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Abstract

Designing an efficient model within the limited compu-
tational cost is challenging. We argue the accuracy of a
lightweight model has been further limited by the design
convention: a stage-wise configuration of the channel di-
mensions, which looks like a piecewise linear function of the
network stage. In this paper, we study an effective channel
dimension configuration towards better performance than
the convention. To this end, we empirically study how to de-
sign a single layer properly by analyzing the rank of the out-
put feature. We then investigate the channel configuration
of a model by searching network architectures concerning
the channel configuration under the computational cost re-
striction. Based on the investigation, we propose a simple
yet effective channel configuration that can be parameter-
ized by the layer index. As a result, our proposed model
following the channel parameterization achieves remark-
able performance on ImageNet classification and transfer
learning tasks including COCO object detection, COCO in-
stance segmentation, and fine-grained classifications. Code
and ImageNet pretrained models are available at https:
//github.com/clovaai/rexnet.

1. Introduction

Designing a lightweight network architecture is cru-
cial for both researchers and practitioners. Popular net-
works [48, 16, 21, 47] designed for ImageNet classification
share a similar design convention where a low dimensional
input channel is expanded by a few channel expansion lay-
ers towards surpassing the number of classes. Lightweight
models [21, 47, 20, 61, 36, 50, 55, 3, 51] also follow this
configuration but further shrinks some channels for com-
putational efficiency, which leads to the promising trade-
offs between the computational cost and accuracy. In other
words, the degree of channel expansion at layers is quite
different, where earlier layers have a smaller channel di-
mension; the penultimate layer that largely expands dimen-
sion above the number of classes. This is to realize flop-
efficiency by narrow channel dimensions at earlier layers;

to get model expressiveness with sufficient channel dimen-
sion at the final feature (see Table 1).

This channel configuration was firstly introduced by Mo-
bileNetV2 [47] and became the design convention of con-
figuring channel dimensions in lightweight networks, but
how to adjust the channel dimensions towards the optimal
under the restricted computational cost has not been pro-
foundly studied. As shown in Table 1, even network ar-
chitecture search (NAS)-based models [55, 3, 20, 50, 52,
51, 39, 6, 7, 31] were designed upon the convention or lit-
tle more exploration within few options near the configura-
tion [11, 54] and focused on searching building blocks. Take
one step further from the design convention, we hypothesize
that the compact models designed by the conventional chan-
nel configuration may be limited in the expressive power
due to mainly focusing on flop-efficiency; there would exist
a more effective configuration over the traditional one.

In this paper, we investigate an effective channel config-
uration of a lightweight network with additional accuracy
gain. Inspired by the works [58, 62], we conjecture the ex-
pressiveness of a layer can be estimated by the matrix rank
of the output feature. Technically, we study with the aver-
aged rank computed from the output feature of a bunch of
networks that are randomly generated with random sizes to
reveal the proper range of expansion ratio at an expansion
layer and make a link with a rough design principle. Based
on the principle, we move forward to find out an overall
channel configuration in a network. Specifically, we search
network architectures to identify the channel configuration
yielding a better accuracy over the aforementioned conven-
tion. It turns out that the best channel configuration is pa-
rameterized as a linear function by the block index in a net-
work. This parameterization is similar to the configuration
used in the works [23, 13], and we reveal the parameteriza-
tion is also effective in designing a lightweight model.

Based on the investigation, we propose a new model
upon the searched channel parameterization. It turns out that
a simple modification upon MobileNetV2 could show re-
markable improvement in performance on ImageNet classi-
fication. Only with the new channel configuration, our mod-
els outperform the state-of-the-art networks such as Effi-
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Network Stem / Building blocks’ output channel dimensions Top-1 Params Flops

MobileNetV2 [47] 32 / 16(×1)-24(×2)-32(×3)-64(×4)-96(×3)-160(×3)-320(×1) 72.0% 3.4M 0.30B
FBNet-C [55] 16 / 16(×1)-24(×4)-32(×4)-64(×4)-112(×4)-184(×4)-352(×1) 74.9% 5.5M 0.38B
ProxylessNas-R [3] 32 / 16(×1)-32(×2)-40(×4)-80(×4)-96(×4)-192(×4)-320(×1) 74.6% 4.1M 0.32B
MNasNet-A1 [50] 32 / 16(×1)-24(×2)-40(×3)-80(×4)-112(×2)-160(×3)-320(×1) 75.2% 3.9M 0.31B
MixNet-M [52] 24 / 24(×1)-32(×2)-40(×4)-80(×4)-120(×4)-200(×4) 77.0% 5.0M 0.36B
EfficinetNet-B0 [51] 32 / 16(×1)-24(×2)-40(×2)-80(×3)-112(×3)-192(×4)-320(×1) 77.3% 4.8M 0.39B
AtomNas-C [39] 32 / 16(×1)-24(×4)-40(×4)-80(×4)-96(×4)-192(×4)-320(×1) 77.6% 5.9M 0.36B
FairNas-A [6] 32 / 16(×1)-32(×2)-40(×4)-80(×4)-96(×4)-192(×4)-320(×1) 77.5% 5.9M 0.39B
FairDARTS-C [7] 32 / 16(×1)-32(×2)-40(×4)-80(×5)-96(×3)-192(×4)-320(×1) 77.2% 5.3M 0.39B
SE-DARTS+ [31] 32 / 16(×1)-24(×4)-40(×4)-80(×4)-96(×4)-192(×4)-320(×1) 77.5% 6.1M 0.59B
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Table 1. Channel configurations in lightweight models. We present the output channel dimensions of the stem’s 3×3 convolution (e.g.,
16, 24, 32) and the building blocks with the number of repeated layers (e.g., ×1, ×2, ×3, ×4, ×5) in block index order. All the models after
MobileNetV2 have similar channel configurations to that of MobileNetV2, which have repeated channel dimensions for each stage.

cientNets [51] whose architectures were found by the com-
pound scaling with TPUs. This stresses the effectiveness of
our channel configuration over the convention and may en-
courage the researchers in the NAS field to adopt our chan-
nel configuration into the network search space for further
performance boosts. The performance improvement of Im-
ageNet classification is well transferred to the object detec-
tion and instance segmentation on the COCO dataset [33]
and the various fine-grained classification tasks. This indi-
cates our backbones work as strong feature extractors.

Our contributions are 1) a study on designing a single
layer (§3); 2) a network architecture exploration concern-
ing the channel configuration towards a simple yet effec-
tive parameterization (§4); 3) using our models to achieve
remarkable results on ImageNet [46] outperformed recent
lightweight models including NAS-based models (§5); 4)
revealing the high applicability of our ImageNet-pretrained
backbones transferring to several tasks including object de-
tection, instance segmentation and fine-grained classifica-
tion, which indicate the high expressiveness of our model
and the effectiveness of our channel configuration (§5).

2. Related Work
After appearance of AlexNet [30], VGG [48],

GoogleNet [49], and ResNet [16] which show signif-
icant improvements in ImageNet classification, much
lighter models such as [24, 21, 24] have been proposed
with lowered computational budgets. Using the new
operator depthwise convolution (dwconv) [21], several
architectures [5, 47, 61, 36] have been proposed with
further efficient architecture designs. Taking advantage of
the depthwise convolution could reduce a large amount
of learnable parameters, and showed significant FLOPs
reduction. Recently, structured network architecture search
(NAS) methods have been proposed to yield the lightweight
models [55, 11, 3, 20, 50, 52, 51, 54, 39, 6, 7, 31], and
EfficientNet [51] which based on compound scaling of
width, depth, and resolution, became a de facto state-of-art
model. Take one step forward from the existing lightweight
models, we focus on finding an effective channel config-

uration for an inverted bottleneck module, which is an
alternative to searching building blocks.

3. Designing an Expansion Layer
In this section, we study how to design a layer properly

considering the expressiveness, which is essential to design
an entire network architecture.

3.1. Preliminary

Estimating the expressiveness. In language modeling,
the authors [58] firstly highlighted that the softmax layer
may suffer from turning the logits to the entire class prob-
ability due to the rank deficiency. This stems from the low
input dimensionality of the final classifier and the vanished
nonlinearity at the softmax layer when computing the log-
probability. The authors proposed a remedy of enhancing
the expressiveness, which improved the model accuracy.
This implies that a network can be improved by dealing
with the lack of expressiveness at certain layers. Estimat-
ing the expressiveness was studied in a model compression
work [62]. The authors compressed a model at layer-level
by a low-rank approximation; investigated the amount of
compression by computing the singular values of each fea-
ture. Inspired by the works, we conjecture that the rank may
be closely related to the expressiveness of a network, and
studying it may provide an effective layer design guide.
Layer designs in practice. ResNet families [16, 17, 57]
have bottleneck blocks doubling the input channel dimen-
sions (i.e., 64-128-256-512 in order) to make the final di-
mension (2048) above the number of classes at last. The
recent efficient models [55, 11, 3, 20, 50, 52, 51, 54,
39, 6, 7, 31] increase the channel dimensions steadily in
inverted bottlenecks; therefore, they commonly involve a
large expansion layer at the penultimate layer. The out-
put dimension of the stem is set to 32 which expands the
3-dimensional input. Both of the inverted bottleneck [47]
and bottleneck block [16] have the convolutional expansion
layer with the predefined expansion ratio (mostly 6 or 4).
Are these layers designed correctly and just need to design
a new model accordingly?
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(a) 1×1 convolution
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(b) 3×3 convolution

0.2 0.4 0.6 0.8 1.0
Dimension Ratio

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

Ra
nk

 R
at

io

Linear
ReLU6
ReLU
LeakyReLU

ELU
SoftPlus
Hswish
SiLU

(c) Inverted Bot. (with conv)
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(d) Inverted Bot. (with dwconv)
Figure 1. Visualization of the output rank. We measure the rank ratio (i.e., rank/output channel dimension) vs. channel dimension
ratio (i.e., input channel dimension/output channel dimension) from diverse architectures averaged over 1,000 random-sized networks with
various nonlinear functions: (a) A single 1×1 convolution; (b) A single 3×3 convolution; (c) An inverted bottleneck with a 3×3 convolution;
(d) An inverted bottleneck with a 3×3 depthwise convolution [47]. We fundamentally observe that all the ranks are expanded above the
input channel dimensions by the nonlinear functions with different network architectures.

3.2. Empirical study
Sketch of the study. We aim to study a design guide of
a single expansion layer that expands the input dimension.
We measure the rank of the output features from the diverse
architectures (over 1,000 random-sized networks) and see
the trend as varying the input dimensions towards the out-
put dimensions. The rank is originally bounded to the input
dimension, but the subsequent nonlinear function will in-
crease the rank above the input dimension [1, 58]. However,
a certain network fails to expand the rank close to the out-
put dimension, and the feature will not be fully utilized. We
statistically verify the way of avoiding failure when design-
ing the network. The study further uncovers the effect of
complicated nonlinear functions such as ELU [8] or SiLU
(Swish-1) [18, 43] and where to use them when designing
lightweight models.

Materials. We generate a bunch of networks with the
building blocks consists of 1) a single 1×1 or 3×3 convo-
lution layer; 2) an inverted bottleneck block [47] with a 3×3
convolution or 3x3 depthwise convolution inside. We have
the layer output (i.e., feature) f(WX) with W∈Rdout×din

and the input X∈Rdin×N , where f denotes a nonlinear
function1 with the normalization (we use a BN [25] here).
dout is randomly sampled to realize a random-sized net-
work, and din is proportionally adjusted for each channel
dimension ratio (i.e., din/dout) in the range [0.1, 1.0]. N de-
notes the batch size, where we set N>dout>din. We com-
pute rank ratio (i.e., rank(f(WX))/dout) for each model
and average them. An inverted bottleneck block is similarly
handled as a single convolution layer to compute rank2.

Observations. Figure 1 shows how the rank changes with
respect to the input channel dimension on average. Dimen-
sion ratio (din/dout) on x-axis denotes the reciprocal of the

1We use ReLU [40], ReLU6 [47], LeakyReLU [37], ELU [8], Soft-
Plus [12], Hard Swish [20], and SiLU (Swish-1) [18, 43].

2We denote the input and output of an inverted bottleneck as the input
of the first 1×1 convolution; the output after the addition operation of the
shortcut and the bottleneck, respectively.

expansion ratio [47]. We observe the followings:

(i) Drastic channel expansion harms the rank. This holds
for a single convolution layer and an inverted bottle-
neck both as shown in Figure 1. The impact gets big-
ger with 1) an inverted bottleneck (see Figure 1c); 2) a
depthwise convolution (see Figure 1d)3;

(ii) Nonlinearities expand rank. Figure 1 shows averaged
rank is expanded above the input channel dimension by
nonlinear functions. They expand rank more at smaller
dimension ratio, and complicated ones such as ELU,
or SiLU do more;

(iii) Nonlinearities are critical for convolutions. Nonlinear-
ities expand the rank of 1×1 and 3×3 single convolu-
tions more than an inverted bottleneck (see Figure 1a
and 1b vs. Figure 1c and 1d).

What we learn from the observations. We learned the
followings: 1) an inverted bottleneck is needed to design
with the expansion ratio of 6 or smaller values at the first
1×1 convolution; 2) each inverted bottleneck with a depth-
wise convolution in a lightweight model needs a higher
channel dimension ratio; 3) a complicated nonlinearity such
as ELU and SiLU needs to be placed after 1×1 convo-
lutions or 3×3 convolutions (not depthwise convolutions).
Based on the knowledge, in the following section, we per-
form channel dimension searches to find an effective chan-
nel configuration for entire channel dimensions. This is to
uncover whether the conventional way of configuring chan-
nels shown in Table 1 is optimal or not, albeit the models
have worked well with high accuracy.

Verification of the study. We finally provide an exper-
imental backup to make sure what we have learned con-
tributes to improving accuracy. We train the models consist-

3Actually, many recent lightweight models avoid increasing the chan-
nel dimension drastically (i.e., dimension ratio is usually higher than 0.5)
at an inverted bottleneck; the models have inverted bottlenecks where the
first 1×1 convolution has the expansion ratio 3, 4, or 6. Figure 1a tells us
the design factors are tenable; the architects may know this empirically, but
we believe that we have provided an underlying reason through the study.
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Network FLOPs Top-1 Nuc. norm

Baseline 103M 48.0% 5997.5
+ Increase DR of 1×1 conv (1/20→1/6) 99M 52.1% 6655.9
+ Increase DR of IB (0.22→0.8) 105M 53.8% 6703.2
+ Replace ReLU6 with SiLU 105M 54.6% 6895.9

Table 2. Factor analysis of the study. We use four different mod-
els with similar computational complexity and report the accu-
racy and rank represented by the nuclear norm of the final feature.
We average all the numbers over three models trained on CIFAR-
100 [29]. Each factor successively improves the accuracy and ex-
pands the rank without extra computational cost.

ing of two inverted bottlenecks (IBs)4 to adjust the channel
dimension ratio (DR) of IBs and the first 1×1 convolutions
in each IB. Starting from the baseline with the low DR 1/20,
we successively study through the picked models with 1) in-
creasing DR of the first 1×1 conv to 1/6; 2) increasing DR at
every IB from 0.22 to 0.8; 3) replacing the first ReLU6 with
SiLU in each IB. Table 2 shows each factor works well, and
the rank and accuracy increase together.

4. Designing with Channel Configuration
4.1. Problem Formulation

Our goal is to reveal an effective channel configuration
of designing a network under the computational demands.
We formulate the following problem:

max
ci,i=1...d

Acc(N (c1, . . . cd))

s.t. c1 ≤ c2 ≤ · · · ≤ cd−1 ≤ cd,

Params(N) ≤ P, FLOPs(N) ≤ F, (1)

where Acc denotes the top-1 accuracy of the model; ci de-
notes output channel of i-th block among d building blocks;
P and F denote the target parameter size and FLOPs. We
involve the monotonic increasing of ci because this contains
the channel configurations shown in Table 1; we note that
the opposite case, channel dimension consistently decreas-
ing, requires a hard-to-use amount of FLOPs. Here, we are
not targeting a hardware-specific model, so we concern with
FLOPs rather than inference latency. Notice that many NAS
methods [55, 3, 20, 50, 52, 51, 39, 6, 7, 31] search the net-
work N with fixing ci with based on the predefined channel
configurations as shown in Table 1, but on the other hand
we search ci while fixing the network N .

4.2. Searching with channel parameterization
We observe a general trend of architectural shapes for

diverse computational demands through searches. Alterna-
tive to optimizing eq.(1) directly, we represent the channel
dimensions at each building block with a piecewise linear
function, which can reduce the search space. We parame-
terize the channel dimensions as ci = af(i) + b, where

4The models with a single IB cannot be similar in computational com-
plexity with the fixed stem, so the models should contain at least two IBs.

a and b are to be searched; let f(i) as a piecewise linear
function by picking a subset of f(i) up from 1 . . . d. In
this fashion, the channel parameterizations contain the con-
ventional MobileNetV2-based channel configurations (i.e.,
stage-wise channel configurations) shown in Table 1. We
adopt the CIFAR-10 and CIFAR-100 datasets [29] as done
in NAS methods [35, 4, 31] to search the parameterization.

To control the other variables, we set all the networks
that have the fixed channel dimension at the stem 3×3 con-
volution of 16 followed by a BN [25] with a ReLU and have
the large expansion layer at the penultimate layer. We use
the original inverted bottleneck (expansion ratio of 6) [47]
as our building blocks, which is a fundamental block of
lightweight NAS methods, so we do not search the building
blocks’ expansion ratio. The chosen elements are based on
the above investigation of single-layer design. Optimization
is done alternatively by searching and training a network.
We train each model for 30 epochs for faster training [42]
and the early stopping strategy [31]. Each training is re-
peated three times for averaging the accuracies to reduce
the accuracy fluctuation caused by random initialization.

4.3. Search Results
We perform individual searches under different con-

straints of computational costs to provide reliable and gen-
eralizable search results. We assign four search constraints
to aim to search across different target model sizes. Af-
ter each search, we collect top-10%, middle-10% (i.e., the
models between top-50% and 60%), and bottom-10% mod-
els in terms of the model accuracy from 200 searched mod-
els to analyze them. To this end, we first visualize the col-
lected models’ channel configuration in Figure 2 of each
search; we then report the detailed performance statistics of
the models and the best/worst-performing models’ channel
configuration in Table 3.

Figure 2 illustrates the clear trends in which channel con-
figuration is more effective in terms of accuracy. We ob-
serve that the linear parameterizations by the block index as
colored with red enjoy higher accuracies while maintaining
similar computational costs. This parameterization is regu-
larly found throughout searching in diverse environments
as shown in the figure. Note that the best models in Ta-
ble 3 have the channels configured with linearly increasing
that is identical to the linear parameterization. The models
in green have highly reduced the input-side channels and
therefore, most of the weight parameters are placed at the
output-side resulting in the loss of accuracy. In addition, in-
triguingly, blue represents the models at the middle 10%-
accuracy, which looks similar to the channel configurations
in Table 1. Their conventional configurations are designed
to attain a flop-efficiency by limiting the channels at earlier
layers and giving more channels close to the output. There-
fore, we may safely suggest that we need to change the con-
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(d) 42-depth models

Figure 2. Visualization of the searched models’ channel dimensions vs. block index. Red: top-10%; blue: middle-10%; green: bottom-
10% accuracy models; we plot the averaged channel configurations with the 1-sigma range over each searched candidate.

Search constraints Ranking Acc (%) Params (M) FLOPs (M) Best and worst models among searched configurations

(a) Models with 5 inverted bot.,
# Params'0.2M, FLOPs'30M

Top-10% 63.1±0.1 0.2±0.0 30±1 Best: 34-34-45-55-66 (Acc: 63.4%)
Worst: 36-36-36-36-83 (Acc: 61.1%)

Mid-10% 62.2±0.0 0.2±0.0 30±1
Bot-10% 61.4±0.2 0.2±0.0 30±1

(b) Models with 9 inverted bot.,
# Params'0.5M, FLOPs'100M

Top-10% 68.8±0.1 0.5±0.0 101±5 Best: 24-33-42-50-59-68-77-85-94 (Acc: 68.9%)
Worst: 39-39-39-39-39-39-39-87-158 (Acc: 67.6%)

Mid-10% 68.0±0.1 0.5±0.0 100±6
Bot-10% 67.4±0.3 0.5±0.0 97±8

(c) Models with 9 inverted bot.,
# Params'1.0M, FLOPs'200M

Top-10% 71.0±0.1 1.0±0.0 210±15 Best: 30-45-59-74-88-103-117-132-146 (Acc: 71.1%)
Worst: 47-47-70-70-70-70-70-70-364 (Acc: 69.6%)

Mid-10% 70.3±0.0 1.0±0.0 198±18
Bot-10% 69.9±0.2 1.0±0.0 200±15

(d) Models with 13 inverted bot.,
# Params'3.0M, FLOPs'300M

Top-10% 73.0±0.1 3.0±0.0 351±5 Best: 34-34-34-40-64-88-112-136-160-184-208-232-256 (Acc: 73.2%)
Worst: 52-52-52-52-52-52-52-52-52-115-263-263-412 (Acc: 71.6%)

Mid-10% 72.1±0.1 3.0±0.0 351±5
Bot-10% 71.7±0.1 3.0±0.0 351±6

Table 3. Detailed searched channel configurations. We provide the detailed individual searched results under the different search con-
straints. Along with Figure 2, we report the detailed numbers including the averaged accuracy, # of parameters, FLOPs over top-10%,
midddle-10%, and bottom-10% accuracy models. We further present each of the best and the worst models’ channel configurations.

vention (blue) towards the new channel configuration (red)
that can achieve additional accuracy gains.

We have additional search results shown in Figure 4
when fixing the network depth and searching under the dif-
ferent computational costs; we found identical linear pa-
rameterizations. Furthermore, we perform the same exper-
iment on CIFAR-10 with the constraints of computational
costs and found the same trends in Figure A1. As men-
tioned earlier, we believe that the success of the works [13,
23] may stem from similar parameterizations. In the case
of training the 18-depth models, which have about 30
MFLOPs, it takes 1.5 GPU days for searching and training
about 100 models for individual 30 epochs training with 3
runs for training each model. The training cost for the entire
search is 30MFLOPs×30 epochs×3 runs×100models =
2.7×100GFLOPs epochs, and this is smaller than train-
ing a single ImageNet model ResNet50 for 100 epochs
(4.0GFLOPs×100 epochs). Although the actual training
time is less than that of ResNet50, comparing directly with
the ImageNet model may be inappropriate. We provide a
rough estimate of the amount of computation in practice.

4.4. Network upgrade
We rebuild the existing model based on the investigations

in practice. From the baseline MobileNetV2 [47] which in-
troduced the convention of channel configuration, we only
reassign each output channel dimension of inverted bottle-
necks by following the parameterization. We use the iden-
tical setting of the stem (i.e., 3×3 convolution with BN and

ReLU6) and the inverted bottleneck with the expansion ra-
tio 6. We use the same large expansion layer at the penul-
timate layer. To fairly compare with the aforementioned
lightweight models MobileNetV3 [20], MixNet [52], Effi-
cientNet [51], AtomNas [39], FairNAS [6], FairDARTS [7],
DART+ [31], we further replace ReLU6 with SiLU [18, 43]
and adopt SE [22] in the inverted bottlenecks.

Based on the investigation in §3, we replace ReLU6 only
after the first 1×1 convolution in each inverted bottleneck
because we observed the layer with a smaller dimension ra-
tio needs to be more addressed; the second depthwise con-
volution has the channel dimension ratio of 1, so we do not
replace ReLU6 here. This can further realize the simplic-
ity of model design and benefit from faster training speeds
since ReLU6s remain. Using other nonlinear functions such
as ELU shows similar accuracy gains (see Table A2, but we
use SiLU (Swish-1) for a fair comparison with the afore-
mentioned lightweight models which use SiLU.

Note that only with these simple modifications, our
model outperforms NAS-based methods in many experi-
ments (§5), which signifies the importance of the channel
configuration. We call our model Rank Expansion Networks
(ReXNet) as observed the actual rank expansion in §6. Ad-
ditionally, we build another model with the linear parame-
terization upon MobileNetV1 [21], which shows a large ac-
curacy improvement (+2.3pp) over the baseline 72.5%. We
call this model ReXNet (plain). The detailed model specifi-
cation of ReXNets is provided in Appendix B.
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Network Top-1 Top-5 FLOPs Params

MobileNetV1 [21] 70.6% 89.5% 0.56B 4.2M
MobileNetV2 [47] 72.0% 91.0% 0.30B 3.5M
MobileNetV2 (x1.4) [47] 74.7% 92.5% 0.59B 6.9M
ShuffleNetV1 (x2) [61] 73.7% - 0.52B -
ShuffleNetV2 (x2) [36] 75.4% - 0.60B -

NASNet-A [63] 74.0% 91.7% 0.56B 5.3M
AmoebaNet-A [44] 75.5% 92.0% 0.56B 5.1M
PNASNet [34] 74.2% 91.9% 0.59B 5.1M
DARTS [35] 73.1% 91.0% 0.60B 4.9M
FBNet-C [55] 74.9% - 0.38B 5.5M
Proxyless-R [3] 74.6% 92.2% 0.32B 4.1M
P-DARTS [4] 75.6% 92.6% 0.56B 4.9M

MobileNetV3-Large† [20] 75.2% - 0.22B 5.4M
MnasNet-A3† [50] 76.7% 93.3% 0.40B 5.2M
MixNet-M† [52] 77.0% 93.3% 0.36B 5.0M
EfficientNet-B0† [51] 76.7% - 0.39B 5.3M
AtomNAS-C+† [39] 77.6% 93.6% 0.36B 5.9M
EfficientNet-B0†∗ [51] 77.3% - 0.39B 5.3M
FairNAS-A†∗ [6] 77.5% 93.7% 0.39B 5.3M
FairDARTS-C†∗ [7] 77.2% 93.5% 0.39B 5.3M
SE-DARTS+†∗ [31] 77.5% 93.6% 0.59B 6.1M

ReXNet (×1.0)† 77.3% 93.4% 0.40B 4.8M
ReXNet (×1.0)†∗ 77.9% 93.9% 0.40B 4.8M

Table 4. Comparison of ImageNet performance. We compare
ReXNet (×1.0) with other lightweight models including structured
NAS-based models. We report the accuracy at the final epoch of
training. †: used SE and SiLU ; ∗: used additional techniques such
as AutoAug, RandAug, or Mixup.

5. Experiment

5.1. ImageNet Classification

Training on ImageNet. We train our model on the Im-
ageNet dataset [46] using the standard data augmenta-
tion [49] with stochastic gradient descent (SGD) and mini-
batch size of 512 on four GPUs. Learning rate is ini-
tially set to 0.5 and is scheduled by cosine learning rate
scheduling. Weight decay is set to 1e-5. Table 4 show the
performance comparison with popular lightweight mod-
els where all the reported models are trained and evalu-
ated with 224×224 image size. Comparing with the mod-
els [20, 50, 52, 51] with SE [22] and SiLU5 [18, 43], our
model outperforms the most of the models searched by NAS
including MobileNetV3-Large, MNasNet-A3, MixNet-M,
and EfficientNet-B0 (without AutoAug [9]) with at least
+0.3pp accuracy improvement. Our model outperforms
MixNet-M and AtomNas-C+ which use mixed-kernel op-
erations under similar computational costs.

Additionally, we train our model with RandAug [10] to
compare it fairly with the NAS-based models [51, 6, 7, 31]
using additional regularizations (denoted by ∗ in Table 4)
such as Mixup [60], AutoAug [9], and RandAug [10],
our model improves all the models including EfficientNet-
B0 (with AutoAug), FairNas-A, FairDARTS-C, and SE-

5MobileNetV3 uses Hard Swish [20], and MnasNet does not use SiLU.
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Figure 3. ImageNet accuracy vs. FLOPs and latencies. We vi-
sualize the numbers of ReXNets (×1.0, ×1.3, ×1.5, and ×2.0) and
EfficientNets-B0, B1, B2, and B3 in Table 5. We observe ReXNets
outperforms each of the EfficientNet counterpart in practice.

Network Top-1 Top-5 FLOPs Params CPU GPU

ReXNet (×0.9) 77.2% 93.5% 0.35B 4.1M 45ms 20ms

Eff-B0 [51] 77.3% 93.5% 0.39B 5.3M 47ms 23ms
ReXNet (×1.0) 77.9% 93.9% 0.40B 4.8M 47ms 21ms

Eff-B1 [51] 79.2% 94.5% 0.70B 7.8M 70ms 37ms
ReXNet (×1.3) 79.5% 94.7% 0.66B 7.6M 55ms 28ms

Eff-B2 [51] 80.3% 95.0% 1.0B 9.2M 77ms 48ms
ReXNet (×1.5) 80.3% 95.2% 0.9B 9.7M 59ms 31ms

Eff-B3 [51] 81.7% 95.6% 1.8B 12M 100ms 78ms
ReXNet (x2.0) 81.6% 95.7% 1.5B 16M 69ms 40ms

Table 5. Scalablity of our models. We adjust ReXNet (×1.0) via
width multipliers to compare with EfficientNets [51] on ImageNet
dataset. We report the overall performances with CPU and GPU
latencies in practice.

DARTS+ by at least +0.4pp6. Strikingly, our model does
not require further searches, but it either outperforms or is
comparable to NAS-based models.

Comparison with Efficientnets. We compare ReXNets
with EfficientNets [51] about model scalability with the per-
formances. To this end, we adopt the width multiplier con-
cept [21, 47, 61, 36, 20] for scaling. Note that all our mod-
els are trained with the fixed resolution 224×224 unlike Ef-
ficientNets trained with the resolutions from 224×224 to
600×600. We do not use the method such as FixResNet [53]
which performs additional training.

Table 5 shows our models adjusted by the multiplier
from ×0.9 to ×2.0 with remarkable accuracy increments (see
more models in Appendix B.3). We measure CPU and GPU
inference speeds to show the efficiency; we average the la-
tencies over 1,000 runs with the batch size 1 on an Intel
Xeon CPU E5-2630 and the batch size 64 on a V100 GPU,
respectively. Figure 3 visualizes our models’ computational
efficiency compared with EfficientNets; as the model size
is larger, we observe that our models are much faster than
EfficientNets. Notice that ReXNet (×2.0) is about 1.4× and
2.0× faster than EfficientNet-B3 on CPU and GPU, respec-
tively with almost the same accuracy and improves +2.5pp
top-1 accuracy on EfficientNet-B1 at a similar speed. This
benefit may come from the fixed resolution and network
depth for training and inference over all the models which
can reduce the memory access time.

6ReXNet (×1.0) has been improved to 78.1% trained by the novel opti-
mizer AdamP [19] replacing SGD and further improved to 78.4% trained
with the new training method ReLabel [59], respectively.
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Model Input Size Bbox AP at IOU Params FLOPsAP AP50 AP75

MobileNetV1 [21] + SSDLite 320×320 22.2 - - 5.1M 1.31B
MobileNetV2 [47] + SSDLite 320×320 22.1 - - 4.3M 0.79B
MobileNetV3 [20] + SSDLite 320×320 22.0 - - 5.0M 0.62B
MnasNet-A1 [50] + SSDLite 320×320 23.0 - - 4.9M 0.84B

EfficientNet-B0 [51] + SSDLite† 320×320 23.5 39.5 23.8 6.2M 0.97B
ReXNet (×0.9) + SSDLite 320×320 24.7 41.4 24.9 5.0M 0.88B
ReXNet (×1.0) + SSDLite 320×320 25.3 42.3 25.6 5.7M 1.01B

EfficientNet-B1 [51] + SSDLite† 320×320 25.8 42.5 26.2 8.7M 1.35B
EfficientNet-B2 [51] + SSDLite† 320×320 26.6 43.6 27.2 10.0M 1.55B
ReXNet (×1.3) + SSDLite 320×320 27.3 45.2 27.8 8.4M 1.60B

Table 6. COCO object detection results with SSDLite [47]. We report box AP scores on testdev2017 of our models with SSDLite
comparing with lightweight models (FLOPs'1.0B). †: the model performances are trained by ourselves.

Backbone Input Size Bbox AP at IOU Params FLOPsAP AP50 AP75

EfficientNet-B0 [51] + FPN 1200×800 38.0 60.1 40.4 21.0M 123.0B
ReXNet (×0.9) + FPN 1200×800 38.0 60.6 40.8 20.1M 123.0B

ResNet50 [16] + FPN 1200×800 37.6 58.2 40.9 41.8M 202.2B
ReXNet (×2.2) + FPN 1200×800 41.5 64.0 44.9 33.0M 153.8B

Table 7. COCO object detection results with Faster RCNN [45] and FPN [32]. We report box APs on val2017.
Dataset Network Top-1 FLOPs Params

Food-101 [2]
ResNet50 [16] 87.0% 4.1B 25.6M
EfficientNet-B0 [51] 87.5% 0.4B 5.3M
ReXNet (×1.0) 88.4% 0.4B 4.8M

Stanford Cars [28]
ResNet50 [16] 92.6% 4.1B 25.6M
EfficientNet-B0 [51] 90.7% 0.4B 5.3M
ReXNet (×1.0) 91.5% 0.4B 4.8M

Aircraft [38]
ResNet50 [16] 89.4% 4.1B 25.6M
EfficientNet-B0 [51] 87.1% 0.4B 5.3M
ReXNet (×1.0) 89.5% 0.4B 4.8M

Flowers-102 [41]
ResNet50 [16] 97.7% 4.1B 25.6M
EfficientNet-B0 [51] 97.3% 0.4B 5.3M
ReXNet (×1.0) 97.8% 0.4B 4.8M

Table 8. Transfer learning results on fine-graned datasets. Our
ReXNet (×1.0) is more efficient than ResNet50 and EfficientNet-
B0, yet transfers well to the various datasets.

5.2. COCO object detection
Training SSDLite. We validate our backbones through
object detection on the COCO dataset [33] in SSDLite [47]
which has lightweight detection heads suitable for seeing
the feature extractor’s capability. We follow the identical
design elements [47, 20, 50] by building the first head on
top of the final expansion layer which has the stride 16 and
another head on top of the final layer. We train ReXNets
(×0.9, ×1.0, and ×1.3) and EfficientNets-B0, B1, and B2 in
SSDLites with the same training settings [47, 20, 50] in-
cluding 320×320 image resolution for fair comparison.

Table 6 shows ours largely outperform the other back-
bones with comparable computational costs. ReXNet (×1.0)
outperforms EfficientNet-B1 trained with 240×240 by
+1.8pp, and ReXNet (×1.3) outperforms EfficientNet-B2
trained with 260×260 by +0.7pp under similar computa-
tional costs. Interestingly, ReXNet (×0.9) achieves +1.2pp
AP improvement over EfficientNet-B0 with less computa-

tional costs. The large AP improvements indicate our chan-
nel dimension configuration can help finetuning as well.
We provide more detection results in Appendix C.2. Note
that ReXNet (×0.9) is faster than EfficientNet-B0 (75ms vs.
77ms), and ReXNet (×1.3) is faster than EfficientNet-B2
(88ms vs. 101ms) on an Intel Xeon CPU E5-2630.

Training Faster RCNN. We adopt Faster RCNN [45] to
explore the maximal performance of ReXNets. We plug
ReXNets (×0.9) and (×2.2), EfficientNet-B0, and ResNet50
into FPN [32] and train with the image size of 1200×800
following the original setting [45, 32] such as freezing
all BNs. Table 7 shows ReXNets’ superiority over others;
ReXNet (×0.9) and ReXNet (×2.2) improves EfficientNet-
B0 and ResNet50 by +0.5pp and +3.9pp APs, respectively
with smaller computational costs; ReXNet (×2.2) achieves
41.5 AP only with the standard Faster RCNN framework
without any bells and whistles.

5.3. Fine-grained classifications
We finetune the ImageNet-pretrained models on the

datasets Food-101 [2], Stanford Cars [28], FGVC Air-
craft [38], and Oxford Flowers-102 [41] to verify the trans-
ferability. We compare ReXNet (×1.0) with ResNet50 [16]
and EfficientNet-B0 [51] on each dataset. We exhaustively
search the hyper-parameters including learning rate and
weight decay for the best results as done in the work [27]
for each model. We train all the layers using SGD with the
same learning rates without using additional training tech-
niques. Training and evaluation are done with 224×224 im-
age size; we use center-cropped images from the resized
images with the shorter side of 256 for evaluation. Ta-
ble 8 shows ReXNet (×1.0) outperforms EfficientNet-B0
for all the datasets with large margins and mostly surpasses
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Backbone Input Size Mask AP at IOU Bbox AP at IOU Params FLOPs
AP AP50 AP75 APbb APbb

50 APbb
75

EfficientNet-B0 [51] + FPN 1200×800 34.8 56.8 36.6 38.4 60.2 40.8 23.7M 123.0B
ReXNet (×0.9) + FPN 1200×800 35.2 57.4 37.1 38.7 60.8 41.6 22.8M 123.0B

ResNet50 [16] + FPN 1200×800 34.6 55.9 36.8 38.5 59.0 41.6 44.2M 206.5B
ReXNet (×2.2) + FPN 1200×800 37.8 61.0 40.2 42.0 64.5 45.6 35.6M 153.8B

Table 9. COCO instance segmentation results with Mask RCNN [15] and FPN [32]. We report box and mask APs on val2017.
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Figure 4. Searched configuration under fixed depth. We sim-
ilarly plot the searched channel dimensions of top-10% models
from the searched candidates with fixed depths. The search con-
straints (FLOPs) are Red: 70M (left) 200M (right); Blue: 50M
(left) and 150M (right); Green: 30M (left) and 100M (right).

ResNet50 which has 5× more parameters. This indicates our
backbone can perform as a more generalizable feature ex-
tractor than other models even with fewer parameters and
may reflect the effectiveness of our channel configuration.

5.4. COCO Instance Segmentation
We use Mask RCNN [15] to validate the performance

of ReXNets on instance segmentation. We train the mod-
els with the identical setting in the Faster RCNN training in
Table 7. Table 9 shows our backbones’ efficiency; ReXNet
(×0.9) outperforms EfficientNet-B0 by +0.6pp mask AP
and +0.5pp bbox AP with fewer parameters; ReXNet (×2.2)
gains +3.2pp mask AP and +3.5pp bbox AP over ResNet50
with much less computational complexity.

6. Discussion
Fixing network depth and searching models. We fur-
ther verify the linear channel parameterization by search-
ing for new models under different constraints. We fix the
network depth as 18 and 30 and give the constraints with
FLOPs of 30M, 50M, and 70M for 18-depth models; 100M,
150M, and 200M for 30-depth models, respectively. Even-
tually, Figure 4 shows all the top 10% models have identi-
cal shapes that are linear functions but have different slopes
due to the different FLOPs. This shows that linear chan-
nel configurations outperform the conventional configura-
tion for various computational demands.

Rank visualization. We study the model expressiveness
by analyzing the rank of trained models. This analysis is to
see how the linear parameterization affects the rank. We vi-
sualize the rank computed from the trained models in two
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Figure 5. Visualization of rank. The models with higher accu-
racy have higher nuclear norms (left); our ReXNet has larger sin-
gular values than MobileNetV2 (right).

manners; we show the distribution of accuracy vs. rank (rep-
resented by the nuclear norm) from 18-depth models in §4;
we then compare MobileNetV2 with ReXNet (×0.9) by vi-
sualizing the cumulative distribution of the singular values
that are normalized to [0, 1] computed from the features of
the images in the ImageNet validation set. As shown in Fig-
ure 5, we observe 1) a higher-accuracy model has a higher
rank; 2) ReXNet clearly expands the rank over the baseline.

7. Conclusion
In this work, we have studied a new approach to de-

signing lightweight models. We have conjectured that the
conventional stage-wise channel configurations which have
widely used in NAS methods after proposed by Mo-
bileNetV2 have limited the model accuracy; if we find a
more effective channel configuration, the models would
have accuracy gains. We first studied an appropriate way
of designing a single building block and a layer targeted
to lightweight models; we then proposed a search method
for a channel configuration via piece-wise linear functions
of block index. The search space contains the conventions,
and we found an effective channel configuration which
can be parameterized by a linear function of the block in-
dex. Based on the parameterization, we have achieved a
new model which could outperform the recent lightweight
models including NAS-based models on ImageNet dataset.
Our ReXNets further showed remarkable finetuning per-
formances on COCO object detection, instance segmenta-
tion, and fine-grained classifications. Consequently, we be-
lieve our work highlighted a new perspective of architecture
search that helps to search with.
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[8] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochre-
iter. Fast and accurate deep network learning by exponential
linear units (elus). In ICLR, 2016. 3, 12

[9] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasude-
van, and Quoc V Le. Autoaugment: Learning augmentation
strategies from data. In CVPR, 2019. 6

[10] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V
Le. Randaugment: Practical data augmentation with no sep-
arate search. arXiv preprint arXiv:1909.13719, 2019. 6, 12,
13

[11] Xiaoliang Dai, Peizhao Zhang, Bichen Wu, Hongxu Yin, Fei
Sun, Yanghan Wang, Marat Dukhan, Yunqing Hu, Yiming
Wu, Yangqing Jia, et al. Chamnet: Towards efficient network
design through platform-aware model adaptation. In CVPR,
2019. 1, 2

[12] Charles Dugas, Yoshua Bengio, François Bélisle, Claude
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Appendix

A. Additional Search Results

We provide the additional results of searching an ef-
fective channel dimension configuration by the proposed
search method described in §4 to show the consistent
trend of the searched channel configurations over dif-
ferent datasets. We perform searches on the CIFAR-10
dataset [29] with the identical search constraints presented
in Table 3.

Following the previous analysis, we collect top-10%,
middle-10% (i.e., the models between the top 50% and
60%), and bottom-10% models in terms of the model ac-
curacy from 200 searched models to show the channel con-
figurations with the performance statistics after each search.
Figure A1 shows that the searched models as colored with
red, which look linear functions, have higher accuracy while
maintaining the similar computational costs. These simi-
lar trends are regularly observed while searching under the
various constraints, and we can parameterize the models
with a linear function by the block index again. The models
in green have highly reduced the input-side channels and
many output-side weight parameters resulting in the loss
of accuracy. In addition, blue represents the models at the
middle-10% accuracy, which looks similar to the conven-
tional channel configurations such as MobileNetV2’s [47].

All the searched channel configurations which can be ap-
proximated to linear parameterizations by the block index
have higher accuracy (red) then blue ones, which are show
the identical trends to Figure 2. It is worth noting that all the
red lines in Figure A1 have higher slopes compared to those
in Figure 2 in the main paper. This is because CIFAR-100
models have more parameters at the final classifier due to a
larger number of classes, so the early layers employ fewer
parameters than those of the models trained on the CIFAR-
10 dataset.

B. Network Upgrade (cont’d)

In this section, we give further information of
ReXNets and introduce our new model rebuilt upon Mo-
bileNetV1 [21] called ReXNet (plain) which does not use
skip connections [16, 47] at each building block.

B.1. ReXNet (cont’d)

We have described our upgraded model based on Mo-
bileNetV2 [47], which follows the searched linear parame-
terization on channel dimensions with some minor modifi-
cations in §4.4. Here, we illustrate the network architecture
of our ReXNet (×1.0) in Figure A2a. We observe ReXNet
(×1.0) has the identical block configuration to that of Mo-
bileNetV2 where a single-type building block MB6 3x3,
which is the original inverted bottleneck [47] with the 3×3
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Figure A1. Visualization of searched models’ channel dimen-
sion on CIFAR-10. Red: top 10%-accuracy models; Blue: middle
10% models; Green: bottom 10% models; we plot the averaged
channel configurations with the 1-sigma range and report the av-
eraged top-1 accuracy over each searched candidate.

depthwise convolution and the expansion ratio 6 is used as
the basic building block except for the first inverted bot-
tleneck. Every inverted bottleneck block that expands the
channel dimensions (except for the downsampling blocks)
has a skip connection where the expanded channel dimen-
sions are padded with zeros.

B.2. ReXNet (plain)

We now present a new model redesigned based on Mo-
bileNetV1 [21]. We choose MobileNetV1 as another base-
line because we intend to show a network architecture with-
out skip connections (so-called a plain network) is able to be
redesigned by following the proposed linear parameteriza-
tion to show performance improvement. We do not change
the depth of MobileNetV1. We use the identical configura-
tion at the stem (i.e., 3×3 convolution with BN and ReLU)
and the same large expansion layer at the penultimate layer.

We reassign the output channel dimensions of each 1×1
convolution as we did for ReXNet in §4.4. Following the
investigation of single-layer design, we only replace the Re-
LUs with SiLU [18, 43] after the expansion layers such as
all the 1×1 convolutions. We leave the ReLUs right after
each depthwise convolution where the channel dimension
ratio is 1. All the other channel dimensions including the
stem and the penultimate layer are not changed. Since the
network is a plain network, we do not adopt SE [22]. Our
ReXNet (plain) is illustrated in Figure A2b. We provide the
ImageNet performance of ReXNet (plain) in Table A1. We
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Figure A2. Architectures of ReXNet (×1.0) and ReXNet (plain). MB1 and MB6 refer to MobileNetV2 [47]’s inverted bottlenecks with
the expansion ratio of 1 and 6, respectively. Each model has almost similar architectural elements compared to the original ones.

Network Top-1 Top-5 FLOPs Params. CPU GPU

ReXNet (plain) 74.8% 91.9% 0.56B 3.4M 22ms 10ms

ReXNet (×0.9) 77.2% 93.5% 0.35B 4.1M 46ms 20ms
ReXNet (×1.0) 77.9% 93.9% 0.40B 4.8M 47ms 21ms
ReXNet (×1.1) 78.6% 94.1% 0.48B 5.6M 51ms 24ms
ReXNet (×1.2) 79.0% 94.3% 0.57B 6.6M 53ms 26ms
ReXNet (×1.3) 79.5% 94.7% 0.66B 7.6M 55ms 28ms
ReXNet (×1.4) 79.8% 94.9% 0.76B 8.6M 57ms 30ms
ReXNet (×1.5) 80.3% 95.2% 0.86B 9.7M 59ms 31ms

ReXNet (×2.0) 81.6% 95.7% 1.5B 16M 69ms 40ms
ReXNet (×2.2) 81.7% 95.8% 1.8B 19M 73ms 46ms
ReXNet (×3.0) 82.8% 96.3% 3.4B 34M 96ms 61ms

Table A1. Performance of ReXNets. We report the Ima-
geNet [46] performances of ReXNets. In addition to Table 5 in the
main paper, we provide more models including ReXNet (plain)
and ReXNets (×1.1, ×1.2, ×1.4, ×2.2, ×3.0). All the models are
trained and evaluated with the resolution 224×224.

train the model by following the identical training setup
in §5.1. As shown in Table A1, ReXNet (plain) does not
achieve the best accuracy, but it is extremely faster than
ReXNets on both CPU and GPU even with larger FLOPs.

B.3. Overall models

In addition to the models introduced in Table 5, we pro-
vide additional models adjusted by different width multipli-
ers. Table A1 shows the ReXNets (×1.1, ×1.2, ×1.4, ×2.2,
and ×3.0) and our new model ReXNet (plain) with the cor-
responding performances.

C. Further Empirical Studies
C.1. Impact of nonlinear functions.

We have studied how nonlinearity can affect rank in the
investigation in S3. We further study the actual impact of
them by training the models on ImageNet. We train ReXNet
(×1.0) with ELU, SoftPlus, LeakyReLU, ReLU6, and SiLU

Nonlinearity Top-1 (%) Top-5 (%) FLOPs Params.

ReLU6 [47] 77.3 93.5 0.40B 4.8M
Leaky ReLU [37] 77.4 93.6 0.40B 4.8M
Softplus [12] 77.6 93.8 0.40B 4.8M
ELU [8] 77.6 93.7 0.40B 4.8M
SiLU [18, 43] 77.9 93.9 0.40B 4.8M

Table A2. Nonlinear functions and ImageNet accuracy.

(Swish-1) with the identical training setup. As shown in Ta-
ble A2, we obtain the results of top-1 accuracy in the order
of SiLU (77.9%), ELU (77.6%), SoftPlus (77.6%), Leaky
ReLU (77.4%), and ReLU6 (77.3%), and the trend is sim-
ilar to the result in the empirical study in §3.2. The result
indicates the quality of different nonlinearities that relates
to model expressiveness; SiLU shows the best performance.
This may provide a backup for why the recent lightweight
models use SiLU (Swish-1) as the nonlinearity.

C.2. COCO object detection (cont’d)

We further provide more comparisons of ReXNets with
EfficientNets [51] in SSDLite [47] on object detection. We
first replace the EfficientNet backbone used in §5.2 with a
stronger EfficientNet [56]. We then compare them trained
from scratch on the COCO dataset [33].

Comparison with NoisyStudent EfficientNets. We now
compare ReXNets with stronger EfficientNets [56], where
the backbones are trained by a self-training method with
extra large-scale data and RandAug [10]. Our goal is to
show ReXNet’s architectural capability over the Efficient-
Nets without using the extra data when applying the back-
bones to a downstream task. We borrow the AP scores
on val 2017 from the ReXNet+SSDLite models in Ta-
ble 6 and train EfficientNet-B0, B1, and B2 in SSDLite us-
ing the pretrained NoisyStudent+RA EfficientNet models
which are publicly released7. All the AP scores are eval-

7https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
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Model Input Size Bbox AP at IOU Params FLOPsAP AP50 AP75

EfficientNet-B0 [51] + SSDLite 320×320 23.6 39.4 23.3 6.2M 0.97B
ReXNet (×0.9) + SSDLite 320×320 24.6 41.2 24.6 5.0M 0.88B

EfficientNet-B1 [51] + SSDLite 320×320 25.6 42.2 25.8 8.7M 1.35B
ReXNet (×1.0) + SSDLite 320×320 25.2 41.9 25.3 5.7M 1.01B

EfficientNet-B2 [51] + SSDLite 320×320 26.4 43.4 26.6 10.0M 1.55B
ReXNet (×1.3) + SSDLite 320×320 27.1 44.7 27.4 8.4M 1.60B

Table A3. ReXNets vs. Noisy Student EfficientNets on COCO object detection. We compare our ReXNets trained solely on ImageNet
with stronger EfficientNets trained by Noisy Student training method [56] with RandAug [10]. Note that ReXNets here are equivalent to
the models in §5.2. We report box APs on val2017.

Model Input Size Avg. Precision at IOU Params. FLOPsAP AP50 AP75

EfficienetNet-B0 [51] + SSDLite 320x320 23.9 39.6 24.1 6.2M 0.97B
ReXNet (×0.9) + SSDLite 320x320 25.3 41.4 25.9 5.0M 0.88B

EfficienetNet-B1 [51] + SSDLite 320x320 25.6 41.9 26.0 8.7M 1.35B
ReXNet (×1.0) + SSDLite 320x320 25.9 42.6 26.3 5.7M 1.01B

EfficienetNet-B2 [51] + SSDLite 320x320 26.5 43.3 26.7 10.0M 1.55B
ReXNet (×1.3) + SSDLite 320x320 27.7 45.1 28.0 8.4M 1.60B

Table A4. ReXNets vs. EfficientNets on COCO object detection.. Note that all the models are trained from scratch with the identical
training setup except for the doubled training iterations. We report box APs on val 2017.

uated by each checkpoint cached at the last iteration. Ta-
ble A4 shows that ReXNets outperform the counterparts
with the comparable computational costs. This indicates
ReXNets pretrained on ImageNet are still promising.

Comparison of the models trained from scratch. We
aim to verify the model expressiveness itself without us-
ing ImageNet-pretrained backbones. This is because one
may wonder using a pretrained models trained with dif-
ferent training setups such as optimizer or regularizers af-
fect the performance of downstream tasks. As shown in the
work [14], the COCO dataset [33] is able to be trained from
scratch, we verify the model’s pure expressiveness by train-
ing the models from scratch.

We individually train ReXNets (×0.9, ×1.0, and ×1.3)
and EfficientNet-B0, B1, and B2 in SSDLite without using
ImageNet pretrained backbones. All AP scores are evalu-
ated by each checkpoint cached at the last iteration again.
Table A4 shows that ReXNets outperform the counterparts
by +1.4pp, +0.3pp, and +1.2pp in AP score. With sim-
ilar computational demands, ReXNets beat the Efficient-
Net counterparts by large margins, and surprisingly, the
training from scratch makes ReXNet (×1.0) outperforms
EfficienetNet-B1 by +0.3pp with much less computational
costs. This indicates that our models are more powerful in
terms of expressiveness even without the aids of the super-
vision of ImageNet pretrained models.
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