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Abstract

Contrastive learning methods for unsupervised visual
representation learning have reached remarkable levels of
transfer performance. We argue that the power of con-
trastive learning has yet to be fully unleashed, as current
methods are trained only on instance-level pretext tasks,
leading to representations that may be sub-optimal for
downstream tasks requiring dense pixel predictions. In this
paper, we introduce pixel-level pretext tasks for learning
dense feature representations. The first task directly ap-
plies contrastive learning at the pixel level. We addition-
ally propose a pixel-to-propagation consistency task that
produces better results, even surpassing the state-of-the-art
approaches by a large margin. Specifically, it achieves 60.2
AP, 41.4 / 40.5 mAP and 77.2 mIoU when transferred to
Pascal VOC object detection (C4), COCO object detection
(FPN / C4) and Cityscapes semantic segmentation using a
ResNet-50 backbone network, which are 2.6 AP, 0.8 / 1.0
mAP and 1.0 mIoU better than the previous best methods
built on instance-level contrastive learning. Moreover, the
pixel-level pretext tasks are found to be effective for pre-
training not only regular backbone networks but also head
networks used for dense downstream tasks, and are com-
plementary to instance-level contrastive methods. These
results demonstrate the strong potential of defining pretext
tasks at the pixel level, and suggest a new path forward in
unsupervised visual representation learning. Code is avail-
able at https://github.com/zdaxie/PixPro.

1. Introduction
According to Yann LeCun, “if intelligence is a cake,

the bulk of the cake is unsupervised learning”. This quote
reflects his belief that human understanding of the world
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view #1

Figure 1. An illustration of the proposed PixPro method, which is
based on a pixel-to-propagation consistency pretext task for pixel-
level visual representation learning. In this method, two views are
randomly cropped from an image (outlined in black), and the fea-
tures from the corresponding pixels of the two views are encour-
aged to be consistent. For one of them, the feature comes from
a regular pixel representation (illustrated as orange crosses). The
other feature comes from a smoothed pixel representation (shown
as green dots) built by propagating the features of similar pixels
(illustrated as the light green region). Note that this hard selec-
tion of similar pixels is for illustration only. In implementation, all
pixels on the same view will contribute to propagation, with the
propagation weight of each pixel determined by its feature simi-
larity to the center pixel.

is predominantly learned from the tremendous amount of
unlabeled information within it. Research in machine in-
telligence has increasingly moved in this direction, with
substantial progress in unsupervised and self-supervised
learning[41, 19, 29, 9, 35]. In computer vision, recent ad-
vances can largely be ascribed to the use of a pretext task
called instance discrimination, which treats each image in
a training set as a single class and aims to learn a feature
representation that discriminates among all the classes.

Although self-supervised learning has proven to be re-
markably successful, we argue that there remains significant
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untapped potential. The self-supervision that guides repre-
sentation learning in current methods is based on image-
level comparisons. As a result, the pre-trained represen-
tation may be well-suited for image-level inference, such
as image classification, but may lack the spatial sensitivity
needed for downstream tasks that require pixel-level pre-
dictions, e.g., object detection and semantic segmentation.
How to perform self-supervised representation learning at
the pixel level is a problem that until now has been rela-
tively unexplored.

In this paper, we tackle this problem by introducing
pixel-level pretext tasks for self-supervised visual repre-
sentation learning. Inspired by recent instance discrimina-
tion methods, our first attempt is to construct a pixel-level
contrastive learning task, where each pixel in an image is
treated as a single class and the goal is to distinguish each
pixel from others within the image. Features from the same
pixel are extracted via two random image crops containing
the pixel, and these features are used to form positive train-
ing pairs. On the other hand, features obtained from differ-
ent pixels are treated as negative pairs. With training data
collected in this self-supervised manner, a contrastive loss
is applied to learn the representation. We refer to this ap-
proach as PixContrast.

In addition to this contrastive approach, we present a
method based on pixel-to-propagation consistency, where
positive pairs are obtained by extracting features from the
same pixel through two asymmetric pipelines instead. The
first pipeline is a standard backbone network with a pro-
jection head. The other has a similar form but ends with a
proposed pixel propagation module, which filters the pixel’s
features by propagating the features of similar pixels to it.
This filtering introduces a certain smoothing effect, while
the standard feature maintains spatial sensitivity. A differ-
ence of this method from the contrastive approach of Pix-
Contrast is that it encourages consistency between positive
pairs without consideration of negative pairs. While the per-
formance of contrastive learning is known to be influenced
heavily by how negative pairs are handled [19, 9], this is-
sue is avoided in this consistency-based pretext task. Em-
pirically, we find that this pixel-to-propagation consistency
method, which we call PixPro, significantly outperforms
the PixContrast approach over various downstream tasks.

Besides learning good pixel-level representations, the
proposed pixel-level pretext tasks are found to be effective
for pre-training on not only backbone networks but also
head networks used for dense downstream tasks, contrary
to instance-level discrimination where only backbone net-
works are pre-trained and transferred. This is especially
beneficial for downstream tasks with limited annotated data,
as all layers can be well-initialized. Moreover, the proposed
pixel-level approach is complementary to existing instance-
level methods, where the former is good at learning a spa-

tially sensitive representation and the latter provides better
categorization ability. A combination of the two methods
capitalizes on both of their strengths, while also remaining
computationally efficient in pre-training as they both can
share a data loader and backbone encoders.

The proposed PixPro achieves state-of-the-art transfer
performance on common downstream benchmarks requir-
ing dense prediction. Specifically, with a ResNet-50 back-
bone, it obtains 60.2 AP on Pascal VOC object detection us-
ing a Faster R-CNN detector (C4 version), 41.4 / 40.5 mAP
on COCO object detection using a Mask R-CNN detector
(both the FPN / C4 versions, 1× settings), and 77.2 mIoU
Cityscapes semantic segmentation using an FCN method,
which are 2.6 AP, 0.8 / 1.0 mAP, and 1.0 mIoU better than
the leading unsupervised/supervised methods. Though past
evaluations of unsupervised representation learning have
mostly been biased towards linear classification on Ima-
geNet, we advocate a shift in attention to performance on
downstream tasks, which is the main purpose of unsuper-
vised representation learning and a promising setting for
pixel-level approaches.

2. Related Works

Instance discrimination Unsupervised visual represen-
tation learning is currently dominated by the pretext task of
instance discrimination, which treats each image as a sin-
gle class and learns representations by distinguishing each
image from all the others. This line of investigation can
be traced back to [15], and after years of progress [41, 34,
22, 46, 1, 43], transfer performance superior to supervised
methods was achieved by MoCo [19] on a broad range of
downstream tasks. After this milestone, considerable at-
tention has been focused in this direction [9, 35, 3, 18, 5].
While follow-up works have quickly improved the linear
evaluation accuracy (top-1) on ImageNet-1K from about
60% [19] to higher than 75% [5] using a ResNet-50 back-
bone, the improvements on downstream tasks such as object
detection on Pascal VOC and COCO have been marginal.

Instead of using instance-level pretext tasks, our work
explores pretext tasks at the pixel level for unsupervised fea-
ture learning. We focus on transfer performance to down-
stream tasks such as object detection and semantic segmen-
tation, which have received limited consideration in prior
research. We show that pixel-level representation learning
can surpass the existing instance-level methods by a signif-
icant margin, demonstrating the potential of this direction.

Other pretext tasks using a single image Aside from in-
stance discrimination, there exist numerous other pretext
tasks including context prediction [14], grayscale image
colorization [44], jigsaw puzzle solving [30], split-brain
auto-encoding [45], rotation prediction [17], learning to
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cluster [4], and missing part prediction [22, 37, 8]. In-
terest in these tasks for unsupervised feature learning has
fallen off considerably due to their inferior performance and
greater complexity in architectures or training strategies.
Among these methods, the approach most related to ours
is missing parts prediction [22, 37, 8], which was inspired
by successful pretext tasks in natural language process-
ing [13, 2]. Like our pixel-propagation consistency tech-
nique, such methods also operate locally. However, they
either partition images into patches [37, 22] or require spe-
cial architectures/training strategies to perform well [22, 8],
while our approach directly operates on pixels and has no
special requirements on the encoding networks. Training
with our method is also simple, with few bells and whis-
tles. More importantly, our approach achieves state-of-the-
art transfer performance on the important dense prediction
tasks of object detection and semantic segmentation.

Pixel-level self-supervised learning in videos or multi-
images Videos or multi-images naturally provide repet-
itive pixels on multiple views for correspondence learn-
ing [38, 25, 23, 24]. Since the ground-truth pixel correspon-
dences on different images are unknown, these works usu-
ally form their pixel-level pretext task by a weakly cycle-
consistency check between forward and backward associa-
tion. Contrary to these works, we directly build the pixel-
level correspondence pretext task by different views of a
single image, where the ground-truth correspondence can
be exactly computated. The utilizing of single images also
enables us to leverage the large-scale image dataset for
training (e.g. ImageNet-1K).

Concurrent/follow-on works of pixel-level learning us-
ing a single image Concurrent to our work, there are
some papers also exploring pixel-level pretext tasks for self-
supervised representation learning [31, 6, 39, 42]. Most
of them are based on contrastive learning, where the neg-
ative pairs need to be carefully tuned. In our approach,
while we set the contrastive learning as a direct extension
of the instance discrimination methods, we additionally ad-
vocate a consistency pretext task for pixel-level represen-
tation learning. We also study the complementarity of the
pixel-level learning and instance-level learning, the benefit
by pre-training head networks, and the application to semi-
supervised object detection. Our approach also achieves
significantly better accuracy on benchmarks, particularly,
on the Pascal VOC object detection benchmark.

3. Method
3.1. Pixel-level Contrastive Learning

The state-of-the-art unsupervised representation learning
methods are all built on the pretext task of instance discrimi-

nation. In this section, we show that the idea of instance dis-
crimination can be also applied at the pixel level for learning
visual representations that generalize well to downstream
tasks. We adopt the prevalent contrastive loss to instanti-
ate the pixel-level discrimination task, and call this method
PixContrast.

As done in most instance-level contrastive learning
methods, PixContrast starts by sampling two augmentation
views from the same image. The two views are both re-
sized to a fixed resolution (e.g., 224 × 224) and are passed
through a regular encoder network and a momentum en-
coder network [19, 10, 18] to compute image features. The
encoder networks are composed of a backbone network and
a projection head network, where the former could be any
image neural network (we adopt ResNet by default), and
the latter consists of two successive 1 × 1 convolution lay-
ers (of 2048 and 256 output channels, respectively) with
a batch normalization layer and a ReLU layer in-between
to produce image feature maps of a certain spatial resolu-
tion, e.g., 7× 7. While previous methods compute a single
image feature vector for each augmentation view, PixCon-
trast computes a feature map upon which pixel-level pretext
tasks can be applied. The learnt backbone representations
are then used for feature transfer. An illustration of the ar-
chitecture is shown in Figure 2.

Pixel Contrast With the two feature maps computed from
two views, we can construct pixel contrast pretext tasks for
representation learning. Each pixel in a feature map is first
warped to the original image space, and the distances be-
tween all pairs of pixels from the two feature maps are
computed. The distances are normalized to the diagonal
length of a feature map bin to account for differences in
scale between the augmentation views, and the normalized
distances are used to generate positive and negative pairs,
based on a threshold T :

A(i, j) =

{
1, if dist(i, j) ≤ T ,
0, if dist(i, j) > T ,

(1)

where i and j are pixels from each of the two views;
dist(i, j) denotes the normalized distance between pixel i
and j in the original image space; and the threshold is set to
T = 0.7 by default.

Similar to instance-level contrastive learning methods,
we adopt a contrastive loss for representation learning:

LPix(i) = −log

∑
j∈Ωi

p

ecos(xi,x
′
j)/τ

∑
j∈Ωi

p

ecos(xi,x
′
j)/τ +

∑
k∈Ωi

n

ecos(xi,x
′
k)/τ

, (2)

where i is a pixel in the first view that is also located in the
second view; Ωip and Ωin are sets of pixels in the second
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Figure 2. Architecture of the PixContrast and PixPro methods.

view assigned as positive and negative, respectively, with
respect to pixel i; xi and x′

j are the pixel feature vectors in
two views; and τ is a scalar temperature hyper-parameter,
set by default to 0.3. The loss is averaged over all pixels on
the first view that lie in the intersection of the two views.
Similarly, the contrastive loss for a pixel j on the second
view is also computed and averaged. The final loss is the
average over all image pairs in a mini-batch.

As later shown in the experiments, this direct extension
of instance-level contrastive learning to the pixel level per-
forms well in representation learning.

3.2. Pixel-to-Propagation Consistency

The spatial sensitivity and spatial smoothness of a learnt
representation may affect transfer performance on down-
stream tasks requiring dense prediction. The former mea-
sures the ability to discriminate spatially close pixels,
needed for accurate prediction in boundary areas where la-
bels change. The latter property encourages spatially close
pixels to be similar, which can aid prediction in areas that
belong to the same label. The PixContrast method de-
scribed in the last subsection only encourages the learnt rep-
resentation to be spatially sensitive. In the following, we
present a new pixel-level pretext task which additionally in-
troduces spatial smoothness in the representation learning.

This new pretext task involves two critical components.
The first is a pixel propagation module, which filters a
pixel’s features by propagating the features of similar pixels
to it. This propagation has a feature denoising/smoothing
effect on the learned representation that leads to more coher-
ent solutions among pixels in pixel-level prediction tasks.
The second component is an asymmetric architecture de-
sign where one branch produces a regular feature map and
the other branch incorporates the pixel-propagation mod-
ule. The pretext task seeks consistency between the features
from the two branches without considering negative pairs.
On the one hand, this design maintains the spatial sensitiv-
ity of the learnt representation to some extent, thanks to the
regular branch. On the other hand, while the performance
of contrastive learning is known to be heavily affected by
the treatment of negative pairs [19, 9], the asymmetric de-
sign enables the representation learning to rely only on con-

sistency between positive pairs, without facing the issue of
carefully tuning negative pairs [18]. We refer to this pre-
text task as pixel-to-propagation consistency (PPC) and de-
scribe these primary components in the following.

Pixel Propagation Module For each pixel feature xi, the
pixel propagation module computes its smoothed transform
yi by propagating features from all pixels xj within the
same image Ω as

yi = Σj∈Ωs(xi,xj) · g(xj), (3)

where s(·, ·) is a similarity function defined as

s(xi,xj) = (max(cos(xi,xj), 0))
γ
, (4)

with γ being an exponent to control the sharpness of the
similarity function and is set by default to 2; g(·) is a trans-
formation function that can be instantiated by l linear layers
with a batch normalization and a ReLU layer between two
successive layers. When l = 0, g(·) is an identity function
and Eq. (3) will be a non-parametric module. Empirically,
we find that all of l = {0, 1, 2} perform well, and we set
l = 1 by default as its results are slightly better. Figure 3
illustrates the proposed pixel propagation module.

Pixel-to-Propagation Consistency Loss In the asymmet-
ric architecture design, there are two different encoders: a
regular encoder with the pixel propagation module applied
afterwards to produce smoothed features, and a momentum
encoder without the propagation module. The two augmen-
tation views both pass through the two encoders, and the
features from different encoders are encouraged to be con-
sistent:

LPixPro = −cos(yi,x′
j)− cos(yj ,x′

i), (5)

where i and j are a positive pixel pair from two augmenta-
tion views according to the assignment rule in Eq. (1); x′

i

and yi are pixel feature vectors of the momentum encoder
and the propagation encoder, respectively. This loss is aver-
aged over all positive pairs for each image, and then further
averaged over images in a mini-batch to drive the represen-
tation learning.
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Figure 3. Illustration of the pixel propagation module (PPM). The
input and output resolutions of each computation block are in-
cluded.

Comparison to PixContrast The overall architecture of
the pixel-to-propagation consistency (PPC) method is illus-
trated in Figure 2. Compared to the PixContrast method de-
scribed in Section 3.1 (see the blue-color loss in Figure 2),
there are two differences: the introduction of a pixel prop-
agation module (PPM), and replacement of the contrastive
loss by a consistency loss. Table 2(c) and 3 show that both
changes are critical for the feature transfer performance.

Computation complexity The proposed PixContrast and
PixPro approaches adopt the same data loader and back-
bone architectures as those of the instance discrimination
based representation learning methods. There computa-
tion complexity in pre-training is thus similar as that of the
counterpart instance-level method (i.e. BYOL [18]): 8.6G
vs. 8.2G FLOPs using a ResNet-50 backbone architecture,
where the head and loss contribute about 0.4G FLOPs over-
head.

3.3. Aligning Pre-training to Downstream Networks

Previous visual feature pre-training methods are gener-
ally limited to classification backbones. For supervised pre-
training, i.e. by the ImageNet image classification pretext
task, the standard practice is to transfer only the pre-trained
backbone features to downstream tasks. The recent unsu-
pervised pre-training methods have continued this practice.
One reason is that the pre-training methods operate at the
instance level, making them less compatible with the dense
prediction required in head networks for downstream tasks.

In contrast, the fine-grained spatial inference of pixel-
level pretext tasks more naturally aligns with dense down-
stream tasks. To examine this, we consider an object de-
tection method, FCOS [36], for dense COCO detection.
FCOS [36] applies a feature pyramid network (FPN) from
P3 (8× down-sampling) to P7 (128× down-sampling) [26],

followed by two separate convolutional head networks
(shared for all pyramidal levels) on the output feature maps
of a ResNet backbone to produce classification and regres-
sion results.

We adopt the same architecture from the input image un-
til the third 3 × 3 convolutional layer in the head. In FPN,
we involve feature maps from P3 to P6, with P7 omitted be-
cause the resolution is too low. A pixel propagation module
(PPM) with shared weights and the pixel-to-propagation
consistency (PPC) loss described in Section 3.2 are applied
on each pyramid level. The final loss is first averaged at
each pyramidal level and then averaged over all the pyra-
mids.

Pre-training the FPN layers and the head networks used
for downstream tasks can generally improve the transfer ac-
curacy, as shown in Tables 5 and 6.

3.4. Combined with Instance Contrast

The presented pixel-level pretext tasks adopt the same
data loader and encoders as in state-of-the-art instance-level
discrimination methods [19, 18], with two augmentation
views sampled from each image and fed into backbone en-
coders. Hence, our pixel-level methods can be conveniently
combined with instance-level pretext tasks, by sharing the
same data loader and backbone encoders, with little pre-
training overhead.

Specifically, the instance-level pretext task is applied on
the output of the res5 stage, using projection heads that are
independent of the pixel-level task. Here, we use a popu-
lar instance-level method, SimCLR [9], with a momentum
encoder to be aligned with the pixel-level pretext task. In
this combination, the two losses from the pixel-level and
instance-level pretext tasks are balanced by a multiplicative
factor α (set to 1 by default), as

L = LPixPro + αLinst. (6)

In general, the two tasks are complementary to each
other: a pixel-level pretext task learns representations good
for spatial inference, while an instance-level pretext task is
good for learning categorization representations. Table 4
shows that an additional instance-level contrastive loss can
significantly improve ImageNet-1K linear evaluation, indi-
cating that a better categorization representation is learnt.
Likely because of better categorization ability, it achieves
noticeably improved transfer accuracy on the downstream
task of FCOS [36] object detection on COCO (about 1 mAP
improvement).

4. Experiments
4.1. Pre-training Settings

Datasets We adopt the widely used ImageNet-1K [12]
dataset for feature pre-training, which consists of ∼1.28
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Method #. Epoch Pascal VOC (R50-C4) COCO (R50-FPN) COCO (R50-C4) Cityscapes (R50)
AP AP50 AP75 mAP AP50 AP75 mAP AP50 AP75 mIoU

scratch - 33.8 60.2 33.1 32.8 51.0 35.3 26.4 44.0 27.8 65.3
supervised 100 53.5 81.3 58.8 39.7 59.5 43.3 38.2 58.2 41.2 74.6
MoCo [19] 200 55.9 81.5 62.6 39.4 59.1 43.0 38.5 58.3 41.6 75.3
SimCLR [9] 1000 56.3 81.9 62.5 39.8 59.5 43.6 38.4 58.3 41.6 75.8
MoCo v2 [10] 800 57.6 82.7 64.4 40.4 60.1 44.3 39.5 59.0 42.6 76.2
InfoMin [35] 200 57.6 82.7 64.6 40.6 60.6 44.6 39.0 58.5 42.0 75.6
InfoMin [35] 800 57.5 82.5 64.0 40.4 60.4 44.3 38.8 58.2 41.7 75.6
PixPro (ours) 100 58.8 83.0 66.5 41.3 61.3 45.4 40.0 59.3 43.4 76.8
PixPro (ours) 400 60.2 83.8 67.7 41.4 61.6 45.4 40.5 59.8 44.0 77.2

Table 1. Comparing the proposed pixel-level pre-training method, PixPro, to previous supervised/unsupervised pre-training methods. For
Pascal VOC object detection, a Faster R-CNN (R50-C4) detector is adopted for all methods. For COCO object detection, a Mask R-CNN
detector (R50-FPN and R50-C4) with 1× setting is adopted for all methods. For Cityscapes semantic segmentation, an FCN method (R50)
is used. Only a pixel-level pretext task is involved in PixPro pre-training. For Pascal VOC (R50-C4), COCO (R50-C4) and Cityscapes
(R50), a regular backbone network of R50 with output feature map of C5 is adopted for PixPro pre-training. For COCO (R50-FPN), an
FPN network with P3-P6 feature maps is used. Note that InfoMin [35] reports results for only its 200 epoch model, so we reproduce it
with longer training lengths, where saturation is observed.

million training images.

Architectures Following recent unsupervised meth-
ods [19, 18], we adopt the ResNet-50 [21] model as
our backbone network. The two branches use different
encoders, with one using a regular backbone network and a
regular projection head, and the other using the momentum
network with a moving average of the parameters of the
regular backbone network and the projection head. The
proposed pixel propagation module (PPM) is applied on
the regular branch.The FPN architecture with P3-P6 feature
maps are also tested in some experiments.

Data Augmentation In pre-training, the data augmenta-
tion strategy follows [18], where two random crops from the
image are independently sampled and resized to 224× 224
with a random horizontal flip, followed by color distortion,
Gaussian blur, and a solarization operation. We skip the
loss computation for cropped pairs with no overlaps, which
compose only a small fraction of all the cropped pairs.

Optimization We vary the training length from 50 to 400
epochs, and use 100-epoch training in our ablation study.
The LARS optimizer with a cosine learning rate scheduler
and a base learning rate of 1.0 is adopted in training, where
the learning rate is linearly scaled with the batch size as
lr = lrbase × #bs/256. Weight decay is set to 1e-5. The
total batch size is set to 1024, using 8 V100 GPUs. For the
momentum encoder, the momentum value starts from 0.99
and is increased to 1, following [18]. Synchronized batch
normalization is enabled during training.

4.2. Downstream Tasks and Settings

We evaluate feature transfer performance on four down-
stream tasks: object detection on Pascal VOC [16], ob-
ject detection on COCO [27], semantic segmentation on
Cityscapes [11], and semi-supervised object detection on
COCO [33]. In some experiments, we also report the
ImageNet-1K [12] linear evaluation performance for refer-
ence.

Pascal VOC Object Detection We strictly follow the set-
ting introduced in [19], namely a Faster R-CNN detec-
tor [32] with the ResNet50-C4 backbone, which uses the
conv4 feature map to produce object proposals and uses the
conv5 stage for proposal classification and regression. In
fine-tuning, we synchronize all batch normalization layers
and optimize all layers. In testing, we report AP, AP50 and
AP75 on the test2007 set. Detectron2 [40] is used as the
code base.

COCO Object Detection and Instance Segmentation
We adopt the Mask R-CNN detector with ResNet50-FPN
and ResNet50-C4 [20, 26] backbones, respectively. In opti-
mization, we follow the 1× settings, with all batch normal-
ization layers synchronized and all layers fine-tuned [19].
We adopt Detectron2 [40] as the code base for these exper-
iments.

We also consider other detectors with fully convolutional
architectures, e.g., FCOS [36]. For these experiments, we
follow the 1× settings and utilize the mmdetection code
base [7].
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Cityscapes Semantic Segmentation We follow the set-
tings of MoCo [19], where an FCN-based structure is
used [28]. The FCN network consists of a ResNet-50 back-
bone with 3 × 3 convolution layers in the conv5 stage of
dilation 2 and stride 1, followed by two 3 × 3 convolution
layers of 256 channels and dilation 6. The classification is
obtained by an additional 1× 1 convolutional layer.

Semi-Supervised Object Detection We also examined
semi-supervised learning for object detection on COCO.
For this, a small fraction (1%-10%) of images randomly
sampled from the training set is assigned labels and used in
fine-tuning. The results of five random trials are averaged
for each method.

ImageNet-1K Linear Evaluation In this task, we fix the
pretrained features and only fine-tune one additional lin-
ear classification layer, exactly following the settings of
MoCo [19]. We report these results for reference.

4.3. Main Transfer Results

Table 1 compares the proposed method to previous state-
of-the-art unsupervised pre-training approaches on 4 down-
stream tasks, which all require dense prediction. Our Pix-
Pro achieves 60.2 AP, 41.4 / 40.5 mAP and 77.2 mIoU on
Pascal VOC object detection (R50-C4), COCO object de-
tection (R50-FPN / R50-C4) and Cityscapes semantic seg-
mentation (R50). It outperforms the previous best unsuper-
vised methods by 2.6 AP on Pascal VOC, 0.8 / 1.0 mAP on
COCO and 1.0 mIoU on Cityscapes.

4.4. Ablation Study

We conduct the ablation study using the Pascal VOC
(R50-C4) and COCO object detection (R50-FPN) tasks.
In some experiments, the results of the FCOS detector on
COCO and semi-supervised results are included.

Hyper-Parameters for PixPro Table 2 examines the sen-
sitivity to hyper-parameters of PixPro. For the ablation of
each hyper-parameter, we fix all other hyper-parameters to
the following default values: feature map of C5, distance
threshold T = 0.7, sharpness exponent γ = 2, number
of transformation layers in the pixel-to-propagation module
l = 1, and training length of 100 epochs.

Table 2 (a-b) ablates distance thresholds using the fea-
ture maps of C5 and P3. For both, T = 0.7 yields good
performance. The results are more stable for P3, thanks to
its larger resolution.

Table 2 (c) ablates the sharpness exponent γ, where γ =
2 shows the best results. A similarity function that is too
smooth or too sharp harms transfer performance.

Table 2 (d) ablates the number of transformation layers
in g(·), where l = 1 shows slightly better performance than

parameters
Pascal VOC COCO

AP AP50 AP70 mAP
(a) distance threshold T using C5 (7× 7)
T = 0.35 58.3 82.1 65.8 39.5
T = 0.7(∗) 58.8 83.0 66.5 40.8
T = 1.4 56.8 82.0 63.3 39.5
T = 2.8 56.5 81.7 63.4 39.1
(b) distance threshold T using P3 (28× 28)
T = 0.35 58.1 83.0 64.7 40.8
T = 0.7 57.6 83.0 63.6 40.8
T = 1.4 56.8 82.7 63.1 40.6
T = 2.8 56.1 82.4 64.7 40.2
(c) sharpness exponent γ
γ = 0.5 57.9 82.5 64.5 39.7
γ = 1 58.7 83.0 65.5 40.1
γ = 2(∗) 58.8 83.0 66.5 40.8
γ = 4 58.0 82.4 64.7 40.0
γ = 8 57.8 82.5 64.4 39.9
(d) number of transformation layers in g(·)
l = 0 58.6 82.9 65.4 39.4
l = 1(∗) 58.8 83.0 66.5 40.8
l = 2 58.9 83.1 66.3 40.3
l = 3 58.3 82.5 65.0 40.1
(e) output resolution
C5 (7× 7∗) 58.8 83.0 66.5 40.8
P4 (14× 14) 56.7 82.7 63.6 40.9
P3 (28× 28) 57.6 83.0 63.6 40.8
P3-P6 55.8 82.5 62.1 41.3
(f) training length
50 epoch 57.2 82.4 63.4 39.7
100 epoch(*) 58.8 83.0 66.5 40.8
200 epoch 59.5 83.5 66.9 40.8
400 epoch 60.2 83.8 67.7 41.0

Table 2. Ablation studies on hyper-parameters for the proposed
PixPro method. Rows with (*) indicate default values.

others. Note that l = 0, which has no learnable parame-
ters in the pixel-propagation module (PPM), also performs
reasonably well, while removal of the PPM module results
in model collapse. The smoothness operation in the PPM
module introduces asymmetry with respect to the other reg-
ular branch, and consequently avoids collapse [18].

Table 2 (e) ablates the choice of feature maps. It can
be seen that using the higher resolution feature maps of P3

and P4 performs similarly well to using C5. Using all P3-P6

feature maps noticeably improves the transfer accuracy on
COCO object detection, but is inferior to others on Pascal
VOC object detection. As the Pascal VOC dataset uses a
ResNet-C4 backbone and the COCO dataset uses a ResNet-
FPN backbone, this result suggests that consistent architec-
ture between pre-training and the downstream task may give

7



method PPM τ
Pascal VOC COCO

AP AP50 AP75 mAP

PixContrast

0.1 54.7 79.9 61.2 38.0
0.2 57.1 81.7 63.3 38.6
0.3 58.1 82.4 64.5 38.8

X 0.1 52.7 78.8 57.6 37.4
X 0.2 53.0 79.1 58.1 37.3
X 0.3 52.9 78.8 58.3 37.5

PixPro
- 58.0 82.6 65.6 39.7

X - 58.8 83.0 66.5 40.8

Table 3. Comparison of the PixContrast and PixPro methods. 100
epoch pre-training is adopted for all experiments.

better results.
Table 2 (f) ablates the effects of training length. Increas-

ing the training length generally results in better transfer
performance. Our maximal training length is 400. Com-
pared to 200 epoch training, it brings a 0.7 AP gain on
Pascal VOC, while almost saturating on COCO. Results on
longer training will be examined in our future work.

Comparison of PixPro and PixContrast Table 3 ab-
lates the transfer performance of PixContrast with vary-
ing τ and with/without the pixel propagation module
(PPM). It also includes the results of the PixPro method
with/without the PPM. It can be seen that while the PixCon-
trast method achieves reasonable transfer performance, the
PixPro method is better, specifically 0.7 AP and 2.0 mAP
better than the PixContrast approach on Pascal VOC and
COCO, respectively.

Including the pixel-propagation module (PPM) leads to
inferior performance for the PixContrast method, likely be-
cause of over-smoothing. In contrast, for PixPro, adding
PPM improves transfer performance by 0.8 AP on Pascal
VOC and 1.1 mAP on COCO, as well as avoids the use
of hyper-parameter τ . Note while directly removing PPM
will result in model collapse, we add a linear transformation
layer to avoid such collapse issue. Also note that the benefit
of this spatial smoothness in representation learning is also
evidenced in Table 2(c), where a similarity function that is
too smooth or too sharp harms transfer performance.

Combined with Instance-Level Contrastive Methods
Table 4 ablates the effects of combining the proposed
PixPro method with an instance-level pretext task (Sim-
CLR*) for representation learning. The combination re-
quires marginal added computation due to sharing of the
data loader and encoders. It can be seen that an additional
instance-level pretext task can significantly improve the lin-
ear evaluation accuracy on ImageNet-1K, while the transfer

PixPro
(pixel)

SimCLR*
(instance)

VOC COCO ImageNet
AP mAP top-1 acc

X 58.8 40.8 55.1
X 53.4 40.5 65.4

X X 58.7 40.9 66.3

Table 4. Transfer performance of combining a pixel-level and an
instance-level method. “SimCLR*” denotes a variant of SimCLR
with the same encoders as our pixel-level approach. 100 epoch
pre-training is adopted for all experiments.

+FPN +head +instance
COCO (FCOS)

mAP AP50 AP75

37.8 56.2 40.6
X 38.1 56.7 41.2
X X 38.6 57.3 41.5
X X X 39.8 58.4 42.7

Table 5. FPN and head pre-training with transfer to COCO using
an FCOS detector [36]. 100 epoch pre-training is adopted for all
experiments.

arch. +COCO
pre-train

mask
R-CNN

1% 10%
supervised 10.4 20.4
MoCo [19] 10.9 23.8
MoCo v2 [10] 10.9 23.9
InfoMin [35] 10.6 24.5
C5 backbone 13.2 25.9
FPN 14.1 26.6
FPN X 14.8 26.8

Table 6. Semi-supervised object detection on COCO. 100-epoch
pre-training is adopted for our method, and other methods use the
models with their longest training.

accuracy on COCO (mask R-CNN R50-FPN) and Pascal
VOC is maintained. We also observe noticeable transfer
improvements of 1.2 mAP on some tasks, e.g., FCOS [36]
on COCO, as shown in Table 5.

Effects of Head Network Pre-Training Table 5 ablates
head network pre-training (or using an architecture more
similar to that in the fine-tuning task) on COCO object de-
tection. For COCO object detection, we use the FCOS de-
tector, which is fully convolutional. We evaluate the trans-
fer performance with an additional FPN architecture, a head
network of three successive convolutional layers. It can be
seen that more pre-training layers lead to better transfer ac-
curacy on downstream tasks.
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Semi-Supervised Object Detection Results Table 6
shows the semi-supervised results using 1% and 10% of
labeled data on COCO. The Mask R-CNN (R50-FPN)
detector is tested. Our best pre-training models per-
form significantly better than previous instance-level super-
vised/unsupervised methods. The gains are +3.9 mAP and
+2.3 mAP using 1% and 10% training data, respectively.

The results indicate the advantage of aligning networks
between the pre-training and downstream tasks. Including
the additional FPN layers in pre-training brings +0.9 and
+0.7 mAP gains over the method which pre-trains only the
plain backbone network (14.1 and 26.6 vs. 13.2 and 25.9).

We also include an additional pre-training stage on
COCO using the proposed pixel-level pretext task by 120
epochs, after the ImageNet-1K pre-training. It leads to ad-
ditional +0.7 mAP gains and +0.2 mAP gains when 1% and
10% training data are used, respectively. The additional pre-
training directly on down-stream unlabelled data may ben-
efit the learning when only scarce labeled data is available.

5. Conclusion
This paper explores the use of pixel-level pretext tasks

for learning dense feature representations. We first directly
apply contrastive learning at the pixel level, leading to rea-
sonable transfer performance on downstream tasks requir-
ing dense prediction. We additionally propose a pixel-
to-propagation consistency task which introduces certain
smoothness priors in the representation learning process
and does not require processing of negative samples. This
method, named PixPro, achieves 60.2 AP and 41.4 / 40.5
mAP accuracy when the learnt representation is transferred
to the downstream tasks of Pascal VOC (Faster R-CNN
R50-C4) and COCO object detection (mask R-CNN R50-
FPN / R50-C4), which are 2.6 AP and 0.8 / 1.0 mAP better
than the previous best supervised/unsupervised pre-training
methods. These results demonstrate the strong potential of
defining pretext tasks at the pixel level, and suggest a new
path forward in unsupervised visual representation learn-
ing. As a generic pretext task for learning stronger repre-
sentations on single images, the proposed approach is also
applicable to visual representation learning on videos and
multi-modality signals.
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