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Abstract

Continual learning is a realistic learning scenario for
AI models. Prevalent scenario of continual learning, how-
ever, assumes disjoint sets of classes as tasks and is less
realistic, rather artificial. Instead, we focus on ‘blurry’ task
boundary; where tasks shares classes and is more realis-
tic and practical. To address such task, we argue the im-
portance of diversity of samples in an episodic memory.
To enhance the sample diversity in the memory, we pro-
pose a novel memory management strategy based on per-
sample classification uncertainty and data augmentation,
named Rainbow Memory (RM). With extensive empirical
validations on MNIST, CIFAR10, CIFAR100 and ImageNet
datasets, we show that the proposed method significantly
improves the accuracy in blurry continual learning setups,
outperforming state of the arts by large margins despite
its simplicity. Code and data splits will be available in
https://github.com/clovaai/rainbow-memory .

1. Introduction

Continual learning (CL) or class incremental learning
(CIL) is known to particularly suffer from the catastrophic
forgetting with respect to model generalization, due to inac-
cessibility to the data of previous tasks. The challenge lies
in the continuously changing class distributions of each task
given a task stream. Most AI models suffer from such real-
world application scenarios across domains [38, 20, 30].
To address the issue of changing data distribution for con-
tinual learning, there are many proposals in the litera-
ture, such as momentum matching [29], sample genera-
tion [42, 46, 24, 43], regularization on parameters [27, 5],
and sampling-based memory management [38, 39].

However, they are mostly evaluated in a rather artifi-
cial task setup of disjoint, where tasks do not share the
classes [37]. For real-world applications, we consider a
more realistic and practical setting of blurry-CIL where the
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Figure 1: Blurry-CIL (class incremental learning) setup (top) and
overview of our proposed approach (bottom). In the blurry-CIL,
the tasks share classes, contrary to conventional disjoint-CIL. Pro-
posed memory management strategy updates an episodic memory
with samples of the current task to keep diverse exemplars in the
memory. Data augmentation (DA) further enhances the diversity
of the exemplars in the memory.

classes shared across the tasks [38] (illustrated at the top of
Figure 1). The blurry-CIL setup requires that (1) each task
is given sequentially as a stream, (2) the majority (assigned)
classes of tasks differ from each other, and (3) a model can
leverage only a very small portion of data of previous tasks.
For instance, suppose an e-commerce service that catego-
rizes new items with their images taken by a seller. For each
category, the number of newly registered items conspicu-
ously depend on various factors such as season and tran-
sient event but not reduce to zero. The popularity period of
items varies according to their characteristics as shown in
Figure 2; e.g., swimming suits are prevalent in summer and
padding jumper are much more registered in winter.

In recent literature, the methods storing a small portion
of old data have shown promising results in preserving the
information of old classes when training new classes for the
blurry-CIL setup [38], thus alleviating catastrophic forget-
ting [16]. This strategy naturally raises the question: what
is the optimal strategies to manage the memory? Since the
number of stored samples is much smaller than that of the
incoming new-class, the samples in the memory would in-
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Figure 2: Popularity changes of four items including swimming
suite, snack, mask, and padding jumper during one year in a
real-world e-commerce service. Each item has its own popular-
ity period and this phenomena is more similar to blurry-CIL than
disjoint-CIL because most item categories do not disjointly appear
in real-world applications.

cur either overfitting or be ignored during training due to its
small size compared to that of samples of incoming tasks.
As a straightforward solution, if we gradually increase the
memory size when the samples are incoming, the problem-
setting fails to hold an important resource constraint of the
CIL; a limited fixed memory requirement. Therefore, we
need a strategy to maintain sufficient information of the old
class with a small number of samples.

To address this problem, we investigate two factors for
better continual learning on the newly defined blurry-CIL
setup; sampling for the memory and augmenting the data in
the memory. First, we propose a perturbation-induced un-
certainty to select samples for the memory by measuring the
per-sample robustness against the perturbations. To measure
the uncertainty, we define a prior distribution that draws the
perturbed samples and approximates the robustness (i.e., in-
verse of uncertainty) described as a likelihood function in
a Bayesian formulation. We fill the memory slots with the
samples drawn from the distribution corresponding to the
robustness. We show that the diversity-induced memory by
sampling both perturbation-robust and fragile data helps the
models to preserve discriminative boundary for each class.

Second, we investigate the effect of the diversity ac-
quired by data augmentation in the blurry-CIL. In partic-
ular, label mixing-based data augmentation, such as Cut-
Mix [49], projects the input samples into a more complex
dimension by mixing the image-label of multiple data sam-
ples randomly and has reported notable successes in various
recognition tasks [47, 26]. It provides additionally rich di-
versity of stored samples in the episodic memory. Along
with the label mixing augmentation, we exploit the ef-
fects of composition of multiple data augmentations for en-
hancing the diversity, benefiting from conventional methods
such as flipping, shearing, or color jittering and recent au-
tomated data augmentation researches [9, 10, 32]. Incorpo-

rating the two proposals, we name our method as Rainbow
Memory or RM for short.

Our RM is mainly evaluated in blurry-CIL setup on
MNIST, CIFAR10, CIFAR100 and ImageNet datasets,
compared with various standard CIL methods. The exten-
sive experimental validations show that our approach effec-
tively addresses blurry-CIL, outperforming state-of-the art
baselines with significant margins. In addition, our method
comparably performs to the other methods in disjoint-CIL
set-up even if it is designed for blurry-CIL setup.

We summarize the contributions as follows:

• We propose a new diversity-aware sampling method
for effectively managing the memory with limited ca-
pacity by leveraging classification uncertainty.

• We propose to augment the samples in the memory to
further enhance the diversity of the samples.

• Our RM outperforms previous methods in blurry-CIL
setup by large margins.

• We release the source code of RM and the evaluation
protocol including the task splits of blurry-CIL for fu-
ture research in this avenue.

2. Related Work

Class Incremental Learning Setups. Among many sce-
narios of continual learning, summarized in [43], we are
particularly interested in class-incremental learning (CIL)
scenario with no task identity is given at the inference [15].
There have been many proposals that can be roughly catego-
rized into (1) rehearsal-based approaches [6, 4, 39], where
episodic memory stores a few exemplars of old tasks, then
the exemplars will be replayed in the future task, and (2)
regularization-based approaches [28, 50, 33, 31, 29, 36],
where no samples of old tasks is stored, but exploit the in-
formation of old tasks implicitly remained in the parameters
of models. As rehearsal-based approaches generally have
shown the better performance in CIL [38], we propose to
improve memory management and exploit the insufficient
information in an episodic memory, presuming the exis-
tence of such memory.

Class-incremental learning usually refers to a sequen-
tial learning paradigm with disjoint set of tasks [39, 4, 15].
However, recent studies [1, 38] introduce a setup containing
blurry and continuous stream of tasks, which is more real-
istic as many real-world tasks are seldom given in a disjoint
manner. Another setup is whether CIL allows the temporary
buffer for storing incoming samples of a current task or not
during model training, each of which is called offline and
online, respectively. Many previous works have been eval-
uated either of online [13, 1, 23] or offline [48, 39, 5, 4]
setup, while GDumb [38] reports on both of setups. Basi-
cally, online is more difficult but more practical, so we focus
on online to report more practical results. Instead, we inves-



tigate the importance of memory management and propose
effective memory update algorithm.

Class Imbalance. Rehearsal-based approaches have re-
ported severe catastrophic forgetting due to the class-
imbalance of exemplars [48]. This makes models vulnerable
to the most frequent classes in episodic memory. To address
the catastrophic forgetting problem, GEM [35], MER [40],
and GSS [1] propose to update the weights using gradient
information so that the models get knowledge from prior
task, and BiC [48] proposes adding a simple layer at the end
of model to calibrate the bias. Very recently, MEGA [17]
proposes a loss balancing approach mixing loss of previous
and current classes to relieve the forgetting. HAL [7] pro-
poses a way to utilize the most destructive samples in the
past tasks as anchor points to address the forgetting prob-
lem, and CAL [2] proposes an approach keeping additional
information by storing intermediate activations, in addition
to the raw images. However, those approaches overlook the
importance of memory management and normally adopt
simple random sampling [17, 2] or reservoir sampling [40]
or ring-buffer sampling [7].

Episodic Memory Management. There are a number
of strategies proposed in the literature [37]. Interestingly,
many proposals show marginal accuracy improvement over
the uniform random sampling despite the computational
complexity [5, 4, 39]. These methods include herding se-
lection [45], a discriminative samplings [34] and entropy
based samples [6]. The herding selection chooses the sam-
ples proportional to a histogram of each sample’s distance
to the class mean. The discriminative sampling chooses the
samples that define decision boundaries. The entropy based
sampling method chooses the samples by the entropy of
their softmax distribution in the output layer.

To obtain the representative and discriminative exem-
plars, Liu et al. proposes a complex but effective sam-
pling method guaranteeing that the exemplars well repre-
sents the mean and boundary of each class distribution [34].
Also, Borsos et al. propose a coreset generation method for
the representative memory using cardinality-constrained bi-
level optimization [3]. and Cong et al. propose a GAN based
memory which they can perturb styles of remembered sam-
ples for incremental learning [8]. These recently published
works address the quality of the samples stored in the mem-
ory, they are either computationally expensive or difficult to
train a sample generator for the memory [3].

Other than sampling, there are works addressing the
episodic memory. Generative models are employed to gen-
erate past task samples [42, 41, 46, 21] instead of sam-
pling. The generation strategy is an active research topic
and shows promising results in relatively straightforward
experimental validation (e.g., on MNIST and SVHN). But
on these datasets, sampling from the uniform distribution

already achieves saturated accuracy [6] and there is no
promising results reported in challenging datasets (e.g., Im-
ageNet) yet. Hayes et al. propose to replay ‘compressed
memory’ to increase the memory utilization [18]. Iscen et
al. propose to reduce the dimension of stored features for
efficiency [22]. Fini et al. propose a batch-level distillation
(BLD) method to increase the memory efficiency in an on-
line setting which has an extreme memory constraint [13].
Unlike these works addressing the sampling efficiency, we
focus on the quality of the stored samples in the memory.

3. Class Incremental Learning Setups

We can formulate CIL setups as follows:

C = {c1,c2, . . . ,cN},
Tt = {c | ψ(c) = t},

DC
c = {xc

1,x
c
2, . . . ,x

c
Mc},

DT
t = {DC

c | c ∈ Tt},

where C denotes a set of all classes, Tt denotes a class-subset
assigned to each task t, which is determined by a stochastic
assign function, ψ(c) returning an assigned task for a given
class c, and DC

c and DT
t represent a set of samples populat-

ing class c and task t sample space, respectively. Note that
N is not known and not even bounded in real-world sce-
nario and Mc can be either of equal or not among classes (c)
according to a problem definition.

We now formulate either blurry or disjoint CIL setups by
intersecting DT

t ’s or not.

disjoint-CIL⇒
⋂

Tt =∅,

blurry-CIL⇒
⋂

Tt 6=∅.

The disjoint-CIL setup exaggerates the catastrophic for-
getting since it never exposes seen classes in successive
tasks, but it is deviated from the real-world where new
classes do not show up exclusively. Conversely, blurry-CIL
setup makes the task boundaries faint in a way that each
task contains small number of classes also present in the
other tasks. Approaches are evaluated in various perspec-
tives including forgetting and intransigence [5] under a con-
tinuously changing class balance setup [38].

4. Approach

To effectively address the blurry-CIL with an episodic
memory, we propose a memory management strategy that
enhances diversity of samples to cover the distribution of
the class by sampling a diverse set of samples which may
preserve the boundary of a class distribution. We further en-
hance the diversity of the samples by data augmentation.



4.1. Diversity-Aware Memory Update

We argue that the exemplars which are selected to be
stored in the memory should be not only representative for
their corresponding class but also discriminative to the other
classes. To choose such samples, we argue that the samples
that are near the classification boundary are the most dis-
criminative and the samples that are close to the center of
the distribution is the most representative. To satisfy both
characteristics, we propose to sample the exemplars that are
diverse in the feature space.

To secure the diversity, we need to estimate the rela-
tive locations of each sample in class-discriminative feature
space. But it is computationally expensive to compute the
relative locations of the features as it requires to compute
sample-to-sample distances (O(N2)). Instead, we propose
to estimate the relative location by uncertainty of a sam-
ple estimated by the classification model, i.e., we assume
that the more certain samples for the model will be located
closer to the center of the class distribution and vice versa.

Specifically, we compute uncertainty of a sample by
measuring the variance of model outputs of perturbed sam-
ples by various transformation methods for data augmen-
tation: including color jitter, shear, and cutout [12] (illus-
trated in Figure 3). Following the derivation from Gal et
al. [14], we approximate the uncertainty by Monte-Carlo
(MC) method of the distribution p(y = c|x) when given the
prior of the perturbed sample x̃, as p(x̃|x). We define the
perturbation prior p(x̃|x), as a uniform mixture of the vari-
ous perturbations as shown in the examples in Figure 3. The
derivation can be written as:

p(y = c|x) =
∫

D̃
p(y = c|x̃t)p(x̃t |x)dx̃t

≈ 1
A

A

∑
t=1

p(y = c|x̃t),
(1)

where x, x̃, y and A denote a sample, a perturbed sample, the
label of the sample, and the number of perturbation meth-
ods, respectively. The distribution D̃ denotes the data distri-
bution defined by the perturbed samples x̃. In particular, the
perturbed sample x̃ is drawn by a random function fr(·), as:

x̃ = fr(x|θr),r = 1, ...,R, (2)

where θr is a hyper-parameter which denotes the random
factor of the r-th perturbation. The prior p(x̃|x) is defined
as:

x̃∼
R

∑
r=1

wr ∗ fr(x|θr), (3)

where the random variable wr,r = {1, ...,R} is drawn from a
categorical binary distribution. From the approximated dis-
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Figure 3: Estimating uncertainty of a data sample (x) with its per-
turbed samples (x̃) for the proposed Rainbow Memory. Detailed
procedure is summarized in Algorithm 1.

tribution (1), we measure the uncertainty of the sample with
respect to the perturbation as:

Sc =
T

∑
t=1

1cargmax
ĉ

p(y = ĉ|x̃t),

u(x) = 1− 1
T

max
c

Sc,

(4)

where u(x) denotes the uncertainty of the sample x and Sc
is the number of times that class c is the predicted top-1
class. The 1c denotes the binary class indexing vector. The
lower valued u(x), corresponding to more consistent top-1
class over perturbations, indicates that x resides in a region
where a model is strongly confident.

Algorithm 1 summarizes our proposed diversity-aware
memory update algorithm. Following GDumb [38], we also
assign the same amount of memory slots (kc) over the ‘seen’
classes (N). After assigning the exemplars to the memory
slots, we compute the uncertainties for both streamed sam-
ples (DS

t ) and stored exemplars (DM
t−1) in a memory at task

t, then sort all these samples (Dc) by their uncertainties.
From the sorted list, we select samples with an interval of
|Dc|/kc to secure the diversity. As a result of this sampling,
we fill the memory with exemplars in a wide spectrum
ranged from strongly perturbation, i.e., robust samples, to
fragile ones. This imposes perturbation-based diversity to
the episodic memory.



Algorithm 1 Diversity-Aware Memory Update

1: Input: K denotes memory size, Nt denotes the num-
ber of seen classes until task t, DS

t denotes stream data
at task t, DM

t−1 denotes exemplars stored in a episodic
memory after task t−1.

2: Output: DM
t exemplars after learning task t.

3: DM
t = {} . New exemplars from scratch

4: kc = f loor(K/Nt) . Class-balanced sampling
5: for c = 1,2, . . . ,Nt do
6: Dc = {(x,y)|y = c,(x,y) ∈DS

t ∪DM
t−1}

7: Sort Dc by u(x) computed by (4)
8: for j = 1,2, . . . ,kc do
9: i = j ∗ |Dc|/kc . |Dc|/kc step-size indexing

10: DM
t += Dc[i]

11: end for
12: end for

4.2. Diversity Enhancement by Augmentation

To further enhance the diversity of exemplars from the
memory, we employ data augmentation (DA). The DA’s di-
versify a given set of samples by image-level or feature-
level perturbations, which correspond to the philosophy of
updating memory by securing the diversity (Section 4.1).

We consider various perturbation types including sim-
ple single-image-based DA perturbing the original input
image, mixed-labeled DA which integrates multiple im-
ages [49, 51] and automated DAs (AutoDAs) [9, 11, 32].
The stochastically chosen various augmentations succeed
in image classification. Yet, the efficacy of the DA’s has not
been well investigated in the CIL context.

Mixed-Label Data Augmentation. As task iteration pro-
ceeds, the samples in a new task are likely to follow differ-
ent distribution from the one in the episodic memory (i.e.,
from the previous tasks). We adopt mixed-labeled DA to
‘mix’ images in the classes of the new tasks and the exem-
plars of the old classes in the memory. This mixed-label DA
alleviates the side effects caused by change of class distri-
bution over the tasks and improves the performances.

As one of the representative mixed-labeled DA methods,
CutMix [49] generates a mixed sample and a smoothed la-
bel, given the set of supervised samples (x1,y1) and (x2,y2),
as:

x̃ = m� x1 +(1−m)� x2,

ỹ = λy1 +(1−λ )y2,
(5)

where the set m denotes the randomly selected pixel region
for the image x1 according to the hyper-parameter β drawn
from the beta-distribution. As shown in (5), the mixed-label
DA generates artificial samples that are hard to be consid-
ered as a variant of the source images unlike the conven-
tional data augmentations manipulating an original image

by flipping, rotating, and/or contrasting while not ruining a
class boundary.

Automated Data Augmentation. In addition to the above
mixed-labeled DAs, we further use AutoDA to enrich the
augmentation effect by compositing multiple DA’s on the
model performance under CIL. Especially, we employ Au-
toAugment [9], providing parameters for determining the
number of augmentations and their magnitudes.

5. Experiments
We empirically validate the efficacy of our RM by com-

paring it with state of the arts in various experimental se-
tups; CIL task setups for the benchmarks, memory-sizes of
episodic memory, and performance metrics. In addition, we
further investigate components of the propose RM; memory
management strategy and augmentation methods for their
contribution to the CIL performances.

5.1. Experimental Setup

Benchmark Task Setup. We evaluate algorithms mostly
in blurry-CIL setup, otherwise stated. Following [1], we
denote blurry-CIL setup as ‘BlurryM’, where the M de-
notes the portion of samples coming from the other tasks.
Therefore, each task in the blurry-CIL setup contains sam-
ples from its assigned major classes (i.e., the most frequent
classes and assigned to each task exclusively) consisting
of (100−M)% and ones of minor classes (i.e., the other
classes of C except for the assigned major classes) consist-
ing of remaining M%. Note that the class distribution of
minor classes in each task are balanced.

In addition, we consider two different learning setup; on-
line and offline. In online, the incoming samples are pre-
sented to a model only once except the ones selected as ex-
emplars since it does not have a buffer which is large enough
to keep the whole streamed samples. On the other hand, in
offline, a model can observe the incoming samples multiple
times (i.e., epochs) with the buffer. Please note that we re-
peat each experiment three times to report means and stan-
dard deviations except the ImageNet experiments.

Datasets and Metrics. We use MNIST, CIFAR10, CI-
FAR100 and ImageNet (ILSVRC2012) datasets to config-
ure CIL task setups for evaluations. We randomly split and
assign with different random seeds a set of all classes (C)
into 5 tasks to generate a CIL task setup, and thus each
class-subset (Tt ) has 2 and 20 major classes for CIFAR10
and CIFAR100 datasets, respectively. For ImageNet, we
split 1000 classes to 10 tasks, so each class-subset (Tt ) has
100 major classes.

We use three popular metrics in the literature, such as
Last Accuracy (A5), Last Forgetting (F5), and Intransigence
(I5). ‘Last’ refers to the value is measured after all tasks
are learned, and we denote it with number ‘5’ here because



both of CIFAR10 and CIFAR100 have five tasks. Accord-
ingly, they will be A10, F10, and I10 for ImageNet. Please
refer to the supplementary material for more details about
the metrics. Finally, we use various episodic memory sizes
for different datasets as the size of the datasets differ.

Baselines and Implementation Details. We compare
our proposed RM with the standard CIL methods includ-
ing EWC [27], Rwalk [5], iCaRL [39], BiC [48] and
GDumb [38], the only method specifically designed for
the blurry setup. Note that GSS [1] is not compared since
GDumb outperforms it by large margins. The comparable
CIL methods utilize MLP400, ResNet18, ResNet32, and
ResNet34 [19] as their network architectures for MNIST,
CIFAR10, CIFAR100, and ImageNet, respectively. For CI-
FAR10/100, we use the same backbone to the official
GDumb [38] implementation1 throughout all experiments.
For ImageNet, we use the backbone from their original im-
plementation [19].

For the training hyperparameters of experiments on
MNIST and CIFAR10/100, we use batch-size of 16, co-
sine annealing learning-rate schedule ranged from 0.05 to
0.0005, and the number of epochs of 256, following [38].
For those on ImageNet, we use batch-size of 256, step an-
nealing learning-rate schedule ranged from 0.1 to 0.001, and
the number of epochs of 100, which are used from BiC [48].

In addition, we use an episodic memory, which is up-
dated through reservoir sampling which exhibits the best
performance (Section 5.3), to the baselines not considering
the existence of memory; EWC and Rwalk, for fair com-
parison. As expected, all memory-attached baselines out-
perform the corresponding original ones.

5.2. Results

We compare the propose RM to other methods in
‘Blurry10-Online’ setup on various datasets and summarize
the results in Table 1. As shown in the table, RM consis-
tently outperforms all other methods, and the gain becomes
larger when the number of classes (|C|) increases, which
is more challenging. Note that the original BiC performs
significantly worse in ImageNet in the blurry setup, so we
eliminate the distilling loss yielding irregular values, then
BiC performs reasonably well (denoted by ∗ in Table 1). On
MNIST, however, RM without DA performs the best. We
believe that DA interferes the model training with perturbed
samples since the exemplars are enough to avoid forgetting.
On the other hand, DA improves the metrics with large mar-
gins on the other datasets as we expected in section 4.2.

Table 2 presents the comparison on CIFAR10-Blurry10-
Online for three episodic memory sizes (K); 200, 500 and
1,000. We again observe that our proposed RM outperforms
all other baselines over all three memory-sizes in terms of

1https://github.com/drimpossible/GDumb

A5, F5, and I5 by significant margins in Blurry and on-
line CIL setup on CIFAR10. It is interesting that EWC and
Rwalk do not perform well in forgetting (F5) despite their
competitive A5 scores regardless of the memory size. The
results imply that these methods preserve effective exem-
plars in the final task, which are enough to restore the for-
getting happening in the previous tasks. iCaRL, GDumb
and BiC are less effective for intransigence (I5) with larger
memory size while they perform well in forgetting com-
pared to EWC and Rwalk as a tradeoff.

Our RM not only outperforms other baselines for accu-
racy but also exhibit good forgetting and intransigence per-
formance, regardless of memory sizes. It is also observed
that the performance gaps between ours and the others de-
crease when the memory-size becomes larger since the im-
pact of sampling efficiency decreases with redundant sam-
ples. Note that these results on CIFAR10 exhibit similar
trends to the results on CIFAR100 and ImageNet (shown in
Table 1). Although the CIFAR100 and ImageNet has 10×
or 100× more classes than the CIFAR10, RM still outper-
forms all the baselines in all three metrics by large margins.
These results imply that our RM is quite effective for more
practical and realistic CIL setup of blurry and online, com-
pared to the prior arts.

5.3. Detailed Analysis

On Various Blurry Levels. Even though blurry-CIL is
the main task of our interests, it is interesting to investigate
the performance of the proposed RM on disjoint-CIL (i.e.,
Blurry0) setup and in various blurry levels. We summarize
the comparative results in Table 3.

In disjoint-CIL where catastrophic forgetting is more se-
vere than blurry-CIL, regularization-based methods such as
EWC [27] and Rwalk [5] show competitive performances.
It is expected that disjoint-CIL setup tends to exagger-
ate catastrophic forgetting that regularization-based meth-
ods aim to address (Section 3). Notably, RM performs
comparably without any regularization while outperforming
rehearsal-based methods, e.g., iCaRL, GDumb and BiC.

In the offline setup, the gain by RM diminishes and prior
arts slightly outperform the RM. We conjecture that keep-
ing the large incoming samples in buffer dilutes the sen-
sitivity of exemplar sampling. In blurry-CIL setups with
online-setting (Blurry10 and Blurry30), RM outperforms
other baselines by remarkable margins even when DA is
not applied. With the proposed DA, RM achieves over 70%
accuracy for both Blurry10 and Blurry30 setups, far better
than the other baselines.

We further compare the accuracy trajectories over the
task streams; three streams generated from stochastically
assigned function, ψ(c), with different random seeds, for
CIFAR10 and single stream for ImageNet and summarize
the results in Figure 4. For the online settings ((a), (c) and



Table 1: Comparison with three metrics (A{5, 10}, F{5, 10}, and I{5, 10}: %) in {MNIST, CIFAR100, ImageNet}-Blurry10-Online.
∗ indicates the reproduction of BiC with only using classification loss without distilling loss to be better suited for Blurry10 setup.

MNIST (K=500) CIFAR100 (K=2,000) ImageNet (K=20,000)
Methods A5 (↑) F5 (↓) I5 (↓) A5 (↑) F5 (↓) I5 (↓) A10 (↑) F10 (↓) I10 (↓)

EWC 90.98 ± 0.61 4.23 ± 0.45 4.54 ± 0.94 26.95 ± 0.36 11.47 ± 1.26 43.18 ± 14.22 39.54 14.41 42.68
Rwalk 90.69 ± 0.62 4.77 ± 0.36 4.96 ± 0.56 32.31 ± 0.78 15.57 ± 2.17 37.18 ± 10.02 35.26 13.92 46.96
iCaRL 78.09 ± 0.60 6.09 ± 0.23 17.03 ± 0.60 17.39 ± 1.04 5.38 ± 0.88 44.18 ± 9.29 17.52 1.94 81.94

GDumb 88.51 ± 0.52 2.67 ± 0.31 6.75 ± 0.43 27.19 ± 0.65 7.49 ± 0.95 41.18 ± 7.23 21.52 4.07 60.70
BiC 77.75 ± 1.27 8.25 ± 1.45 17.37 ± 1.27 13.01 ± 0.24 4.63 ± 0.46 53.84 ± 11.85 37.20∗ 1.52∗ 45.02∗

RM w/o DA 92.65 ± 0.33 0.58 ± 0.09 3.14 ± 0.94 34.09 ± 1.41 4.01 ± 0.50 34.51 ± 4.58 37.96 2.63 44.26
RM 91.80 ± 0.69 0.75 ± 0.30 3.62 ± 0.63 41.35 ± 0.95 4.99 ± 0.89 20.18 ± 3.06 50.11 1.39 32.11

Table 2: Comparison with three metrics (A5, F5, and I5: %) for three episodic memory sizes in CIFAR10-Blurry10-Online. DA is used in
RM denotes CutMix+AutoAug.

K=200 K=500 K=1,000
Methods A5 (↑) F5 (↓) I5 (↓) A5 (↑) F5 (↓) I5 (↓) A5 (↑) F5 (↓) I5 (↓)

EWC 40.07 ± 2.14 21.20 ± 0.76 61.91 ± 4.51 55.65 ± 4.60 16.06 ± 3.89 44.24 ± 11.98 68.67 ± 0.95 12.63 ± 1.78 25.97 ± 10.88
Rwalk 38.66 ± 1.52 20.67 ± 2.36 65.81 ± 4.85 53.66 ± 3.18 17.04 ± 0.31 45.81 ± 9.78 68.20 ± 1.86 11.48 ± 1.19 25.17 ± 11.57
iCaRL 37.43 ± 1.31 2.08 ± 2.23 63.51 ± 13.73 45.98 ± 3.04 4.75 ± 1.70 51.91 ± 2.57 53.60 ± 2.82 7.21 ± 2.58 37.84 ± 13.49

GDumb 35.85 ± 1.03 1.67 ± 3.49 55.31 ± 6.02 49.47 ± 1.08 1.44 ± 2.77 40.91 ± 14.04 64.26 ± 1.21 0.37 ± 1.92 31.81 ± 13.37
BiC 33.29 ± 0.86 3.91 ± 1.64 50.37 ± 6.96 42.06 ± 2.41 1.34 ± 2.27 52.04 ± 15.50 47.81 ± 3.04 3.03 ± 1.44 52.77 ± 15.54

RM w/o DA 44.41 ± 1.40 0.90 ± 0.93 49.51 ± 11.09 60.87 ± 0.88 0.95 ± 1.14 35.74 ± 13.89 70.93 ± 1.57 -1.43 ± 0.71 22.07 ± 14.07
RM 54.61 ± 1.62 -2.60 ± 1.91 43.57 ± 11.63 71.13 ± 0.25 -0.85 ± 0.28 18.29 ± 14.21 78.04 ± 0.50 1.29 ± 1.26 11.64 ± 5.83
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Figure 4: Illustration of accuracy changes as tasks are being learned in (a) CIFAR10-Disjoint-Online, (b) CIFAR10-Blurry10-Offline, (c)
CIFAR10-Blurry10-Online, (d) ImageNet-Blurry10-Online settings. More results are presented in the supplement.

(d)), our RM consistently outperforms the other baselines
over entire task stream. However, in offline setting (b), RM
comparably performs to the prior arts over the entire task
stream as summarized in Table 3.

Uncertainty Measure. We compare three methods for es-
timating uncertainty by various Monte-Calro methods; (1)
no MC (No MC), (2) RandAug-based (RandAug MC), and
(3) AutoAug [9]-based methods (AutoAug MC), summa-
rizing the A5 results in Table 5. Note that RandAug MC
and AutoAug MC also leverage configuring the stochastic
data perturbation set as well as DA during training.

As shown in the table, the two automated DA-based
methods improve the accuracy compared to the No MC
case, caused by diversity-enhanced configuration. For mea-
suring the uncertainty in our RM, we use RandAug MC.

Comparison to Other Memory Update Algorithms. To
investigate exclusive gains by the memory update algo-
rithm, we compare RM with other memory update schemes
while leaving other components unchanged and summarize
results in Table 6. The other algorithms include Random,
Reservoir [44] and Prototype [39]. Random selects new ex-
emplars for the next episodic memory randomly from cur-
rent exemplars and incoming samples. Reservoir conducts
uniform random sampling on a unknown length task stream.
The prototype selects the samples where the extracted fea-
tures are close to the feature mean of its own class. As
shown in the table, RM outperforms all the augmentation
conditions with different settings of K.
Data Augmentation. We also investigate the effects of
various DA methods on performances by comparing the
adopted DA methods with others while other components
unchanged in Table 8. As shown in the table, other methods



Table 3: Comparison of last accuracy (A5 (↑), %) over benchmarks {Disjoint (0%), Blurry (10%), and Blurry (30%)} and training setups
{Online and Offline} on CIFAR10 (K=500).

Blurry0 (=Disjoint) Blurry10 Blurry30
Methods Online Offline Online Offline Online Offline

EWC 55.66 ± 1.18 64.00 ± 1.34 55.65 ± 4.60 78.67 ± 1.06 60.57 ± 1.15 85.00 ±0.42
Rwalk 55.91 ± 1.85 65.04 ± 0.11 53.66 ± 3.18 78.59 ± 1.37 59.03 ± 0.05 85.18 ± 0.57
iCaRL 40.70 ± 5.13 65.61 ± 2.57 45.98 ± 3.04 57.07 ± 2.74 48.11 ± 4.63 64.90 ± 7.95

GDumb 50.37 ± 1.17 42.47 ± 1.15 46.70 ± 1.53 43.16 ± 0.77 47.78 ± 3.77 45.72 ± 0.64
BiC 44.70 ± 2.12 59.53 ± 4.30 42.06 ± 2.41 61.45 ± 6.25 42.92 ± 1.47 71.93 ± 2.45

RM w/o DA 54.05 ± 4.94 59.47 ± 0.61 60.87 ± 0.88 74.58 ± 0.60 60.92 ± 6.48 83.91 ± 0.40
RM 66.25 ± 0.21 61.91 ± 0.63 71.13 ± 0.18 76.86 ± 0.04 73.90 ± 0.80 85.10 ± 0.16

Table 4: Comparison of last accuracy (A5 (↑), %) over methods with data augmentations in CIFAR10-Blurry10-Online. The results on
K = 1,000 is reported in the supplementary material. ‘CM+AA’ refers to CutMix+AutoAug.

K=200 K=500
Methods None CutMix RandAug AutoAug CM+AA None CutMix RandAug AutoAug CM+AA

EWC 40.0±2.1 41.9±1.0 44.7±0.6 48.3±3.5 50.3±1.2 55.6±4.6 56.2±0.7 60.0±5.3 64.8±0.6 67.5±0.9
Rwalk 38.6±1.5 41.3±2.2 46.5±2.9 48.7±2.7 51.8±1.6 53.6±3.1 57.5±1.4 62.5±3.0 64.7±1.0 67.2±1.5
iCaRL 37.4±1.3 37.9±3.8 38.4±1.4 41.8±2.3 43.3±2.2 45.9±3.0 46.9±1.4 51.3±1.1 51.6±2.8 56.6±1.2

GDumb 33.3±2.0 35.8±1.0 37.1±2.0 38.4±1.1 41.4±1.1 46.7±1.5 49.4±1.0 54.3±1.4 55.9±1.4 58.2±2.7
BiC 33.2±0.8 33.2±0.8 27.1±2.7 29.7±3.1 31.2±0.7 42.0±2.4 42.0±2.4 38.6±2.8 38.7±1.5 38.4±2.5

RM 44.4±1.4 45.9±2.4 49.9±2.9 55.3±2.2 54.6±1.6 60.8±0.8 62.0±3.5 68.6±0.7 69.6±2.9 71.1±0.1

Table 5: Comparison of uncertainty measures for RM on
CIFAR10-Blurry10-Online (K=500).

No MC RandAug MC AutoAug MC

A5 (%) 58.59 61.27 60.1

Table 6: Comparison of last accuracy (A5 (↑), %) over memory up-
date methods without data augmentations in CIFAR10-Blurry10-
Online. ‘CM+AA’ refers to CutMix+AutoAug.

K=200 K=1,000
Methods None CutMix CM+AA None CutMix CM+AA

Random 24.1 ± 1.4 24.0 ± 1.0 22.4 ± 0.8 46.7 ± 2.5 52.5 ± 4.2 52.7 ± 2.8
Reservoir 38.0 ± 2.2 39.1 ± 0.8 49.4 ± 1.8 64.6 ± 4.2 67.2 ± 5.3 75.5 ± 0.0
Prototype 34.6 ± 0.5 33.8 ± 1.9 26.5 ± 3.9 48.1 ± 5.7 41.1 ± 4.1 29.3 ± 1.5

Uncertainty (RM) 43.8 ± 1.2 42.4 ± 1.8 52.2 ± 1.3 64.7 ± 4.1 71.8 ± 4.3 76.1 ± 1.1

also enjoyed the performance enhancement by DA same as
RM. However, the enhancement from CutMix + AutoAug
used for RM is the most effective among all DAs. Note that
even when adding various DA, RM achieves the best per-
formance surpassing the other baselines.

6. Conclusion
We address a realistic and real-world class incremental

(continual) learning setup where tasks share the classes,
denoted as blurry-CIL. To effectively address such sce-
nario, we propose to enhance diversity of samples in an
episodic (or representative) memory. Specifically, we pro-
pose a new diversity-enhanced sampling method using per-
sample perturbation-based uncertainty. In addition, we em-

ploy diverse sets of data augmentation techniques to fur-
ther improve the diversity, that is representativeness and dis-
criminativeness of exemplars, induced from the proposed
memory update.

In blurry-CIL scenarios on CIFAR10, CIFAR100, and
ImageNet, our diversity-enhancing method (named Rain-
bow Memory or RM) not only outperforms the state-of-the-
art methods by large margins but also presents comparable
performances on disjoint and offline CIL setups. We fur-
ther investigate the effectiveness of the proposed method in
various blurry setups and even in the disjoint setup, along
with in-depth analysis for each proposed components. As
a future work, we will investigate the relationships between
uncertainty-based memory update and data augmentation in
training time and their effects on diverse CIL tasks.

Acknowledgement. JC is partly supported by the National Re-
search Foundation of Korea (NRF) (No.2019R1C1C1009283) and Insti-
tute of Information & communications Technology Planning & Evaluation
(IITP) grant funded by the Korea government (MSIT) (No.2019-0-01842,
Artificial Intelligence Graduate School Program (GIST) and No.2019-0-
01351, Development of Ultra Low-Power Mobile Deep Learning Semi-
conductor With Compression/Decompression of Activation/Kernel Data),
and Center for Applied Research in Artificial Intelligence (CARAI) grant
funded by Defense Acquisition Program Administration (DAPA) and
Agency for Defense Development (ADD) (UD190031RD). All authors
thank Sungmin Cha (NAVER AI Lab) and Hyeonseo Koh (GIST) for dis-
cussions, and NAVER Smart Machine Learning (NSML) [25] team for
GPU support.



References
[1] Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Ben-

gio. Gradient based sample selection for online continual
learning. In NeurIPS, pages 11816–11825, 2019. 2, 3, 5, 6

[2] Yogesh Balaji, Mehrdad Farajtabar, Dong Yin, Alex Mott,
and Ang Li. The effectiveness of memory replay in large
scale continual learning. arXiv preprint arXiv:2010.02418,
2020. 3

[3] Zalán Borsos, Mojmı́r Mutný, and A. Krause. Coresets via
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Supplementary Material for
Rainbow Memory: Continual Learning with a Memory of Diverse Samples

A. Accuracy Over the Tasks in Various CIL Se-
tups

The evaluation set for CIL methods consists of only the
seen classes. In disjoint setting, the number of seen classes
increases when new tasks come, since classes of each task
should be exclusive. Therefore, classes of evaluation sets in-
crease as the task iterations proceed and the accuracy tends
to decrease (see Figure 5a and 6a).

In blurry setting, on the other hand, the evaluation set
comprises of entire classes as the tasks are not disjoint.
Therefore, the model will see more data for each class as
task iterations proceed; e.g., Figure 5b and 6b show the ac-
curacy increases in later tasks in Blurry10 configuration. In-
terestingly, as the blurry ratio increases (e.g., from Blurry10
to Blurry30), the accuracy flattens for all tasks as shown in
Figure 5c and 6c. We believe it is because the class fre-
quency between minor and major classes in Blurry30 has
less gap compared to Blurry10 so that the model can train
well for all classes. Note that each task in the BlurryM con-
tains samples from its assigned major classes consisting of
(100−M)% and ones of minor classes consisting of re-
maining M%.

Figure 5 and 6 show that our proposed approaches (RM
w/o DA and RM) outperform other methods in the online
setting, but the margin reduces or goes to negative in the of-
fline setting as we mentioned in Section 4.2 Results in the
main paper. It is because blurry-online setting allows to see
the sample of current task once, and reuse only the exem-
plars stored in the memory. Hence, managing diversity in
the memory is more crucial compared to offline setting, and
thus maximally exhibiting the efficacy of our approaches.

B. Metrics Details
We use three metrics in Section 4. Experiments of the

main paper; Last accuracy (A), Last forgetting (F), and In-
transigence (I) defined in [5]. Here, we describe them in
detail.

Last accuracy (A). Last accuracy reports an accuracy af-
ter entire training ends, thus it evaluates model over all
classes being exposed during training.

Last forgetting (F). Forgetting measures how much the
accuracy for each task is degraded (i.e., forgotten) com-
pared to the best one in the training phases of previous tasks.
Hence, last forgetting reports an averaged forgetting metrics
over all tasks after entire training ends.

Intransigence (I). Intransigence measures the how much
the accuracy for each task is achieved compared to the

Table 7: Class splits for CIFAR10 CIL-benchmarks.

Seed 1 Seed 2 Seed 3

Task 1 truck, automobile airplane, dog ship, airplane
Task 2 frog, airplane ship, cat dog, truck
Task 3 cat, bird horse, truck automobile, frog
Task 4 dog, horse bird, frog horse, cat
Task 5 deer, ship automobile, deer bird, deer

upper-bound, which comes from the non-CIL setting, then
reports the average value for all tasks. Therefore, as model
learns new knowledge, intransigence will be improved.

C. Class Distribution over Tasks
As we mentioned in Section 4.1 Experimental Setup

of the main paper, classes of CIFAR10 and CIFAR100
were randomly split into five tasks (2 and 20 classes per
task, respectively), and classes of ImageNet were split into
ten tasks to generate CIL-benchmark. Moreover, we it-
erated every experiments three times with different class
splits from three different random seeds except for Ima-
geNet. Here, we summarize the class splits of CIFAR10
CIL-benchmarks used for our experiments in Table 7.
We will release the splits and other configuration along
with the code in our github repo: https://github.com/
clovaai/rainbow-memory.

D. Data Augmentation (K = 1,000)
As we mentioned in Table 4 of the main paper, we

present the accuracy over methods with data augmentations
in CIFAR10-Blurry10-Online when K = 1,000 in Table 8.
As shown in the table, it has the same tendency to the Table
4 of the main paper when K is equal to 200 and 500. RM
performs the best with 78.0%.

Table 8: Comparison of last accuracy (A5 (↑), %) over methods
with data augmentations in CIFAR10-Blurry10-Online on K =
1,000.

Methods None CutMix RandAug AutoAug
CutMix
+AutoAug

EWC 68.6±0.9 70.5±0.6 73.0±0.5 75.1±2.2 75.2±0.0
Rwalk 68.2±1.8 69.7±1.0 73.5±0.1 76.0±4.0 76.2±0.4
iCaRL 53.6±2.8 56.1±2.6 57.7±0.7 62.5±6.1 63.8±1.1

GDumb 59.1±0.3 64.2±1.2 67.5±1.3 67.6±2.2 70.3±0.6
BiC 47.8±3.0 47.8±3.0 45.3±7.7 45.6±5.8 48.5±5.0

RM (Ours) 70.9±1.5 74.7±0.7 76.4±0.4 77.5±0.7 78.0±0.5

https://github.com/clovaai/rainbow-memory
https://github.com/clovaai/rainbow-memory
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Figure 5: Illustration of accuracy changes as tasks are being learned in (a) CIFAR10-Disjoint-Online, (b) CIFAR10-Blurry10-Online, (c)
CIFAR10-Blurry30-Online settings.
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Figure 6: Illustration of accuracy changes as tasks are being learned in (a) CIFAR10-Disjoint-Offline, (b) CIFAR10-Blurry10-Offline, (c)
CIFAR10-Blurry30-Offline settings.


