
Teachers Do More Than Teach: Compressing Image-to-Image Models

Qing Jin1* Jian Ren2 Oliver J. Woodford* Jiazhuo Wang2

Geng Yuan1 Yanzhi Wang1 Sergey Tulyakov2

1Northeastern University, USA 2Snap Inc.

Abstract

Generative Adversarial Networks (GANs) have achieved
huge success in generating high-fidelity images, however,
they suffer from low efficiency due to tremendous compu-
tational cost and bulky memory usage. Recent efforts on
compression GANs show noticeable progress in obtaining
smaller generators by sacrificing image quality or involving
a time-consuming searching process. In this work, we aim
to address these issues by introducing a teacher network
that provides a search space in which efficient network ar-
chitectures can be found, in addition to performing knowl-
edge distillation. First, we revisit the search space of gener-
ative models, introducing an inception-based residual block
into generators. Second, to achieve target computation cost,
we propose a one-step pruning algorithm that searches a
student architecture from the teacher model and substan-
tially reduces searching cost. It requires no `1 sparsity regu-
larization and its associated hyper-parameters, simplifying
the training procedure. Finally, we propose to distill knowl-
edge through maximizing feature similarity between teacher
and student via an index named Global Kernel Alignment
(GKA). Our compressed networks achieve similar or even
better image fidelity (FID, mIoU) than the original models
with much-reduced computational cost, e.g., MACs. Code
will be released at https://github.com/snap-research/CAT.

1. Introduction
Generative adversarial networks (GANs), which syn-

thesize images by adversarial training [21], have wit-
nessed tremendous progress in generating high-quality,
high-resolution, and photo-realistic images and videos [5,
33, 68]. In conditional setting [54], the generation process
is controlled via additional input signals, such as segmen-
tation information [8, 58, 60, 71, 72], class labels [83], and
sketches [29, 85]. These techniques have seen applications
in commercial image editing tools. However, due to their
massive computation complexity and bulky size, applying
generative models at scale is less practical, especially on
resource-constrained platforms, where low memory foot-

*Work done while at Snap Inc.

2 4 8 16 32 64
MACs (B)

60

70

80

90

100

FI
D

Original

Shu et al.

AutoGAN
Distiller

GAN Slimming
GAN Lottery

Li et al.

Ours

FID-MACs Trade-off

Figure 1: Performance comparison between our and exist-
ing GAN compression techniques [2, 20, 36, 64, 70] on Cy-
cleGAN [85] for Horse�Zebra dataset. Smaller MACs in-
dicates more efficient models. Lower FID indicates models
can generate more realistic images. Our method (red star)
achieves the state-of-the-art performance-efficiency trade-
off as it has the lowest FID with the smallest MACs.

print, power consumption, and real-time execution are as,
and often more, important than performance [36].

To accelerate inference and save storage space for huge
models without sacrificing performance, previous works
propose to compress models with techniques including
weight pruning [24], channel slimming [43, 44], layer skip-
ping [4, 73], patterned or block pruning [17, 35, 40, 42,
49, 50, 51, 52, 56, 57, 82, 84], and network quantiza-
tion [12, 18, 30, 31, 32, 38, 75]. Specifically, these studies
elaborate on compressing discriminative models for image
classification, detection, or segmentation tasks. The prob-
lem of compressing generative models, on the other hand,
is less investigated, despite that typical generators are bulky
in memory usage and inefficient during inference. Up till
now, only a handful of attempts exist [20, 36, 64, 70], all of
which degenerate the quality of synthetic images compared
to the original model (Fig. 1).

1

ar
X

iv
:2

10
3.

03
46

7v
1

 [
cs

.C
V

]
 5

 M
ar

 2
02

1

https://github.com/snap-research/CAT

In this work, we focus on compressing image-to-image
translation networks, such as CycleGAN [85] and Gau-
GAN [58]. Existing compression method [36] obtains an ef-
ficient student model and employs two additional networks:
teacher and supernet, where the former is for knowledge
distillation and the latter for architecture search. However,
we argue that the supernet is not necessary, as the teacher
can play its role. Specifically, in our proposed framework,
the teacher does more than teaching the student (i.e. knowl-
edge distillation)—it plays a central role in all aspects of the
framework through three key contributions:

1. We introduce a new network design that can be ap-
plied to both encoder-decoder architectures such as
Pix2pix [29], and decoder-style networks such as Gau-
GAN [58]. It serves as both the teacher network de-
sign, and the architecture search space of the student.

2. We directly prune the trained teacher network using
an efficient, one-step technique that removes certain
channels in its generators to achieve a target computa-
tion budget, e.g., the number of Multiply-Accumulate
Operations (MACs). This reduces architecture search
costs by at least 10, 000× than the state-of-the-art
compression method for generative models. Further-
more, our pruning method only involves one hyper-
parameter, making its application straightforward.

3. We introduce a knowledge distillation technique based
on the similarity between teacher and student mod-
els’ feature spaces, which we call global kernel align-
ment (GKA). GKA directly forces feature representa-
tions from the two models to be similar, and avoids
extra learnable layers [36] to match the different di-
mensions of teacher and student feature spaces, which
could otherwise lead to information leakage.

We name our method as CAT as we show teacher model
can and should do Compression And Teaching (distillation)
jointly, which we find is beneficial for finding generative
networks with smaller MACs, using much lower compu-
tational resource than prior work. More importantly, our
compressed networks can achieve similar or even better per-
formance than their original counterparts (Tab. 1).

2. Related Work
Due to their high computation cost, running GANs on

resource-constrained devices in real-time remains a chal-
lenging problem. As a result, GAN compression has gar-
nered attention recently. Existing methods [1, 10, 20, 36,
64, 70] exploit network architecture search/pruning and
knowledge distillation (discussed below). Although they
can compress the original models (e.g., CycleGAN [85])
to a relatively small MACs, all these methods suffers from
sacrifice on performance. In contrast, our method finds
smaller networks than existing compressed GAN models,

whilst improves performance over the original models, such
as Pix2pix [29], CycleGAN [85], and GauGAN [58].
Network architecture search & pruning. To determine
the structure of a pruned model, previous work employs
neural architecture search (NAS) [7, 11, 37, 39, 40, 41,
42, 46, 47, 53, 61, 66, 74, 80, 86] and pruning tech-
niques [4, 16, 17, 35, 42, 43, 44, 49, 50, 51, 52, 56, 57,
63, 73, 78, 79, 81, 82, 84], where the number of channels
and/or operations can be optimized automatically. Apply-
ing these methods directly on generative models can lead to
inferior performance of compressed models than their orig-
inal counterparts. For example, Shu et al. [64] employ an
evolutionary algorithm [59] and Fu et al. [20] engage dif-
ferentiable network design [39], while Li et al. [36] train
a supernet with random sampling technique [6, 23, 79, 80]
to select the optimal architecture. The common key draw-
back of these methods is the slow searching process. In con-
trast, directly pruning on a pre-trained model is much faster.
Following previous methods of network slimming [43, 44],
Wang et al. [70] apply `1 regularization to generative mod-
els for channel pruning. However, they report performance
degradation compared to the original network. Besides,
these pruning methods require tuning additional hyper-
parameters for `1 regularization to encourage channel-wise
sparsity [43, 44] and even more hyper-parameters to decide
the number of channels to be pruned [53], making the pro-
cess tedious. Additionally, GAN training involves optimiz-
ing multiple objective functions, and the associated hyper-
parameters make the training process even harder. Recently,
lottery ticket hypothesis [19] is also investigated on GAN
problem [2], while the performance is not satisfactory.
Knowledge distillation [26] is a technique to transfer
knowledge from a larger, teacher network to a smaller, stu-
dent network, and has been used for model compression in
various computer vision tasks [9, 10, 45, 48, 76]. A recent
survey [22] categorizes knowledge distillation as response-
based, feature-based, or relation-based. Most GAN com-
pression methods [1, 10, 20] use response-based distillation,
enforcing the synthesized images from the teacher and stu-
dent networks to be the same. Li et al. [36] apply feature-
based distillation by introducing extra layers to match fea-
ture sizes between the teacher and student, and minimizing
the differences of these embeddings using mean squared er-
ror (MSE) loss. However, this has the potential problem
that some information can be stored in those extra layers,
without being passed on to the student. Here, we propose
to distill knowledge by directly maximizing the similarity
between features from teacher and student models.

3. Methods
In this section, we show our method for searching a com-

pressed student generator from a teacher generator. We
revisit the network design of conditional image genera-

2

1 x 1

1 x 1

3 x 3

3 x 3

5 x 5

5 x 5

1 x 1

1 x 1
1 x 1

1 x 1

1 x 1
3 x 3

1 x 1

1 x 1
5 x 5

IncResBlock

IncSPADE ResBlk

IncSPADE

ReLU

Inception

ResBlock

1 x 1-Conv

IncSPADE

ReLU

IncSPADE

Sync BN

R
esize (o

rd
er=

0
)

In
cep

tio
n

R
esB

lo
ck

Figure 2: IncResBlock includes three conventional con-
volution blocks and three depth-wise convolution blocks
(dashed border), both with kernels sizes of 1, 3, 5. Normal-
ization layers (e.g., BN), and ReLU, are applied between
each two consecutive convolution layers. A normalization
layer that can be inserted after summing features from the
six blocks and the residual connection are optional. Unless
otherwise stated, both are applied by default.

tion models and introduce inception-based residual blocks
(Sec. 3.1). The teacher model is built upon the proposed
block design and can serve two purposes. First, we show
that the teacher model can be viewed as a large search
space that enables one-shot neural architecture search with-
out training an extra supernet. With the proposed one-
step pruning method, a computationally efficient network
that satisfies a given computational budget can be found in-
stantly (Sec. 3.2). Second, we show the teacher model itself
is sufficient for knowledge distillation, without necessity of
introducing extra layers. By maximizing the similarity be-
tween intermediate features of teacher and student network
directly, where features of the two networks contain differ-
ent numbers of channels, we can effectively transfer knowl-
edge from teacher to student (Sec. 3.3).

3.1. Design of Teacher Generator

Existing efforts leverage supernet to introduce search
space that contains more efficient networks [6, 23, 36]. The
optimization of supernet can lead to extra training costs.
However, as we already have a teacher network in hand,
searching efficient student from the teacher model should
be more straightforward, as long as the teacher network
contains a large searching space. In this way, the teacher
network can perform both knowledge distillation and pro-
vide search space. Therefore, the goal of obtaining a good
supernet can be changed to design a teacher generator that
can synthesize high fidelity images; and itself contains a
reasonable search space.
Inception-based residual block. With the above goal bear-
ing in mind, we design a new architecture for the image
generation tasks so that a pre-trained teacher generator with
such architecture can serve as a large search space. We
aim to search for a smaller student network that can have

different operations (e.g., convolution layers with various
kernel size) and different numbers of channels than the
teacher network through pruning. Towards this end, we
adopt the widely used inception module on discriminative
models [53, 65, 87] to the image generators and propose
the inception-based residual block (IncResBlock). A con-
ventional residual block in generators only contains con-
volution layers with one kernel size (e.g., 3 × 3), while in
IncResBlock, as shown in Fig. 2, we introduce convolution
layers with different kernel sizes, including 1×1, 3×3, and
5× 5. Additionally, we incorporate depth-wise blocks [27]
into IncResBlock as depth-wise convolution layers typically
require less computation cost without sacrificing the perfor-
mance, and are particularly suitable for models deployed on
mobile devices [62]. Specifically, the IncResBlock includes
six types of operations, with two types of convolution lay-
ers and three different kernel-sizes. To achieve similar total
computation cost, we set the number of output channels for
the first convolution layers of each operations to that of the
original residual blocks divided by six, which is the number
of different operations in the IncResBlock. We find the per-
formance is maintained thanks to the architecture design.

To get our teacher networks, for Pix2pix and CycleGAN,
we replace all residual blocks in original models with the
IncResBlock. For GauGAN, we apply IncResBlock in both
the SPADE modules and the residual blocks. More details
are illustrated in the supplementary materials.

3.2. Search from Teacher Generator via Pruning

With the teacher network introduced, we search a com-
pressed student network from it. Our searching algorithm
includes two parts. The first one is deciding a threshold
based on the given computational budget, and the second
one is pruning channels with a scale less than a threshold.
Compared with existing iterative pruning methods [43, 53],
we only perform pruning once, and we name our searching
algorithm as one-step pruning.
Automatically threshold searching. Following existing
efforts [43, 44], we prune the channels through the mag-
nitudes of scaling factors in normalization layers, such as
Batch Normalization (BN) [28] and Instance Normalization
(IN) [69]. To this end, a threshold is required to choose
channels to prune. As we train the teacher model with-
out regularization, there is no constraint to force the teacher
model to be sparse. The magnitude of scaling factors from
the normalization layers is not guaranteed to be small. Thus,
the previous iterative pruning methods, which remove chan-
nels using a manually designed threshold, are not suitable
for our network.

To solve this, we determine the threshold by a given
computation budget, which can be MACs or latency. All
channels with scale smaller than the threshold are pruned
until the final model achieves the target computation budget.

3

We find the scale threshold by binary search on the scaling
factors of normalization layers from the pre-trained teacher
model. Specifically, we temporarily prune all channels with
a scaling factor magnitude smaller than the threshold and
measure the computational cost of the pruned model. If it is
smaller than the budget, the model is pruned too much and
we search in the lower interval to get a smaller threshold;
otherwise, we search in the upper interval to get a larger
value. During this process, we also keep the number of out-
put channels for convolution layers outside the IncResBlock
larger than a pre-defined value to avoid an invalid model.
Details of the algorithm are illustrated in Algorithm 1.
Channel pruning. With the threshold decided, we perform
network searching via pruning. Given an IncResBlock, it
is possible to change both the number of channels in each
layer and modify the operation, such that, e.g., one IncRes-
Block may only include layers with kernel sizes 1 × 1 and
3 × 3. Similar to Mei et al. [53], we prune channels of the
normalization layers together with the corresponding con-
volution layers. Specifically, we prune the first normaliza-
tion layers for each operation in IncResBlock, namely the
ones after the first k×k convolution layers for conventional
operations and the ones after the first 1× 1 convolution lay-
ers for depth-wise operations.

Algorithm 1 Searching via One-Step Pruning.

Require: Computational budget Tb, teacher model GT,
scaling factors γ(l)i (used for pruning) of the i-th chan-
nel in normalization layers N (l)∈GT, minimum # out-
put channels clb for convolution layers (outside the In-
cResBlock).

Ensure: pruned student architecture GS.
1: Initialize scale lower bound γlo: γlo ← min

i,l
|γ(l)i |.

2: Initialize scale upper bound γhi: γhi ← max
i,l
|γ(l)i |.

3: while γlo < γhi do
4: γth ← (γlo + γhi)/2

5: Prune channels satisfying |γ(l)i | < γth on GT while
keep clb to get GS

6: T ← computational cost of GS

7: if T > Tb then
8: γlo ← γth
9: else

10: γhi ← γth
11: end if
12: end while

Discussion. Our searching algorithm is different from pre-
vious works that focus on compressing generative models
in the following three perspectives. First, we search an ef-
ficient network from a pre-trained teacher model without
utilizing an extra supernet [36]. Second, we show the scales

of the normalization layers in the pre-trained teacher net-
work are sufficient for pruning, therefore, weight regular-
ization for iterative pruning [53, 70] might not be necessary
for the generation tasks. Third, the teacher network can be
compressed to several different architectures, and we can
find the student network that satisfies an arbitrary type of
computational cost, e.g., MACs, under any value of prede-
fined budget during the searching directly. Such differences
bring us three advantages. First, searching cost is signifi-
cantly reduced without introducing extra network. Second,
removing the weight regularization, e.g., `1-norm, eases the
searching process as a bunch of hyper-parameters are re-
duced, which we find are hard to tune in practice. Third,
we have more flexibility to choose a student network with
required computational cost.

3.3. Distillation from Teacher Generator

After obtaining a student network architecture, we train
it from scratch, leveraging the teacher model for knowl-
edge distillation. In particular, we transfer knowledge be-
tween the two networks’ feature spaces, since this has been
shown [36] to achieve better performance than reconstruct-
ing images synthesized by the teacher [20]. With differ-
ent numbers of channels between teacher and student lay-
ers, Li et al. [36] introduce auxiliary, learnable layers that
project the student features into the same dimensional space
as the teacher, as shown in Fig. 3. Whilst equalizing the
number of channels between the two networks, these lay-
ers can also impact the efficacy of distillation, since some
information can be stored in these extra layers. To avoid in-
formation loss, we propose to encourage similarity between
the two feature spaces directly.

3.3.1 Similarity-based Knowledge Distillation

We develop our distillation method based on centered ker-
nel alignment (CKA) [14, 15], a similarity index between
two matrices, X ∈ Rn×p1 and Y ∈ Rn×p2 , where after
centering the kernal alignment (KA) is calculated, which is
defined as1

KA(X,Y) =
‖Y TX‖2F

‖XTX‖F‖Y TY ‖F
. (1)

It is invariant to an orthogonal transform and isotropic scal-
ing of the rows, but is sensitive to an invertible linear trans-
form. Importantly, p1 and p2 can differ. Kornblith et
al. [34] use this index to compute the similarity between
different learned feature representations of varying lengths
(p1 = hwc1 & p2 = hwc2, where h,w and c· are the height,
width and number of channels of the respective layer ten-
sors; n is the batch size).

1The identity ‖Y TX‖2F = 〈vec(XXT), vec(Y Y T)〉 is used to
achieve computational complexity of O(n2hwmax(c1, c2)) [34].

4

𝑋𝑡
𝑙

GCKA

𝑋𝑠
𝑙

𝑋𝑡
𝑙

𝑋𝑠
𝑙

GCKAMSE

learnable
distill layer

𝑋𝑡
𝑙

GCKA

𝑋𝑠
𝑙

𝑋𝑡
𝑙

𝑋𝑠
𝑙

GKAMSE

learnable
distill layer

Figure 3: Left: Knowledge distillation with MSE loss re-
quires extra learnable layers to map features into the same
number of channels. Right: Our proposed GKA maximizes
similarity between features directly.

Global-KA. To compare similarity between teacher and
student features, we introduce a similar metric called
Global-KA (GKA), where for the same two tensors X and
Y defined in Eqn. 1, GKA is defined as follows:

GKA(X,Y) = KA(ρ(X), ρ(Y)), (2)

where ρ : Rn×hwc → Rnhw×c is a simple reshape opera-
tion on the input matrix. Unlike CKA, which sums similar-
ity between two batches of features over channels and spa-
tial pixels, and describes batch-wise similarity, GKA sums
feature similarity over channels, characterizing both batch-
wise and spatial-wise similarity. The computational com-
plexity of this operation is O(nhwmax(c1, c2)2), which is
lower than CKA if the batch size is much larger than the
channel numbers. To perform distillation, we maximize the
similarity between features of teacher and student networks
by maximizing GKA. Note that different from CKA, for
GKA we do not center the two tensors X and Y . However,
we find that centering does not introduce much difference
on the final performance.

3.3.2 Distillation Loss

We conduct distillation on the feature space. Let SKD de-
note the set of layers for performing knowledge distillation,
whereasX(l)

t andX(l)
s denote feature tensors of layer l from

the teacher and student networks, respectively. We mini-
mize the distillation loss Ldist as follows:

Ldist = −
∑

l∈SKD

GKA(X
(l)
t , X(l)

s), (3)

where the minus sign is introduced as we intend to maxi-
mize feature similarity between student and teacher models.

3.4. Learning

We train teacher networks using the original loss func-
tions, which includes an adversarial loss Ladv as follows:

Ladv = Ex,y [logD(x,y)] + Ex [log(1−D(x, G(x)))] ,
(4)

where x and y denote the input and real images, and D and
G denote the discriminator and generator, respectively.
Full objective for student. For the training of student gen-
erator for CycleGAN, we adopt the setting from [36] where
we use the data generated from teacher network to form
paired data and train the student the same way as Pix2pix
with a reconstruction lossLrecon. Therefore, for CycleGAN
and Pix2pix, the overall loss function for student training is:

LT = λadvLadv + λreconLrecon + λdistLdist. (5)

For the training of GauGAN, there is an additional feature
matching loss Lfm [72], and the overall loss function is as
follows:

LT = λadvLadv+λreconLrecon+λfmLfm+λdistLdist. (6)

λadv, λrecon, λdist and λfm in Eqn. 5 and Eqn. 6 indicate
the hyper-parameters that balance the losses.

4. Experiments
In this section, we show the results of compressing

image-to-image models. We introduce more details about
network training and architectures, together with more qual-
itative results in the supplementary materials.

4.1. Basic Setting

Models. We conduct experiments on generation models, in-
cluding Pix2pix [29], CycleGAN [85], and GauGAN [58].
Following [36], we inherit the teacher discriminator by us-
ing the same architecture and the pre-trained weights, and
finetune it with the student generator for student training.
Datasets. We examine our method on the following
datasets. Horse�Zebra and Zebra�Horse are two datasets
from CycleGAN [85], which converts horse images to ze-
bra and vice versa. There are 1, 187 horse images and 1, 474
zebra images. Cityscapes [13] is a dataset for mapping se-
mantic inputs to images of street scenes. There are 2, 975
training and 500 validation data, and we apply Pix2pix and
GauGAN models on it. Map�Aerial photo contains 2, 194
images [29], and we apply Pix2pix model on it.
Evaluation metrics. We adopt two standard metrics for
the evaluation of generative models. For the Cityspaces
dataset, we follow existing works [29, 58] to use a se-
mantic segmentation metric to evaluate the quality of syn-
thetic images. We run an image segmentation model, which
is DRN-D-105 [77], on the generated images to calculate
mean Intersection over Union (mIoU). A higher value of
mIoU indicates better quality of generated images. For
other datasets, we apply commonly used Fréchet Inception
Distance (FID) [25], as it estimates the distribution between
real and generated images. We also adopt a recent proposed
metric named Kernel Inception Distance (KID) [3] for more
thorough comparison. A lower FID or KID value indicates
better model performance.

5

Table 1: Quantitative comparison between different compression techniques for Image-to-Image
models. We use mIoU to evaluate the generation quality of Cityspaces and FID for other
datasets. Higher mIoU or lower FID indicates better performance.

Model Dataset Method MACs FID↓ mIoU↑

CycleGAN
Horse�Zebra

Original [85, 36] 56.8B 61.53 -

Shu et al. [64] 13.4B 96.15 -
AutoGAN Distiller [20] 6.39B 83.60 -
GAN Slimming [70] 11.25B 86.09 -
GAN Lottery [2] ~11.35B† ~83.00† -
Li et al. [36] 2.67B 71.81 -
CAT (Ours) 2.55B 60.18 -

Zebra�Horse
Original [85, 70] 56.8B 148.81 -

GAN Slimming [70] 11.81B 120.01 -
CAT (Ours) 2.59B 142.68 -

Pix2pix

Cityscapes
Original [29, 36] 56.8B - 42.06

Li et al. [36] 5.66B - 40.77
CAT (Ours) 5.57B - 42.53

Map�Aerial photo
Original [29, 36] 56.8B 47.76 -

Li et al. [36] 4.68B 48.02 -
CAT (Ours) 4.59B 44.95 -

GauGAN Cityscapes

Original [58, 36] 281B - 62.18

Li et al. [36] 31.7B - 61.22
CAT-A (Ours) 29.9B - 62.35
CAT-B (Ours) 5.52B - 54.71

† Estimated from Fig. 11 in [2].

Table 2: Further quantitative comparison on KID between
different compression techniques for Image-to-Image mod-
els, where lower KID indicates better performance.

Model Dataset Method MACs KID↓

CycleGAN
Horse�Zebra Original [85] 56.8B 0.020±0.002

CAT (Ours) 2.55B 0.017±0.002

Zebra�Horse Original [85] 56.8B 0.030±0.002
CAT (Ours) 2.59B 0.036±0.002

Pix2pix Map�Aerial Original [29] 56.8B 0.154±0.010
CAT (Ours) 4.6B 0.009±0.002

GauGAN Cityscapes
Original [58] 281B 0.026±0.003

CAT-A (Ours) 29.9B 0.014±0.002
CAT-B (Ours) 5.5B 0.013±0.002

4.2. Comparison Results

Quantitative results. We compare our method with exist-
ing studies for image generation tasks on various datasets.
The results are summarized in Tab. 1 and Tab. 2. We
can see that for all datasets included, our models con-
sume the smallest MACs while achieving comparable and

mostly the best performance. Particularly, we achieve bet-
ter performance than the original models for almost all
datasets while reducing computational cost significantly.
For example, on CycleGAN, our method results in a large
compression ratio as the MACs is saved from 56.8B to
2.55B (22.3×) or 2.59B (21.9×), while at the same time,
the model gets better performance as FID is reduced from
61.53 to 60.18 for Horse�Zebra and from 148.8 to 142.7
for Zebra�Horse. For the Cityscapes dataset with Pix2pix
model, we compress the model from 56.8B to 5.57B MACs,
which is 10.2× smaller, while increase the mIoU from
42.06 to 42.53. Again, for Pix2pix on the Map�Aerial
photo dataset, the MACs is reduced from 56.8B to 4.59B by
our method, with a compression ratio of 12.4×, whereas the
FID is improved and reduced from 47.76 to 44.94.

To further verify the effectiveness of our method for
compressing generative models, we experiment on Gau-
GAN with two target MACs: 30B and 5.6B. We choose
5.6B as it is similar to our compressed Pix2pix model on
Cityscapes. We find that with 30B MACs, which is 9.4×
smaller than GauGAN, the mIoU of our model is better

6

Input

GT

GauGAN

MACs: 281B

mIoU: 62.18

FID: 57.60

KID: 0.026±0.003

CAT-A (Ours)

MACs: 29.9B

mIoU: 62.35

FID: 50.63

KID: 0.014±0.002

CAT-B (Ours)

MACs: 5.52B

mIoU: 54.71

FID: 51.83

KID: 0.013±0.002

Figure 4: Qualitative results on Cityscapes dataset. Images generated by our compressed model (CAT-A, third row) have
higher mIoU and lower FID than the original GauGAN model (fifth row), even with much reduced computational cost.
For our CAT-B model (fourth row, 50.9× compressed than GauGAN), although it has lower mIoU, the CAT-B model can
synthesize higher fidelity images (lower FID) than GauGAN.

than the original, which is increased from 62.18 to 62.35.
We further compress the model to less than 5.6B with a
compression ratio of 50.9×, and the mIoU is reduced to
54.71. However, it is still much better than that from the
Pix2pix model. These demonstrate that our method is a
sound technique for compressing image-to-image models,
and provides the state-of-the-art trade-off between compu-
tation complexity and image generation performance.
Qualitative results. We further show qualitative results to
illustrate the effectiveness of our method. Fig. 4 provides
samples on Cityspaces, including input segmentation maps,
ground-truth (GT), and generated images by different meth-
ods. Our compressed model (CAT-A) achieves better qual-
ity (higher mIoU and lower FID) than GauGAN. For ex-
ample, for the leftmost image in Fig. 4, the back of the
car synthesized by CAT-A is clearer than GauGAN, and
CAT-A generates less blurry human images than GauGAN
for the rightmost image. CAT-B, which has much-reduced
MACs than GauGAN (50.9×), can also achieve better im-
age fidelity (lower FID) than GauGAN. For Map�Aerial
photo with Pix2pix (Fig. 5), our method generates images
with better quality for the river and buildings than the orig-

inal Pix2pix model. For Horse�Zebra on CycleGAN, our
method can synthesize better zebra images for challenging
input horse images, where the CycleGAN fails to generate.

The examples shown in Fig. 4 & 5 demonstrate that our
compression technique is an effective method for saving
the computational cost of generative models. Besides, the
compressed models can surpass the original models, even
though they require much reduced computational cost and,
thus, are more efficient during inference. These results indi-
cate significant redundancy in the original large generators,
and it is worth further studying the extreme of these gener-
ative models in terms of performance-efficiency trade-off.
Analysis of searching cost. Here we show the analysis of
searching costs for finding a student network. Our method
can search the architecture under a pre-defined computa-
tional budget with a much reduced searching cost compared
with previous state-of-the-art compressing method [36].
Tab. 3 provides the searching cost of the two methods on
various datasets and models. As can be seen, our method is
at least 10, 000× times faster for searching. The searching
time for the previous method [36] is estimated by only in-
cluding the time for training a supernet, which is designed

7

Input

GT

Pix2pix

MACs: 56.8B

FID: 47.76

KID: 0.154±0.010

CAT (Ours)

MACs: 4.59B

FID: 44.94

KID: 0.009±0.002

Input

CycleGAN

MACs: 56.8B

FID: 61.53

KID: 0.020±0.002

CAT (Ours)

MACs: 2.55B

FID: 60.18

KID: 0.017±0.002

Input

GT

Pix2pix

MACs: 56.8B

FID: 47.76

KID: 0.154±0.010

CAT (Ours)

MACs: 4.59B

FID: 44.94

KID: 0.009±0.002

Input

CycleGAN

MACs: 56.8B

FID: 61.53

KID: 0.020±0.002

CAT (Ours)

MACs: 2.55B

FID: 60.18

KID: 0.017±0.002

Figure 5: Qualitative results on Map�Aerial photo (top
four rows) and Horse�Zebra datasets (bottom three rows).
Compared with original networks (Pix2pix and Cycle-
GAN), our models have much reduced MACs and can gen-
erate images with higher fidelity (lower FID) by synthesiz-
ing textures that are not well-handled by the original large
models.

for architecture search. We estimate it as 20 hours with 1
GPU for the CycleGAN and Pix2pix models and 40 hours
with 8 GPUs for the GauGAN model, both of which are
much shorter than those required in practice and thus serves
as a lower bound. Besides, we have ignored the time re-
quired for searching a student network from the supernet
for [36], which is also non-negligible. For example, for
Cityscapes with Pix2pix model, the supernet includes more
than 5, 000 possible architectures, and each requires around
3 minutes with 1 GPU for evaluation, resulting in several
days of architecture search. Despite, we do not take this
process of [36] into account for time-estimation in Tab. 3.

5. Conclusion

In this paper, we study the problem of compressing
generative models, especially the generators for image-to-

Table 3: Architecture search cost, measured in seconds of
GPU computation, for our method vs. Li et al. [36], across
different models.

Model Dataset Method
Search Cost

(GPU Seconds)

CycleGAN
Horse�Zebra Li et al. [36] & 7.2× 104

CAT (Ours) 3.81

Zebra�Horse Li et al. [36] & 7.2× 104

CAT (Ours) 3.62

Pix2pix
Cityscapes Li et al. [36] & 7.2× 104

CAT (Ours) 4.28

Map�Aerial photo Li et al. [36] & 7.2× 104

CAT (Ours) 4.33

GauGAN Cityscapes
Li et al. [36] & 1.2× 106

CAT-A (Ours) 8.22
CAT-B (Ours) 6.20

image tasks. We show the problem can be tackled by using
a powerful teacher model, which is not restricted to teach
a student through knowledge distillation, but can serve as a
supernet to search efficient architecture (for student) under
pre-defined computational budgets.

Specifically, our framework is built upon a newly de-
signed teacher model, which incorporates the proposed In-
cResBlock. We show such teacher model contains a large
search space where efficient student architecture can be de-
termined through network searching. The searching pro-
cess is implemented with our proposed one-step pruning al-
gorithm, which can be conducted with negligible efforts.
We also introduce a similarity-based knowledge distillation
technique to train student network, where feature similar-
ity between student and teacher is measured directly by the
proposed GKA index. With our method, we can obtain
networks that have similar or even better performance than
original Pix2pix, CycleGAN, and GauGAN models on var-
ious datasets. More importantly, our networks have much
reduced MACs than their original counterparts.

Our work demonstrates that there remains redundancy in
existing generative models, and we can achieve improved
performance, e.g., synthesizing images with better fidelity,
with much reduced computational cost. It is worth further
investigating the ability of generative models to synthesize
images with high quality under an extremely constrained
computational budget, which we leave for future study.

6. Acknowledgement

The Authors would like to appreciate Jieru Mei from
John Hopkins University for invaluable technical discus-
sion. Also this research is partially supported by National
Science Foundation CNS-1909172.

8

References
[1] Angeline Aguinaldo, Ping-Yeh Chiang, Alex Gain, Ameya

Patil, Kolten Pearson, and Soheil Feizi. Compress-
ing gans using knowledge distillation. arXiv preprint
arXiv:1902.00159, 2019. 2

[2] Anonymous. {GAN}s can play lottery tickets too. In Sub-
mitted to International Conference on Learning Representa-
tions, 2021. under review. 1, 2, 6

[3] Mikołaj Bińkowski, Dougal J Sutherland, Michael Arbel,
and Arthur Gretton. Demystifying mmd gans. arXiv preprint
arXiv:1801.01401, 2018. 5

[4] Tolga Bolukbasi, Joseph Wang, Ofer Dekel, and Venkatesh
Saligrama. Adaptive neural networks for efficient inference.
arXiv preprint arXiv:1702.07811, 2017. 1, 2

[5] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale gan training for high fidelity natural image synthesis.
arXiv preprint arXiv:1809.11096, 2018. 1

[6] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and
Song Han. Once-for-all: Train one network and specialize it
for efficient deployment. arXiv preprint arXiv:1908.09791,
2019. 2, 3

[7] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct
neural architecture search on target task and hardware. arXiv
preprint arXiv:1812.00332, 2018. 2

[8] Menglei Chai, Jian Ren, and Sergey Tulyakov. Neural hair
rendering. In Eur. Conf. Comput. Vis., 2020. 1

[9] Guobin Chen, Wongun Choi, Xiang Yu, Tony Han, and Man-
mohan Chandraker. Learning efficient object detection mod-
els with knowledge distillation. In Advances in Neural Infor-
mation Processing Systems, pages 742–751, 2017. 2

[10] Hanting Chen, Yunhe Wang, Han Shu, Changyuan Wen,
Chunjing Xu, Boxin Shi, Chao Xu, and Chang Xu. Distilling
portable generative adversarial networks for image transla-
tion. arXiv preprint arXiv:2003.03519, 2020. 2

[11] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive dif-
ferentiable architecture search: Bridging the depth gap be-
tween search and evaluation. In Proceedings of the IEEE
International Conference on Computer Vision, pages 1294–
1303, 2019. 2

[12] Jungwook Choi, Zhuo Wang, Swagath Venkataramani,
Pierce I-Jen Chuang, Vijayalakshmi Srinivasan, and Kailash
Gopalakrishnan. Pact: Parameterized clipping activa-
tion for quantized neural networks. arXiv preprint
arXiv:1805.06085, 2018. 1

[13] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 3213–3223, 2016. 5

[14] Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh.
Algorithms for learning kernels based on centered alignment.
The Journal of Machine Learning Research, 13(1):795–828,
2012. 4

[15] Nello Cristianini, Jaz Kandola, Andre Elisseeff, and John
Shawe-Taylor. On kernel target alignment. In Innovations
in machine learning, pages 205–256. Springer, 2006. 4

[16] Caiwen Ding, Siyu Liao, Yanzhi Wang, Zhe Li, Ning Liu,
Youwei Zhuo, Chao Wang, Xuehai Qian, Yu Bai, Geng
Yuan, et al. Circnn: accelerating and compressing deep neu-
ral networks using block-circulant weight matrices. In Pro-
ceedings of the 50th Annual IEEE/ACM International Sym-
posium on Microarchitecture, pages 395–408, 2017. 2

[17] Caiwen Ding, Ao Ren, Geng Yuan, Xiaolong Ma, Jiayu Li,
Ning Liu, Bo Yuan, and Yanzhi Wang. Structured weight
matrices-based hardware accelerators in deep neural net-
works: Fpgas and asics. In Proceedings of the 2018 on Great
Lakes Symposium on VLSI, pages 353–358, 2018. 1, 2

[18] Caiwen Ding, Shuo Wang, Ning Liu, Kaidi Xu, Yanzhi
Wang, and Yun Liang. Req-yolo: A resource-aware, effi-
cient quantization framework for object detection on fpgas.
In Proceedings of the 2019 ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays, pages 33–42,
2019. 1

[19] Jonathan Frankle and Michael Carbin. The lottery ticket hy-
pothesis: Finding sparse, trainable neural networks. arXiv
preprint arXiv:1803.03635, 2018. 2

[20] Yonggan Fu, Wuyang Chen, Haotao Wang, Haoran Li,
Yingyan Lin, and Zhangyang Wang. Autogan-distiller:
Searching to compress generative adversarial networks.
arXiv preprint arXiv:2006.08198, 2020. 1, 2, 4, 6

[21] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In Advances
in neural information processing systems, pages 2672–2680,
2014. 1

[22] Jianping Gou, Baosheng Yu, Stephen John Maybank, and
Dacheng Tao. Knowledge distillation: A survey. arXiv
preprint arXiv:2006.05525, 2020. 2

[23] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,
Zechun Liu, Yichen Wei, and Jian Sun. Single path one-
shot neural architecture search with uniform sampling. In
European Conference on Computer Vision, pages 544–560.
Springer, 2020. 2, 3

[24] Song Han, Huizi Mao, and William J Dally. Deep com-
pression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015. 1

[25] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. In NeurIPs, 2017. 5

[26] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015. 2

[27] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017. 3

[28] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. arXiv preprint arXiv:1502.03167, 2015. 3, 13

9

[29] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A
Efros. Image-to-image translation with conditional adver-
sarial networks. CVPR, 2017. 1, 2, 5, 6

[30] Qing Jin, Linjie Yang, and Zhenyu Liao. Towards effi-
cient training for neural network quantization. arXiv preprint
arXiv:1912.10207, 2019. 1

[31] Qing Jin, Linjie Yang, and Zhenyu Liao. Adabits: Neural
network quantization with adaptive bit-widths. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 2146–2156, 2020. 1

[32] Qing Jin, Linjie Yang, Zhenyu Liao, and Xiaoning Qian.
Neural network quantization with scale-adjusted training. 1

[33] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improv-
ing the image quality of stylegan. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8110–8119, 2020. 1

[34] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and
Geoffrey Hinton. Similarity of neural network representa-
tions revisited. arXiv preprint arXiv:1905.00414, 2019. 4

[35] Hongjia Li, Ning Liu, Xiaolong Ma, Sheng Lin, Shaokai Ye,
Tianyun Zhang, Xue Lin, Wenyao Xu, and Yanzhi Wang.
Admm-based weight pruning for real-time deep learning ac-
celeration on mobile devices. In Proceedings of the 2019 on
Great Lakes Symposium on VLSI, pages 501–506, 2019. 1, 2

[36] Muyang Li, Ji Lin, Yaoyao Ding, Zhijian Liu, Jun-Yan Zhu,
and Song Han. Gan compression: Efficient architectures for
interactive conditional gans. In IEEE Conf. Comput. Vis. Pat-
tern Recog., pages 5284–5294, 2020. 1, 2, 3, 4, 5, 6, 7, 8,
13

[37] Yingwei Li, Xiaojie Jin, Jieru Mei, Xiaochen Lian, Linjie
Yang, Cihang Xie, Qihang Yu, Yuyin Zhou, Song Bai, and
Alan L Yuille. Neural architecture search for lightweight
non-local networks. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
10297–10306, 2020. 2

[38] Sheng Lin, Xiaolong Ma, Shaokai Ye, Geng Yuan, Kaisheng
Ma, and Yanzhi Wang. Toward extremely low bit and loss-
less accuracy in dnns with progressive admm. arXiv preprint
arXiv:1905.00789, 2019. 1

[39] Hanxiao Liu, Karen Simonyan, and Yiming Yang.
Darts: Differentiable architecture search. arXiv preprint
arXiv:1806.09055, 2018. 2

[40] Ning Liu, Xiaolong Ma, Zhiyuan Xu, Yanzhi Wang, Jian
Tang, and Jieping Ye. Autoslim: An automatic dnn struc-
tured pruning framework for ultra-high compression rates.
arXiv preprint arXiv:1907.03141, 2019. 1, 2

[41] Ning Liu, Xiaolong Ma, Zhiyuan Xu, Yanzhi Wang, Jian
Tang, and Jieping Ye. Autocompress: An automatic dnn
structured pruning framework for ultra-high compression
rates. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 4876–4883, 2020. 2

[42] Shaoshan Liu, Bin Ren, Xipeng Shen, and Yanzhi Wang.
Cocopie: Making mobile ai sweet as pie–compression-
compilation co-design goes a long way. arXiv preprint
arXiv:2003.06700, 2020. 1, 2

[43] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang,
Shoumeng Yan, and Changshui Zhang. Learning efficient

convolutional networks through network slimming. In Pro-
ceedings of the IEEE International Conference on Computer
Vision, pages 2736–2744, 2017. 1, 2, 3

[44] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and
Trevor Darrell. Rethinking the value of network pruning.
arXiv preprint arXiv:1810.05270, 2018. 1, 2, 3

[45] David Lopez-Paz, Léon Bottou, Bernhard Schölkopf, and
Vladimir Vapnik. Unifying distillation and privileged infor-
mation. arXiv preprint arXiv:1511.03643, 2015. 2

[46] Zhichao Lu, Kalyanmoy Deb, Erik Goodman, Wolfgang
Banzhaf, and Vishnu Naresh Boddeti. Nsganetv2: Evolu-
tionary multi-objective surrogate-assisted neural architecture
search. In European Conference on Computer Vision, pages
35–51. Springer, 2020. 2

[47] Zhichao Lu, Gautam Sreekumar, Erik Goodman, Wolfgang
Banzhaf, Kalyanmoy Deb, and Vishnu Naresh Boddeti. Neu-
ral architecture transfer. arXiv preprint arXiv:2005.05859,
2020. 2

[48] Ping Luo, Zhenyao Zhu, Ziwei Liu, Xiaogang Wang, Xiaoou
Tang, et al. Face model compression by distilling knowledge
from neurons. In AAAI, pages 3560–3566, 2016. 2

[49] Xiaolong Ma, Fu-Ming Guo, Wei Niu, Xue Lin, Jian Tang,
Kaisheng Ma, Bin Ren, and Yanzhi Wang. Pconv: The miss-
ing but desirable sparsity in dnn weight pruning for real-
time execution on mobile devices. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 34, pages
5117–5124, 2020. 1, 2

[50] Xiaolong Ma, Sheng Lin, Shaokai Ye, Zhezhi He, Lin-
feng Zhang, Geng Yuan, Sia Huat Tan, Zhengang Li,
Deliang Fan, Xuehai Qian, et al. Non-structured dnn weight
pruning–is it beneficial in any platform? arXiv preprint
arXiv:1907.02124, 2019. 1, 2

[51] Xiaolong Ma, Wei Niu, Tianyun Zhang, Sijia Liu, Sheng Lin,
Hongjia Li, Wujie Wen, Xiang Chen, Jian Tang, Kaisheng
Ma, et al. An image enhancing pattern-based sparsity for
real-time inference on mobile devices. In European Confer-
ence on Computer Vision, pages 629–645. Springer, 2020. 1,
2

[52] Xiaolong Ma, Geng Yuan, Sheng Lin, Zhengang Li, Hao
Sun, and Yanzhi Wang. Resnet can be pruned 60×: Intro-
ducing network purification and unused path removal (p-rm)
after weight pruning. In 2019 IEEE/ACM International Sym-
posium on Nanoscale Architectures (NANOARCH), pages 1–
2. IEEE, 2019. 1, 2

[53] Jieru Mei, Yingwei Li, Xiaochen Lian, Xiaojie Jin, Linjie
Yang, Alan Yuille, and Jianchao Yang. Atomnas: Fine-
grained end-to-end neural architecture search. arXiv preprint
arXiv:1912.09640, 2019. 2, 3, 4

[54] Mehdi Mirza and Simon Osindero. Conditional generative
adversarial nets. arXiv preprint arXiv:1411.1784, 2014. 1

[55] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and
Yuichi Yoshida. Spectral normalization for generative ad-
versarial networks. arXiv preprint arXiv:1802.05957, 2018.
13

[56] Wei Niu, Xiaolong Ma, Sheng Lin, Shihao Wang, Xuehai
Qian, Xue Lin, Yanzhi Wang, and Bin Ren. Patdnn: Achiev-
ing real-time dnn execution on mobile devices with pattern-
based weight pruning. In Proceedings of the Twenty-Fifth

10

International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 907–
922, 2020. 1, 2

[57] Wei Niu, Xiaolong Ma, Yanzhi Wang, and Bin Ren. 26ms
inference time for resnet-50: Towards real-time execution of
all dnns on smartphone. arXiv preprint arXiv:1905.00571,
2019. 1, 2

[58] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan
Zhu. Semantic image synthesis with spatially-adaptive nor-
malization. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 2337–2346,
2019. 1, 2, 5, 6, 13

[59] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena,
Yutaka Leon Suematsu, Jie Tan, Quoc Le, and Alex Kurakin.
Large-scale evolution of image classifiers. arXiv preprint
arXiv:1703.01041, 2017. 2

[60] Jian Ren, Menglei Chai, Sergey Tulyakov, Chen Fang, Xiao-
hui Shen, and Jianchao Yang. Human motion transfer from
poses in the wild. arXiv preprint arXiv:2004.03142, 2020. 1

[61] Jian Ren, Zhe Li, Jianchao Yang, Ning Xu, Tianbao Yang,
and David J Foran. Eigen: Ecologically-inspired genetic ap-
proach for neural network structure searching from scratch.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 9059–9068, 2019. 2

[62] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 4510–4520, 2018. 3

[63] Runbin Shi, Peiyan Dong, Tong Geng, Yuhao Ding, Xiao-
long Ma, Hayden K-H So, Martin Herbordt, Ang Li, and
Yanzhi Wang. Csb-rnn: A faster-than-realtime rnn acceler-
ation framework with compressed structured blocks. arXiv
preprint arXiv:2005.05758, 2020. 2

[64] Han Shu, Yunhe Wang, Xu Jia, Kai Han, Hanting Chen,
Chunjing Xu, Qi Tian, and Chang Xu. Co-evolutionary com-
pression for unpaired image translation. In Int. Conf. Com-
put. Vis., pages 3235–3244, 2019. 1, 2, 6

[65] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and
Alex Alemi. Inception-v4, inception-resnet and the im-
pact of residual connections on learning. arXiv preprint
arXiv:1602.07261, 2016. 3

[66] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
Mark Sandler, Andrew Howard, and Quoc V Le. Mnas-
net: Platform-aware neural architecture search for mobile.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2820–2828, 2019. 2

[67] Zhentao Tan, Dongdong Chen, Qi Chu, Menglei Chai, Jing
Liao, Mingming He, Lu Yuan, and Nenghai Yu. Re-
thinking spatially-adaptive normalization. arXiv preprint
arXiv:2004.02867, 2020. 13

[68] Yu Tian, Jian Ren, Menglei Chai, Kyle Olszewski, Xi Peng,
Dimitris N. Metaxas, and Sergey Tulyakov. A good image
generator is what you need for high-resolution video synthe-
sis. In International Conference on Learning Representa-
tions, 2021. 1

[69] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. In-
stance normalization: The missing ingredient for fast styliza-
tion. arXiv preprint arXiv:1607.08022, 2016. 3, 13

[70] Haotao Wang, Shupeng Gui, Haichuan Yang, Ji Liu, and
Zhangyang Wang. Gan slimming: All-in-one gan compres-
sion by a unified optimization framework. In Eur. Conf.
Comput. Vis., 2020. 1, 2, 4, 6

[71] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Guilin Liu,
Andrew Tao, Jan Kautz, and Bryan Catanzaro. Video-to-
video synthesis. arXiv preprint arXiv:1808.06601, 2018. 1

[72] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao,
Jan Kautz, and Bryan Catanzaro. High-resolution image syn-
thesis and semantic manipulation with conditional gans. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018. 1, 5

[73] Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and
Joseph E Gonzalez. Skipnet: Learning dynamic routing in
convolutional networks. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 409–424,
2018. 1, 2

[74] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,
Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing
Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient con-
vnet design via differentiable neural architecture search. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 10734–10742, 2019. 2

[75] Linjie Yang and Qing Jin. Fracbits: Mixed precision
quantization via fractional bit-widths. arXiv preprint
arXiv:2007.02017, 2020. 1

[76] Junho Yim, Donggyu Joo, Jihoon Bae, and Junmo Kim. A
gift from knowledge distillation: Fast optimization, network
minimization and transfer learning. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 4133–4141, 2017. 2

[77] Fisher Yu, Vladlen Koltun, and Thomas Funkhouser. Dilated
residual networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 472–480,
2017. 5

[78] Jiahui Yu and Thomas Huang. Autoslim: Towards one-
shot architecture search for channel numbers. arXiv preprint
arXiv:1903.11728, 2019. 2

[79] Jiahui Yu and Thomas S Huang. Universally slimmable net-
works and improved training techniques. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 1803–1811, 2019. 2

[80] Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Bender,
Pieter-Jan Kindermans, Mingxing Tan, Thomas Huang, Xi-
aodan Song, Ruoming Pang, and Quoc Le. Bignas: Scaling
up neural architecture search with big single-stage models.
arXiv preprint arXiv:2003.11142, 2020. 2

[81] Qihang Yu, Yingwei Li, Jieru Mei, Yuyin Zhou, and Alan L
Yuille. Cakes: Channel-wise automatic kernel shrinking
for efficient 3d network. arXiv preprint arXiv:2003.12798,
2020. 2

[82] Geng Yuan, Xiaolong Ma, Caiwen Ding, Sheng Lin,
Tianyun Zhang, Zeinab S Jalali, Yilong Zhao, Li Jiang,
Sucheta Soundarajan, and Yanzhi Wang. An ultra-efficient

11

memristor-based dnn framework with structured weight
pruning and quantization using admm. In 2019 IEEE/ACM
International Symposium on Low Power Electronics and De-
sign (ISLPED), pages 1–6. IEEE, 2019. 1, 2

[83] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augus-
tus Odena. Self-attention generative adversarial networks.
In International Conference on Machine Learning, pages
7354–7363. PMLR, 2019. 1

[84] Tianyun Zhang, Shaokai Ye, Xiaoyu Feng, Xiaolong Ma,
Kaiqi Zhang, Zhengang Li, Jian Tang, Sijia Liu, Xue Lin,
Yongpan Liu, et al. Structadmm: Achieving ultrahigh effi-
ciency in structured pruning for dnns. IEEE Transactions on
Neural Networks and Learning Systems, 2021. 1, 2

[85] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A
Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networkss. In Computer Vision
(ICCV), 2017 IEEE International Conference on, 2017. 1,
2, 5, 6

[86] Barret Zoph and Quoc V Le. Neural architecture search with
reinforcement learning. arXiv preprint arXiv:1611.01578,
2016. 2

[87] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V
Le. Learning transferable architectures for scalable image
recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 8697–8710,
2018. 3

12

Appendix

S1. Implementation Details
In this section, we provide more implementation details

in our work.

Training details. For CycleGAN and Pix2pix models, we
use batch size of 32 for teacher and batch size of 80 for stu-
dent, while for GauGAN, the batch size is set to 16 for both.
For each model and each dataset, we apply the same train-
ing epochs for teacher and student networks. The learning
rate for both generators and discriminators are set as 0.0002
for all datasets and models. More detailed training hyper-
parameters are summarized in Table S1. For the layers used
for knowledge distillation between teacher and student net-
works, we follow the same strategy as Li et al. [36]. Specif-
ically, for Pix2pix and CycleGAN models, the 9 residual
blocks are divided into 3 groups, each with three consec-
utive layers, and knowledge is distilled upon the four ac-
tivations from each end layer of these three groups. For
GauGAN models, knowledge distillation is applied on the
output activations of 3 from the total 7 SPADE blocks, in-
cluding the first, third and fifth ones.

More details for normalization layers. We find that in-
stance normalization [69] without tracking running statis-
tics is critical for dataset Horse→Zebra to achieve good per-
formance on the student model, while for the other datasets
batch normalization [28] with tracked running statistics is
better. Normalization layers without track running statis-
tics introduce extra computation cost, and we take this into
account for our calculation of MACs during pruning. More-
over, for GauGAN, we use synchronized batch normaliza-
tion as suggested by previous work [58, 67], and remove the
spectral norm [55] as we find it does not have much impact
on the model performance.

Network details for GauGAN. For GauGAN, we find it
is sufficient for each spade residual block to keep only the
first SPADE module in the main body while replace the sec-
ond one as well as the one in the shortcut by synchronized
batch normalization layer. This saves computation cost by a
large extent. Besides, we use learnable weights for the sec-
ond synchronized block for the purpose of pruning. These
weights do not introduce extra computation cost, as the run-
ning statistics are estimated from training data and not re-
calculated during inference, enabling fusing normalization
layers into the convolution layers. Further, we replace the
three convolution layers in the SPADE module by our pro-
posed inception-based residual block (IncResBlock), with
normalization layers included for pruning. The details for
the architecture are illustrated in Figure S1. We name our

SPADE module as IncSPADE and SPADE residual block as
IncSPADE ResBlk.

To prune the input channel for each model, we add an
extra normalization layer (synchronized batch normaliza-
tion) with learnable weights after the first fully-connected
layer, and prune its channels together with other normaliza-
tions using our pruning algorithm described in the Section
3.2 of the main paper. During pruning, we keep the ratio
of input channels between different layers as the original
model, and the lower bound for the first layer (which has the
largest number of channels) is determined by that for the last
layer multiplied by the channel ratio, so that all channels are
above the bound and the channel ratio is unchanged.

S2. Ablation Analysis of Knowledge Distilla-
tion

Here we show the ablation analysis for knowledge dis-
tillation methods. We use our searching method to find a
student architecture on Pix2pix task using the Cityscapes
dataset, and compare student training without knowledge
distillation, with MSE distillation as in [36], and the
similarity-based distillation we proposed. The results are
summarized in Tab. S2, where w/o Distillation denotes
training the student without distillation, and w/ MSE; Loss
Weight 0.5 and w/ MSE; Loss Weight 1.0 denotes MSE dis-
tillation with weight 0.5 and 1.0, respectively. We find that
distillation indeed improves performance, and our distilla-
tion method, which employs GKA to maximize feature sim-
ilarity, is better than MSE on transferring knowledge from
teacher to student via intermediate features.

S3. More Qualitative Results
We show more qualitative results for CycleGAN on

Horse�Zebra and Zebra�Horse, Pix2pix on Map�Aerial
photo, as well as GauGAN on Cityscapes in Figs. S2, S3,
S4, and S5, respectively.

13

Table S1: Hyper-parameter setting for teacher and student training.

Model Dataset
Training Epochs

λdistill λrecon λfm GAN Loss
ngf

ndf
Const Decay Teacher

CycleGAN Horse�Zebra 500 500 1 5 - LSGAN 64 64
Zebra�Horse 500 500 0.1 5 - LSGAN 64 64

Pix2pix Cityscapes 500 750 0.5 100 - Hinge 64 128
Map�Aerial photo 500 1000 1.3 100 - Hinge 64 128

GauGAN Cityscapes 100 100 0.5 10 10 Hinge 64 64

1 x 1

1 x 1

3 x 3

3 x 3

5 x 5

5 x 5

1 x 1

1 x 1
1 x 1

1 x 1

1 x 1
3 x 3

1 x 1

1 x 1
5 x 5

IncResBlock

IncSPADE ResBlk

IncSPADE

ReLU

Inception

ResBlock

1 x 1-Conv

Sync BN

ReLU

IncSPADE

R
esize (o

rd
er=

0
)

In
cep

tio
n

R
esB

lo
ck

Sync BN

1 x 1

1 x 1

3 x 3

3 x 3

5 x 5

5 x 5

1 x 1

1 x 1
1 x 1

1 x 1

1 x 1
3 x 3

1 x 1

1 x 1
5 x 5

IncResBlock

IncSPADE ResBlk

IncSPADE

ReLU

Inception

ResBlock

1 x 1-Conv

Sync BN

ReLU

IncSPADE

R
esize (o

rd
er=

0
)

In
cep

tio
n

R
esB

lo
ck

Sync BN

Figure S1: SPADE normalization module (IncSPADE, left) and SPADE residual block (IncSPADE ResBlk, right) with the
proposed Inception Resblock (orange hexagon). Note that the optional last normalization layer and residual connection are
not applied in the Inception Resblocks that are used in IncSPADE and IncSPADE ResBlk.

Table S2: Analysis of knowledge distillation methods on
Cityscapes dataset with the Pix2pix setting. Our methods
(GKA) achieves the best result.

Method mIoU↑
w/o Distillation 39.39

w/ MSE; Loss Weight 0.5 39.83
w/ MSE; Loss Weight 1.0 39.76

Ours 42.53

14

Input

CAT (Ours)

MACs: 2.55B

FID: 60.18

KID: 0.017±0.002

CycleGAN

MACs: 56.8B

FID: 61.53

KID: 0.020±0.002

Figure S2: More results on Horse�Zebra dataset. Compared with original CycleGAN, our model has much reduced MACs
and can generate images with higher fidelity (lower FID).

15

CAT (Ours)

MACs: 2.59B

FID: 142.68

KID: 0.036±0.002

CycleGAN

MACs: 56.8B

FID: 148.81

KID: 0.030±0.002

Input

Figure S3: Results on Zebra�Horse dataset. Compared with original CycleGAN, our model has much reduced MACs and
can generate images with higher fidelity (lower FID).

16

Input GT

Pix2pix

MACs: 56.8B

FID: 47.76

KID: 0.154±0.010

CAT (Ours)

MACs: 4.59B

FID: 44.94

KID: 0.009±0.002

Figure S4: More results on Map�Aerial photo dataset. Compared with original Pix2pix, our model has much reduced MACs
and can generate images with higher fidelity (lower FID).

17

Input

GT

GauGAN

MACs: 281B

mIoU: 62.18

FID: 57.60

KID: 0.026±0.003

CAT-A (Ours)

MACs: 29.9B

mIoU: 62.35

FID: 50.63

KID: 0.014±0.002

CAT-B (Ours)

MACs: 5.52B

mIoU: 54.71

FID: 51.83

KID: 0.013±0.002

Figure S5: More qualitative results on Cityscapes dataset. Images generated by our compressed model (CAT-A, third row)
have higher mIoU and lower FID than the original GauGAN model (fifth row), even with much reduced computational cost.
For our CAT-B model (fourth row, 50.9× compressed than GauGAN), although it has lower mIoU, the CAT-B model can
synthesize higher fidelity images (lower FID) than GauGAN.

18

