupervised architecture repre-
sentation in the latent space to better distinguish network ar-
chitectures with different performance. UnNAS [28] intro-
duces unsupervised methods [17, 33, 46] to weight-sharing
NAS in order to ablate the role of labels. Although UnNAS
does not use the labels of the target dataset, the labels like
rotation category, etc on the pretext tasks are still exploited.
UnNAS shows that weight-sharing NAS can still work with
the absence of ground truth labels, but it is hard to con-
clude that labels are completely unnecessary. Random la-
bels introduced in this paper completely detach from prior

2

supervision information, which help us thoroughly ablate
the impact of labels on NAS.

Model Evaluation Metrics. [32, 1] develop training-free
NAS which means searching directly at initialization with-
out involving any training. They focus on investigating
training-free model evaluation metrics to rank candidate ar-
chitectures. [32] use the correlation between input Jaco-
bian to indicate model performance. [1] use the combi-
nation of NTKs and linear regions in input space to mea-
sure the architecture trainability and expressivity. Although
training-free NAS has much higher search efficiency, there
is still a performance margin compared with well-trained
weight-sharing NAS. ABS [21] introduces angle metric to
indicate model performance and mainly focuses on search
space shrinking. Different from ABS, we directly search
architectures with angle metric.

3. Methodology
As mentioned in the introduction, in order to utilize the

mechanism of Oner-Shot NAS, we first briefly review Sin-
gle Path One-Shot (SPOS) [19] as preliminary. Based on
SPOS framework, we then put forward our approach Ran-
dom Label NAS (RLNAS).

3.1. Preliminary: SPOS

SPOS is one of the One-Shot approaches, which decou-
ple the NAS optimization problem into two sequential steps:
firstly train SuperNet, and then search architectures. Differ-
ent from other One-Shot approaches, SPOS further decou-
ples weights of candidate architectures by training Super-
Net stochastically. Specifically, SPOS regards a candidate
architecture in SuperNet as a single path and uniformly ac-
tivates a single path to optimize corresponding weights in
each iteration. Thus, the SuperNet training step can be ex-
pressed as:

W?
a = argmin

W
Ea∼Γ (A)L (a,W) , (5)

where L means objective function optimized on training
dataset with ground truth labels and Γ (A) is a uniform dis-
tribution of a ∈ A.

After SuperNet trained to convergence, SPOS performs
architecture search as:

a? = argmax
a∈A

ACCval (a,W?
a) . (6)

SPOS implements Eq. 6 by utilizing an evolution algorithm
to search architectures. With initialized population, SPOS
conducts crossover and mutation to generate new candidate
architectures and uses validation accuracy as fitness to keep
candidate architectures with top performance. Repeat this
way until the evolution algorithm converges to the optimal
architecture.

3.2. Our approach: Random Label NAS (RLNAS)

The combination of two decoupled optimization steps,
SuperNet structure consisting of single paths and evolu-
tion search makes SPOS simple but flexible. Following the
mechanism of SPOS, we decouple the convergence-based
optimization of Eq. 3 and Eq. 4 into the following two steps.

Firstly, SuperNet is trained with random labels:

W?
a = argmin

W
Ea∼Γ (A)L (a,W, R) , (7)

where R represents random labels; other notations follow
the same definitions as in Eq. 5.

Secondly, evolution algorithm with convergence-based
metric Convergence(·) as fitness search the optimal archi-
tecture from SuperNet:

a? = argmax
a∈A

Convergence (a,W?
a) . (8)

In the next section, we introduce the mechanism of gen-
erating random labels in Sec. 3.2.1 and use an angle-based
metric as Convergence(·) to estimate model convergence
speed in Sec. 3.2.2.

3.2.1 Random Labels Mechanism

In representation learning field, deep neural net-
works (DNNs) have the capacity to fit dataset with
partial random labels [45]. Further more, [31] tries to
understand what DNNs learn when trained on natural
images with entirely random labels and experimentally
demonstrates that pre-training on purely random labels can
accelerate the training of downstream tasks under certain
conditions. For NAS field, although we pursue the optimal
model architecture rather than model representation in
search phase, model representation is still involved in
the model evaluation phase. However, it is still an open
question can neural architecture search work within random
labels setting. In the view of this, we try to study the impact
of random labels on NAS optimization problem.

At first, we introduce the mechanism of generating ran-
dom labels. To be specific, random labels obey the discrete
uniform distribution and the number of discrete variable is
equal to the image category of dataset in default (other pos-
sible methods are discussed in Sec. 4.3). Random labels
corresponding to different images are sampled in data pre-
processing procedure and these image-label pairs will not
change during the whole model optimization process.

3.2.2 Angle-based Model Evaluation Metric

Recently, [36] found out that searched architectures by NAS
algorithms share the same pattern of fast convergence. With
this rule as a breach, we try to design model evaluation

3

metrics from the perspective of model convergence. [6]
firstly measure the convergence of a stand-alone trained
model with a angle-based metric. The metric is defined as
the angle between initial model wights and trained ones.
ABS [21] introduces this metric into the NAS community
and uses it to shrink the search space progressively. Dif-
ferent from ABS, we focus on the optimization problem
with random labels and adopt angle-based metric to directly
search architectures rather than shrink search space. Prior
to extend angle to guide architecture search, we first review
angle metric in ABS [21].

Review Angle Metric in ABS. SuperNet is represented
as a directed acyclic graph (DAG) denoted as A(O,E),
where O is the set of feature nodes and E is the set of
connections (each connection is instantiated as an alterna-
tive operation) between two feature nodes. ABS defines
A(O,E) with the only input node Oin and the only out-
put node Oout. A candidate architecture is sampled from
SuperNet and it is represented as a(O, Ẽ). The candidate
architecture has the same feature nodes O as SuperNet but
subset edges Ẽ ∈ E. ABS uses a weight vector V (a,W)
to represent a model and constructs V (a,W) by concate-
nating the weights of all paths from Oin to Oout. The dis-
tance between the initialized candidate architecture whose
weights is W0 and the trained one with weights Wt is:

Angle(a) = arccos (
< V (a,W0),V (a,Wt) >

‖V (a,W0)‖2 · ‖V (a,Wt)‖2
). (9)

Extensive Representation of Weight Vector. As above
discussed, ABS define the SuperNet with just one input
node and one output node. However, for some search
spaces, they consist of cell structures with multiple input
nodes and outputs nodes. For example, each cell in DARTS
has two input nodes and the output node of each cell con-
sists outputs of all intermediate nodes by concatenation,
which motivates us to consider all intermediate nodes as
output nodes for the identification of architecture topology.
In general, we redefine weight vector V (a,W) by concate-
nating the weights of all paths from Oin to Oout.

Parameterize Non-weight Operations. So as to resolve
the conflict among candidate architectures with the same
learnable weights, ABS parameterizes non-weight opera-
tions (’pool’, ’skip-connect’ and ’none’). The ’pool’ op-
eration (both ’average pool’ and ’max pool’) is assigned
with a fixed tensor with dimension [O,C,K,K] (O and C
represent output channels and input channels respectively,
K is the kernel size) and all elements are 1/K2. Dif-
ferent from ABS assign ’skip-connect’ with empty vector,
we propose an alternative parametric method, which as-
signs identity tensor with dimension [O,C, 1, 1] to the ’skip-

connect’ operation. We adjust parametric methods for dif-
ferent search spaces, e.g., empty weights and identity ten-
sor are assigned to ’skip-connect’ in NAS-Bench-201 and
DARTS or MobileNet-like search space respectively. The
reason for the difference may be related to the complexity
of the search space. The ’none’ operation need not to be pa-
rameterized as ABS and it determines the number of paths
that make up the weights vector V . If there is a ’none’ in
a path, then weights of operations in this path will not in-
volved in angle calculation.

4. Experiments
4.1. Search Space and Training Setting

We analyze and evaluate RLNAS on three existing pop-
ular search spaces: NAS-Bench-201 [15], DARTS [30] and
MobileNet-like search space [5].

NAS-Bench-201. There are 6 edges in each cell and each
edge has 5 alternative operations. Because of repeated
stacking, NAS-Bench-201 consists of 15625 candidate ar-
chitectures and provides the real performance for each ar-
chitecture. We adopt the same training setting for SuperNet
in a single GPU across CIFAR-10 [23] CIFAR-100 [23] and
ImageNet16-120 [11]. We train the SuperNet 250 epochs
with mini-batch of 64. We use SGD to optimize weights
with momentum 0.9 and weight decay 5e−4. The learning
rate follows cosine schedule from initial 0.025 annealed to
0.001. In evolution phase, we use population size 100, max
iterations 20 and keep top-30 architectures in each iteration.
All experimental results on NAS-Bench-201 are obtained in
three independent runs with different random seeds.

DARTS. Different from vanilla DARTS [30], each inter-
mediate node only samples two operations among alterna-
tive operations (except ’none’) from its all preceding nodes
in SuperNet training phase. We train the SuperNet with 8
cell on CIFAR-10 for 250 epochs and other training settings
keep the same as DARTS [30]. We also train 14 cell Super-
Net with initial channel 48 on ImageNet. We use 8 GPUs to
train SuperNet 50 epochs with mini-batch 512. SGD with
momentum 0.9 and weight decay 4e−5 is adopted to opti-
mize weights. The cosine learning rate schedules from 0.1
to 5e−4. We use the same evolution hyper-parameters as
Single Path One-Shot (SPOS) [19]. As for model evaluation
phase (retrain searched architecture), we follow the training
setting as PC-DARTS [42] on ImageNet.

MobileNet. The MobileNet-like search space proposed in
ProxylessNAS [5] is adopted in this paper. The SuperNet
contains 21 choice blocks and each block has 7 alternatives:
6 MobileNet blocks (combination of kernel size {3,5,7} and
expand ratio {3,6}) and ’skip-connect’. We keep the same

4

Method Configurations CIFAR-10 (%) CIFAR-100 (%) ImageNet16-120 (%)
Label type Performance indicator valid acc test acc valid acc test acc valid acc test acc

A (SPOS) ground truth label validation accuracy 88.49 92.11 66.51 66.89 40.16 40.80
B ground truth label angle 90.20 93.76 71.11 71.11 40.78 41.44
C random label validation accuracy 76.47 80.60 52.48 52.84 29.58 28.37
D (RLNAS) random label angle 89.94 93.45 70.98 70.71 43.86 43.70

Table 1: Search performance on NAS-Bench-201 across CIFAR-10, CIFAR-100 and ImageNet16-120.

experimental setting for both search phase and evaluation
phase as SPOS [19].

4.2. Searching Results

4.2.1 NAS-Bench-201 Experiment Results

Search performance. For NAS-Bench-201 search space,
experiments are conducted on three datasets: CIFAR-10,
CIFAR-100 and ImageNet16-120. Different from other lit-
erature only search on CIFAR-10 and look up real perfor-
mance of the found architecture on various test dataset (e.g.,
test accuracy on CIFAR-100 or ImageNet16-120), we actu-
ally train SuperNet on different target datasets and search
architectures with the unique SuperNet. Firstly, we con-
struct SuperNet based NAS-Bench-201 search space and
train the SuperNet by uniform sampling strategy [19] with
ground truth labels or random labels. Then, angle or vali-
dation accuracy is regarded as fitness to perform evolution
search. According to different method configurations, there
are total four possible methods as described in Table 1. For
simplity, we denoted they as method A, B, C and D respec-
tively. In particular, method A and D correspond to SPOS
and RLNAS. The search performance on three datasets are
reported in Table 1. We first compare method C and D
within the random label setting, and find that angle sur-
passes validation accuracy with a large margin. Similar
results can also be observed under the ground truth label
setting, but the margin between method A and B is not such
large. This suggests that angle can evaluate models more ac-
curately than validation accuracy. Further more, in the case
where angle is used as the metric, even if random labels are
used, RLNAS obtains comparable accuracy on CIFAR-10
and CIFAR-100 and even outperforms method B by 1.26%
test accuracy on ImageNet16-120.

Ranking correlation. In addition to the analysis of top
architectures as Table 1, we further conduct rank correla-
tion analysis. The first step is also to train SuperNet with
ground truth labels or random labels. Secondly, we traverse
the whole NAS-Bench-201 search space and rank them
with different model evaluation metrics independently. We
treat the rank based on real performance provided by NAS-
Bench-201 as the ground truth rank. At last, we compute
the Kendall’s Tau [22, 44, 12, 21] between the rank based
on the model evaluation metric and the ground truth rank to

evaluate the ranking correlation. We compare angle and val-
idation accuracy as model evaluation metric in both ground
truth label and random label setting across three datasets.
The ranking correlation results are shown in Table 2. The
results on different datasets show the consistent order of
ranking correlation: C<A<D<B. It should be noted that
the rank obtained by validation accuracy in the case of ran-
dom labels has almost no correlation with the ground truth
rank. To our surprise, angle still has the ranking correla-
tion around 0.5 under the random label setting, which even
exceeds validation accuracy in ground truth label case.

Method† CIFAR-10 CIFAR-100 ImageNet16-120

A (SPOS) 0.4239 0.4832 0.4322
B 0.6671 0.6942 0.6342
C 0.0874 −0.0195 −0.0262
D (RLNAS) 0.5059 0.5097 0.4716

Table 2: Ranking correlation on NAS-Bench-201. † refer to
Table 1 for detailed method configurations.

4.2.2 DARTS Search Space Results

We conduct two types of experiments in DARTS search
space: search architectures with 8 cells on CIFAR-10,
then transfer to ImageNet and search architectures with 14
cells on ImageNet directly. For Experiment conducted on
CIFAR-10, the training dataset is divided into two subsets
with equal size, one of which is used to train the SuperNet,
and the other is used as the validation dataset to evaluate
model performance in the search phase. As for experiments
searched on ImageNet, 5k images are separated from the
original training dataset as validation and the rest images
are used as the new training dataset.

Search architectures on CIFAR-10. We first analyze the
search performance on CIFAR-10 dataset in Table 3. RL-
NAS embodies strong generalization ability when transfer-
ing searched architecture from CIFAR-10 to ImageNet. As
shown in the first block of Table 3, RLNAS has reached
76.0% top-1 accuracy, even obtains 75.6% within 600M
FLOPs constrain.

Search architectures on ImageNet. After demonstrat-
ing the transferring ability of RLNAS among classification

5

Search type Method Params (M) FLOPs (M) Top-1 (%) Top-5 (%)

CIFAR-10

DARTS [30] (sup.) 4.7 574 73.3 91.3
SPOS [19] (sup, our impl.) 4.3 471 73.7 91.6
PC-DARTS [42] (sup.) 5.3 586 74.9 92.2
FairDARTS-B [13] (sup.) 4.8 541 75.1 92.5
P-DARTS [9] (sup.) 4.9 557 75.6 92.6
RLNAS (unsup.) 5.7 629 76.0 92.9
RLNASH (unsup.) 5.3 581 75.6 92.5

ImageNet

SPOS [19] (sup, our impl.) 4.6 512 74.5 92.1
NAS-DARTS† [28] (sup.) 5.3 582 76.0 92.7
PC-DARTS [42] (sup.) 5.3 597 75.8 92.7
RLNAS (unsup.) 5.5 597 75.9 92.9

Table 3: DARTS search space results: comparison of the SOTA methods on ImageNet. There are two search types of methods
and the results of the first block and the second block are searched on CIFAR-10 and ImageNet respectively. H FLOPs of
the searched architecture is scaled down within 600M by adjusting initial channels from 48 to 46. † retrain NAS-DARTS
reported in UnNAS [28] as PC-DARTS [42].

tasks, we further verify the efficiency of our method by di-
rectly searching on ImageNet. To our best knowledge, it
is the first time to train SuperNet with 14 cells on DARTS
search space without any structure modification or compli-
cated techniques. After SuperNet training, we search candi-
date architectures with 600M FLOPs constrain. The search-
ing results are shown in the second block of Table 3 and RL-
NAS obtains 75.9%. Compared with the results found on
CIFAR-10, the performance of RLNAS is further improved
by 0.3%, which indicates that narrowing the gap between
the training setting (both dataset and model structure) of the
search phase and the one in the evaluation phase is helpful
for architecture search.

Comparison with UnNAS. Further, we compare our
method with UnNAS [28] which also search architectures
directly on ImageNet-1K with three pretext tasks [17, 33,
46]. For fair comparisons with UnNAS, we have no FLOPs
limit in the search phase, but after the search is completed,
we limit the FLOPS within 600M by scaling the initial
channels from 48 to 42. Simultaneously, we retrain the
three architectures reported as UnNAS [28] with the same
training setting as PC-DARTS [42]. Table 4 shows that our
method obtains high performance with 76.7% and 75.9%
within 600M FLOPs constrain, which is comparable with
UnNAS with jigsaw task and competitive to results obtained
by the other two pretext tasks.

4.2.3 MobileNet-like Search Space Results.

In order to verify the versatility of our method, we further
conduct experiments in the MobileNet-like search space.
We train the SuperNet with 120 epochs on ImageNet as
[19]. In the search phase, we limit model FLOPs within
475M so as to make fair comparisons with other methods.
Results are summarized in Table 5. RLNAS obtains 75.6%
top-1 accuracy. Compared with other SOTA methods on

Method
Params

(M)
FLOPs

(M)
Top-1
(%)

Top-5
(%)

UnNAS [28] (rotation task.) 5.1 552 75.8 92.6
UnNAS [28] (color task.) 5.3 587 75.5 92.6
UnNAS [28] (jigsaw task.) 5.2 560 76.2 92.8
RLNAS (random label.) 6.6 724 76.7 93.1
RLNASH (random label.) 5.2 561 75.9 92.8

Table 4: DARTS search space results: comparison with
UnNAS on ImageNet. The architectures of UnNAS based
on three pretext tasks are provided in [28] and we retrain
them as PC-DARTS training setting [42].H FLOPs of the
searched architecture is scaled down within 600M by ad-
justing initial channels from 48 to 42.

MobileNet-like search space, our method even outperforms
with a slight margin, which verify that our strategy does not
overfit to any search space and can achieve effective results
generally.

Method
Params

(M)
FLOPs

(M)
Top-1
(%)

Top-5
(%)

FairNAS-A [12] (sup.) 4.6 388 75.3 92.4
FBNet-C [39] (sup.) 4.4 375 74.9 92.1
Proxyless (GPU) [5] (sup.) 7.0 457 75.1 92.5
FairDARTS-D [13] (sup.) 4.3 440 75.6 92.6
SPOS [19] (sup.) 5.4 472 74.8 -
RLNAS (unsup.) 5.3 473 75.6 92.6

Table 5: MobileNet search space results: comparison of the
SOTA methods on ImageNet.

4.3. Ablation Study and Analysis

We perform a thorough ablation study in this section.
We further analyze the impact of random labels and angle
metric on RLNAS. All experiments are conducted on NAS-
Bench-201.

6

Methods of generating random labels. In the above ex-
periments, we uniformly sample random labels for images
before SuperNet training and we denote it as (1). In this sub-
section, we further discuss 3 other methods for generating
random labels: (2). shuffle all ground truth labels at once
before SuperNet training, (3). uniformly sample labels in
each training iteration, and (4). shuffle ground truth labels
in each training iteration. According to these four meth-
ods, we conducted three repeated architecture search ex-
periments across CIFAR-10, CIFAR-100 and ImageNet16-
120.

As Table 6 shows, the methods of generating random la-
bels at one time have higher performance than the meth-
ods of randomly generating labels in each iteration. Even
if RLNAS† has better performance than RLNAS∗ and
RLNAS? on CIFAR-10 and CIFAR100, the performance on
ImageNet16-120 is poor with a large margin and this means
that RLNAS† is instable and has poor transferring ability.
As for RLNAS∗ and RLNAS?, these two methods obtain
comparable test accuracy. Considering RLNAS∗ coupled
with ground truth labels, we generate random labels with
RLNAS? in default and it is easy to adapt our algorithm to
tasks without labels.

Method CIFAR-10 CIFAR-100 ImageNet16-120
test acc (%) test acc (%) test acc (%)

RLNAS? 93.45±0.11 70.71±0.36 43.70±1.25
RLNAS∗ 93.52±0.27 70.25±0.25 43.81±1.12
RLNAS† 93.65±0.07 71.45±0.42 27.51±1.04
RLNAS‡ 92.85±0.46 61.59±6.57 27.51±1.04

Table 6: Search results of four generating random label
method on NAS-Bench-201: (1).? uniform sample all ran-
dom labels at once, (2).∗ shuffle all ground truth labels
at once, (3).† uniform sample labels in each iteration, and
(4).‡shuffle ground truth labels in each iteration.

Impact of image category. We have shown that uniform
sample labels corresponding images before training is the
most appropriate method to generate random labels. In this
section, we further discuss the impact of the label cate-
gory on searching performance. In detail, we sample 20
different categories from 10 to 200 with interval 10 for
CIFAR-10, CIFAR-100 and ImageNet16-120. SuperNet
is trained with different categories of random labels. Af-
ter that, test accuracy and Kendall’s Tau are obtained like
subsection 4.2.1. As shown in Figure 1, test accuracy and
Kendall’s Tau fluctuate greatly when the number of cate-
gories on the ImageNet16-120 is small (in [10, 50]). How-
ever, Kendall’s Tau and test accuracy are not sensitive to la-
bel categories in most cases. This observation implies that
our method can be directly applied to tasks where the real
image category is unknown.

0 20 40 60 80 100 120 140 160 180 200
Class number

35

45

55

65

75

85

95

Te
st

 a
cc

ur
ac

y
(%

)

CIFAR-10
CIFAR-100
ImageNet16-120

(a) Test accuracy

0 20 40 60 80 100 120 140 160 180 200
Class number

0.40

0.42

0.44

0.46

0.48

0.50

0.52

K
en

da
ll'

s T
au

CIFAR-10
CIFAR-100
ImageNet16-120

(b) Kendall’s Tau

Figure 1: Impact of the random label category on (a) test ac-
curacy and (b) Kendall’s Tau. CIFAR-10, CIFAR-100 and
ImageNet16-120 all sample 20 different image categories
from 10 to 200 with interval 10. The red marker in each
polyline represents the number of real image categories for
different datasets.

Bias analysis of angle metric. We have shown the im-
pacts of random labels on our method in the above sec-
tion. Next, we further ablate the bias of angle metric in
architecture search. Specifically, we initialize two Super-
Net weights with the same distribution but different random
seeds. Based on the SuperNet without training, evolution
algorithm with angle is used to search architectures. We
also construct a random search baseline which train Super-
Net with uniform sampling strategy and ground truth labels,
then randomly sample 100 architectures from NAS-Bench-
201 search space. The top-1 architecture is found among
the sampled architectures according to their validation ac-
curacy. Table 7 compares our method with two training free
methods with different initialization and one random search
method. The results show that the two training free meth-
ods are worse than random search, and RLNAS is better
than random search. This means that angle metric will not
bias to a specific candidate architecture.

Method CIFAR-10 CIFAR-100 ImageNet16-120
test acc (%) test acc (%) test acc (%)

Training free† 90.74±1.39 66.97±1.86 38.54±2.86
Training free‡ 91.55±1.34 66.59±2.10 39.03±3.91
Random search 92.09±0.21 67.27±1.28 40.77±3.64
RLNAS 93.45±0.11 70.71±0.36 43.70±1.25

Table 7: Bias analysis of angle towards architectures on
NAS-Bench-201.† and ‡ initializes model weights with nor-
malization distribution and uniform distribution.

4.4. Generalization Ability

We evaluate the generalization ability of RLNAS on two
downstream tasks: object detection and semantic segmenta-
tion. We first retrain the models searched by different NAS
methods on ImageNet , and then finetune these pre-trained

7

Method Params (M) FLOPs (M) Acc AP AP50 AP75 APS APM APL

Random search 4.7 519 74.3 31.7 50.4 33.4 16.3 35.2 42.9
DARTS-v1 [30] (sup.) 4.5 507 74.3 31.2 49.5 32.6 16.1 33.9 43.6
DARTS-v2 [30] (sup.) 4.7 531 74.9 31.5 50.3 33.1 16.9 34.5 43.0
P-DARTS [9] (sup.) 4.9 544 75.7 32.9 52.1 34.7 17.2 36.2 44.8
PC-DARTS [42] (sup.) 5.3 582 75.9 32.9 51.8 34.8 17.5 36.3 43.5
UnNAS [28] (rotation task.) 5.1 552 75.8 32.8 51.5 34.7 16.7 36.1 44.5
UnNAS [28] (color task.) 5.3 587 75.5 32.4 51.2 34.2 16.6 35.6 44.6
UnNAS [28] (jigsaw task.) 5.2 560 76.2 33.0 51.9 35.3 16.4 37.2 45.4
Ours† (random label.) 5.5 597 75.9 32.4 50.9 34.4 16.5 35.5 44.5
Ours‡ (random label.) 5.2 561 75.9 32.9 51.6 34.8 16.8 36.7 44.5

Table 8: Object detection results of DARTS search space on MS COCO. † search with 600M FLOPs constrain. ‡ search
without FLOPs constrain but scale FLOPs to 600M.

Method Params (M) FLOPs (M) Acc AP AP50 AP75 APS APM APL

Random search (sup.) 4.5 446 75.3 29.7 47.5 31.4 15.3 32.6 39.9
FairNAS-A [12] (sup.) 4.7 389 75.1 29.8 47.8 31.4 15.5 32.3 41.2
Proxyless (GPU) [5] (sup.) 7.0 457 75.5 29.5 47.5 30.9 15.5 32.4 40.8
FairDARTS-D [13] (sup.) 4.4 477 74.7 29.6 47.2 31.1 14.6 32.5 40.1
SPOS [19] (sup.) 5.4 472 75.6 29.8 48.1 31.1 16.0 32.6 40.4
Ours (unsup.) 5.3 473 75.6 30.0 47.6 31.8 15.7 32.8 40.5

Table 9: Object detection results of MobileNet-like search space on MS COCO.

models on downstream tasks. In order to make fair compar-
isons, models searched in the same search space adopt the
same training setting for ImageNet classification tasks. At
the same time, models for the same downstream task also
use the same training setting, no matter what search space
the model is searched from.

Object detection. We conduct experiments on MS
COCO [26] and adopt RetinaNet [25] as the detection
framework. The train and test image scale is 800× resolu-
tion. We only modify the backbone of RetinaNet and train
RetinaNet with default training setting as Detectron2 [40].
Table 8 and Table 9 show the comparisons of models
searched in DARTS and MobileNet-like search space re-
spectively. RLNAS obtains comparable AP in DARTS
search space and surpasses other methods with slight mar-
gin in MobileNet-like search space.

Semantic segmentation. We further test RLNAS on the
task of semantic segmentation on Cityscapes [14] dataset.
We adopt DeepLab-v3 [7] as segmentation framework.
The train and test image scale is 769×769 and we train
DeepLab-v3 with 40k iterations. The other segmentation
training setting are kept the same as MMSegmentation [41].
Table 10 and Table 11 make comparisons among models
searched on DARTS and MobileNet-like search space re-
spectively. For DARTS search space, RLNAS† obtains
73.2% mIoU and outperform other methods by a large mar-
gin. RLNAS also obtains comparable mIoU compared to
other methods in MobileNet search space.

Summary. We conclude that RLNAS has strong gener-
alization ability across two downstream tasks and various
search spaces, without bells and whistles.

Method
Params

(M)
FLOPs

(M)
Acc
(%)

mIoU
(%)

Random search (sup.) 4.7 519 74.3 72.3
DARTS-v1 [30] (sup.) 4.5 507 74.3 72.7
DARTS-v2 [30] (sup.) 4.7 531 74.9 71.8
P-DARTS [42] (sup.) 4.9 544 75.7 71.9
PC-DARTS [42] (sup.) 5.3 582 75.9 72.2
UnNAS [28] (rotation task.) 5.1 552 75.8 71.9
UnNAS [28] (color task.) 5.3 587 75.5 72.0
UnNAS [28] (jigsaw task.) 5.2 560 76.2 72.1
Ours† (random label.) 5.5 597 75.9 73.2
Ours‡ (random label.) 5.2 561 75.9 72.5

Table 10: Semantic segmentation results of DARTS search
space on Cityscapes.† search with 600M FLOPs constrain.
‡ search without FLOPs constrain but scale FLOPs to
600M.

Method
Params

(M)
FLOPs

(M)
Acc
(%)

mIoU
(%)

Random search (sup.) 4.5 446 75.3 70.6
FairNAS-A [12] (sup.) 4.7 389 75.1 72.0
Proxyless (GPU) [5] (sup.) 7.0 457 75.5 71.0
FairDARTS-D [13] (sup.) 4.4 477 74.7 72.1
SPOS [19] (sup.) 5.4 472 75.6 71.6
Ours (unsup.) 5.3 473 75.6 71.8

Table 11: Semantic segmentation results of MobileNet-like
search space on Cityscapes.

8

References
[1] Anonymous. Neural architecture search on imagenet

in four {gpu} hours: A theoretically inspired perspec-
tive. In Submitted to International Conference on
Learning Representations, 2021. under review. 3

[2] Bowen Baker, Otkrist Gupta, Nikhil Naik, and
Ramesh Raskar. Designing neural network architec-
tures using reinforcement learning. arXiv preprint
arXiv:1611.02167, 2016. 1, 2

[3] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph,
Vijay Vasudevan, and Quoc Le. Understanding and
simplifying one-shot architecture search. In Interna-
tional Conference on Machine Learning, pages 550–
559, 2018. 2

[4] Andrew Brock, Theodore Lim, James M Ritchie,
and Nick Weston. Smash: one-shot model architec-
ture search through hypernetworks. arXiv preprint
arXiv:1708.05344, 2017. 2

[5] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas:
Direct neural architecture search on target task and
hardware. arXiv preprint arXiv:1812.00332, 2018. 2,
4, 6, 8

[6] Simon Carbonnelle and Christophe De Vleeschouwer.
Layer rotation: a surprisingly powerful indicator of
generalization in deep networks? arXiv preprint
arXiv:1806.01603, 2018. 4

[7] Liang-Chieh Chen, George Papandreou, Florian
Schroff, and Hartwig Adam. Rethinking atrous con-
volution for semantic image segmentation. arXiv
preprint arXiv:1706.05587, 2017. 8

[8] Ting Chen, Simon Kornblith, Mohammad Norouzi,
and Geoffrey Hinton. A simple framework for con-
trastive learning of visual representations. arXiv
preprint arXiv:2002.05709, 2020. 2

[9] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progres-
sive differentiable architecture search: Bridging the
depth gap between search and evaluation. In Proceed-
ings of the IEEE International Conference on Com-
puter Vision, pages 1294–1303, 2019. 2, 6, 8

[10] Yukang Chen, Tong Yang, Xiangyu Zhang, Gaofeng
Meng, Xinyu Xiao, and Jian Sun. Detnas: Backbone
search for object detection. In Advances in Neural
Information Processing Systems, pages 6638–6648,
2019. 1

[11] Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter.
A downsampled variant of imagenet as an alternative
to the cifar datasets. arXiv preprint arXiv:1707.08819,
2017. 4

[12] Xiangxiang Chu, Bo Zhang, Ruijun Xu, and Jixiang
Li. Fairnas: Rethinking evaluation fairness of weight

sharing neural architecture search. arXiv preprint
arXiv:1907.01845, 2019. 5, 6, 8

[13] Xiangxiang Chu, Tianbao Zhou, Bo Zhang, and Jix-
iang Li. Fair darts: Eliminating unfair advantages
in differentiable architecture search. arXiv preprint
arXiv:1911.12126, 2019. 2, 6, 8

[14] Marius Cordts, Mohamed Omran, Sebastian Ramos,
Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson,
Uwe Franke, Stefan Roth, and Bernt Schiele. The
cityscapes dataset for semantic urban scene under-
standing. CVPR, 2016. 8

[15] Xuanyi Dong and Yi Yang. Nas-bench-102: Ex-
tending the scope of reproducible neural architecture
search. arXiv preprint arXiv:2001.00326, 2020. 2, 4

[16] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Nas-
fpn: Learning scalable feature pyramid architecture
for object detection. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 7036–7045, 2019. 1

[17] Spyros Gidaris, Praveer Singh, and Nikos Komodakis.
Unsupervised representation learning by predicting
image rotations. arXiv preprint arXiv:1803.07728,
2018. 1, 2, 6

[18] Jean-Bastien Grill, Florian Strub, Florent Altché,
Corentin Tallec, Pierre H. Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires,
Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar,
Bilal Piot, Koray Kavukcuoglu, Rémi Munos, and
Michal Valko. Bootstrap your own latent: A new
approach to self-supervised learning, 2020. 2

[19] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen
Heng, Zechun Liu, Yichen Wei, and Jian Sun. Single
path one-shot neural architecture search with uniform
sampling. arXiv preprint arXiv:1904.00420, 2019. 1,
2, 3, 4, 5, 6, 8

[20] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross Girshick. Momentum contrast for unsupervised
visual representation learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), June 2020. 2

[21] Yiming Hu, Yuding Liang, Zichao Guo, Ruosi Wan,
Xiangyu Zhang, Yichen Wei, Qingyi Gu, and Jian
Sun. Angle-based search space shrinking for neural
architecture search. arXiv preprint arXiv:2004.13431,
2020. 2, 3, 4, 5

[22] Maurice G Kendall. A new measure of rank correla-
tion. Biometrika, 30(1/2):81–93, 1938. 5

[23] Alex Krizhevsky, Geoffrey Hinton, et al. Learning
multiple layers of features from tiny images. Tech Re-
port, 2009. 4

9

[24] Liam Li and Ameet Talwalkar. Random search and
reproducibility for neural architecture search. In Un-
certainty in Artificial Intelligence, pages 367–377.
PMLR, 2020. 2

[25] Tsung Yi Lin, Priya Goyal, Ross Girshick, Kaiming
He, and Piotr Dollár. Focal loss for dense object de-
tection. In 2017 IEEE International Conference on
Computer Vision (ICCV), pages 2999–3007, 2017. 8

[26] Tsung Yi Lin, Michael Maire, Serge Belongie, James
Hays, and C. Lawrence Zitnick. Microsoft coco:
Common objects in context. In European Conference
on Computer Vision, 2014. 8

[27] Chenxi Liu, Liang-Chieh Chen, Florian Schroff,
Hartwig Adam, Wei Hua, Alan L Yuille, and Li Fei-
Fei. Auto-deeplab: Hierarchical neural architecture
search for semantic image segmentation. In Proceed-
ings of the IEEE conference on computer vision and
pattern recognition, pages 82–92, 2019. 1

[28] Chenxi Liu, Piotr Dollár, Kaiming He, Ross Gir-
shick, Alan Yuille, and Saining Xie. Are labels nec-
essary for neural architecture search? arXiv preprint
arXiv:2003.12056, 2020. 1, 2, 6, 8, 12

[29] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon
Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille,
Jonathan Huang, and Kevin Murphy. Progressive neu-
ral architecture search. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pages
19–34, 2018. 1, 2

[30] Hanxiao Liu, Karen Simonyan, and Yiming Yang.
Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018. 2, 4, 6, 8

[31] Hartmut Maennel, Ibrahim Alabdulmohsin, Ilya Tol-
stikhin, Robert JN Baldock, Olivier Bousquet, Sylvain
Gelly, and Daniel Keysers. What do neural networks
learn when trained with random labels? arXiv preprint
arXiv:2006.10455, 2020. 3

[32] Joseph Mellor, Jack Turner, Amos Storkey, and El-
liot J Crowley. Neural architecture search without
training. arXiv preprint arXiv:2006.04647, 2020. 3

[33] Mehdi Noroozi and Paolo Favaro. Unsupervised
learning of visual representations by solving jigsaw
puzzles. In European Conference on Computer Vision,
pages 69–84. Springer, 2016. 2, 6

[34] Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le,
and Jeff Dean. Efficient neural architecture search via
parameter sharing. arXiv preprint arXiv:1802.03268,
2018. 2

[35] Esteban Real, Alok Aggarwal, Yanping Huang, and
Quoc V Le. Regularized evolution for image classi-
fier architecture search. In Proceedings of the aaai

conference on artificial intelligence, volume 33, pages
4780–4789, 2019. 1, 2

[36] Yao Shu, Wei Wang, and Shaofeng Cai. Understand-
ing architectures learnt by cell-based neural architec-
ture search. In International Conference on Learning
Representations, 2020. 1, 3

[37] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Va-
sudevan, Mark Sandler, Andrew Howard, and Quoc V
Le. Mnasnet: Platform-aware neural architecture
search for mobile. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition,
pages 2820–2828, 2019. 1, 2

[38] Mingxing Tan and Quoc V Le. Efficientnet: Rethink-
ing model scaling for convolutional neural networks.
arXiv preprint arXiv:1905.11946, 2019. 1

[39] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yang-
han Wang, Fei Sun, Yiming Wu, Yuandong Tian, Pe-
ter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet:
Hardware-aware efficient convnet design via differen-
tiable neural architecture search. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 10734–10742, 2019. 2, 6

[40] Yuxin Wu, Alexander Kirillov, Francisco
Massa, Wan-Yen Lo, and Ross Girshick.
Detectron2. https://github.com/
facebookresearch/detectron2, 2019.
8

[41] Jiarui Xu, Kai Chen, and Dahua Lin. MMSegme-
nation. https://github.com/open-mmlab/
mmsegmentation, 2020. 8

[42] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen,
Guo-Jun Qi, Qi Tian, and Hongkai Xiong. Pc-
darts: Partial channel connections for memory-
efficient differentiable architecture search. arXiv
preprint arXiv:1907.05737, 2019. 2, 4, 6, 8

[43] Shen Yan, Yu Zheng, Wei Ao, Xiao Zeng, and Mi
Zhang. Does unsupervised architecture representa-
tion learning help neural architecture search? arXiv
preprint arXiv:2006.06936, 2020. 2

[44] Kaicheng Yu, Christian Sciuto, Martin Jaggi, Claudiu
Musat, and Mathieu Salzmann. Evaluating the search
phase of neural architecture search. arXiv preprint
arXiv:1902.08142, 2019. 5

[45] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Ben-
jamin Recht, and Oriol Vinyals. Understanding deep
learning requires rethinking generalization. arXiv
preprint arXiv:1611.03530, 2016. 3

[46] Richard Zhang, Phillip Isola, and Alexei A Efros. Col-
orful image colorization. In European conference on
computer vision, pages 649–666. Springer, 2016. 2, 6

10

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://github.com/open-mmlab/mmsegmentation
https://github.com/open-mmlab/mmsegmentation

[47] Zhao Zhong, Junjie Yan, Wei Wu, Jing Shao, and
Cheng-Lin Liu. Practical block-wise neural network
architecture generation. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 2423–2432, 2018. 1, 2

[48] Zhao Zhong, Zichen Yang, Boyang Deng, Junjie Yan,
Wei Wu, Jing Shao, and Cheng-Lin Liu. Blockqnn:
Efficient block-wise neural network architecture gen-
eration. arXiv preprint arXiv:1808.05584, 2018. 1,
2

[49] Barret Zoph and Quoc V Le. Neural architecture
search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016. 1, 2

[50] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and
Quoc V Le. Learning transferable architectures for
scalable image recognition. In Proceedings of the
IEEE conference on computer vision and pattern
recognition, pages 8697–8710, 2018. 1, 2

11

5. Appendix

5.1. Architectures Searched in DARTS Search
Space

In DARTS search space, we visualize all RLNAS ar-
chitectures : searched on CIFAR-10 (Figure 2), ImageNet
within 600M FLOPs constrain (Figure 3), ImageNet with-
out Flops constrain (Figure 4).

c_{k-2}

0

sep_conv_5x5
1

dil_conv_3x3 2

sep_conv_3x3

c_{k-1}

sep_conv_3x3

3dil_conv_5x5

sep_conv_5x5

dil_conv_3x3

c_{k}

dil_conv_5x5

(a) normal cell

c_{k-2}

0

sep_conv_5x5
1sep_conv_3x3

c_{k-1} dil_conv_3x3

2
dil_conv_3x3

3
max_pool_3x3

sep_conv_5x5

sep_conv_5x5

c_{k}

sep_conv_3x3

(b) reduce cell

Figure 2: The best architecture of RLNAS searched on
CIFAR-10 dataset.

c_{k-2}

0

sep_conv_3x3

3

skip_connect

c_{k-1}

sep_conv_3x3

1
skip_connect

2

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

c_{k}

sep_conv_3x3

(a) normal cell

c_{k-2}

0

sep_conv_3x3

1
sep_conv_3x3

2

sep_conv_3x3 3

skip_connect

c_{k-1}

max_pool_3x3

skip_connect

dil_conv_3x3

sep_conv_3x3
c_{k}

(b) reduce cell

Figure 3: The best Architecture of RLNAS searched on Im-
ageNet dataset within 600M FLOPs constrain.

c_{k-2}

0

sep_conv_3x3
2

sep_conv_3x3

3

sep_conv_3x3

c_{k-1} sep_conv_3x3
1

sep_conv_3x3

sep_conv_5x5

sep_conv_3x3

sep_conv_3x3

c_{k}

(a) normal cell

c_{k-2} 0sep_conv_3x3

1
sep_conv_5x5

2
sep_conv_5x5

c_{k-1}

sep_conv_3x3

sep_conv_3x3

sep_conv_5x5
3sep_conv_3x3

c_{k}

sep_conv_3x3

(b) reduce cell

Figure 4: The best architecture of RLNAS searched on Im-
ageNet dataset without FLOPs constrain.

5.2. Architectures Searched in MobileNet-like
Search Space

In MobileNet-like search space, we visualize the archi-
tecture searched on ImageNet (Figure 5).

M
BE

3_
K5

M
BE

3_
K3

Id
en
tit
y

M
BE

3_
K7

M
BE

3_
K5

M
BE

3_
K5

M
BE

3_
K3

M
BE

3_
K5

M
BE

3_
K3

M
BE

3_
K7

M
BE

3_
K7

M
BE

3_
K5

M
BE

3_
K7

M
BE

3_
K5

M
BE

3_
K7

M
BE

3_
K5

M
BE

3_
K3

M
BE

3_
K3

M
BE

3_
K3

M
BE

3_
K5

M
BE

3_
K5

M
BE

3_
K7

Figure 5: The best architecture of RLNAS searched on Im-
ageNet dataset within 475M FLOPs constrain.

5.3. Comparison with UnNAS on NAS-Bench-201

We further conduct experiments on NA-Bench-201 to
compare with UnNAS. We use the same pretext tasks on
CIFAR-10 as UnNAS. Specifically, we leverage SPOS with
pretext tasks to train supernet and the validation accuracy
of pretext tasks is used as fitness to evolve architecture
search. As Table 12 shows, RLNAS obtains architectures
with higher test accuracy but lower accuracy variance.

Method CIFAR-10
test acc (%)

UnNAS [28] (rotation task) 92.41±0.12
UnNAS [28] (color task) 92.14±0.60
UnNAS [28] (jigsaw task) 92.38±0.19
RLNAS 93.45±0.11

Table 12: Comparison with UnNAS on NAS-Bench-201.

12

