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Abstract

Object detection with transformers (DETR) reaches com-
petitive performance with Faster R-CNN via a transformer
encoder-decoder architecture. Inspired by the great
success of pre-training transformers in natural language
processing, we propose a pretext task named random
query patch detection to unsupervisedly pre-train DETR
(UP-DETR) for object detection. Specifically, we randomly
crop patches from the given image and then feed them as
queries to the decoder. The model is pre-trained to detect
these query patches from the original image. During the
pre-training, we address two critical issues: multi-task
learning and multi-query localization. (1) To trade-off
multi-task learning of classification and localization in
the pretext task, we freeze the CNN backbone and propose
a patch feature reconstruction branch which is jointly
optimized with patch detection. (2) To perform multi-query
localization, we introduce UP-DETR from single-query
patch and extend it to multi-query patches with object query
shuffle and attention mask. In our experiments, UP-DETR
significantly boosts the performance of DETR with faster
convergence and higher precision on PASCAL VOC and
COCO datasets. The code will be available soon.

1. Introduction
Object detection with transformers (DETR) [4] is a re-

cent framework that views object detection as a direct pre-
diction problem via a transformer encoder-decoder [33].
Without hand-designed sample selection [39] and non-
maximum suppression, DETR reaches a competitive per-
formance with Faster R-CNN [28]. However, DETR comes
with training and optimization challenges, which needs
large-scale training data and an extreme long training sched-
ule. As shown in Fig. 1 and Section 4.1, we find that DETR
performs poorly in PASCAL VOC [12], which has insuf-
ficient training data and fewer instances than COCO [22].

*This work is done when Zhigang Dai was an intern at Tencent Wechat
AI.

†Corresponding author.
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Figure 1: The VOC learning curves (AP50) of DETR and
UP-DETR with ResNet-50 backbone. Here, they are trained
on trainval07+12 and evaluated on test2007. We
plot the short and long training schedules, and the learning
rate is reduced at 100 and 200 epochs, respectively.

With well-designed pretext tasks, unsupervised pre-
training models achieve remarkable progress in both natu-
ral language processing (e.g. GPT [26, 27] and BERT [10])
and computer vision (e.g. MoCo [15, 8] and SwAV [6]). In
DETR, the CNN backbone (ResNet-50 [18] with ∼23.2M
parameters) has been pre-trained to extract a good visual
representation, but the transformer module with ∼18.0M
parameters has not been pre-trained. More importantly,
although unsupervised visual representation learning (e.g.
contrastive learning) attracts much attention in recent stud-
ies [15, 7, 13, 3, 5, 1], existing pretext tasks can not di-
rectly apply to pre-train the transformers of DETR. The
main reason is that DETR mainly focuses on spatial local-
ization learning instead of image instance-based [15, 7, 13]
or cluster-based [3, 5, 1] contrastive learning.

Inspired by the great success of unsupervised pre-
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training in natural language processing [10], we aim to
unsupervisedly pre-train the transformers of DETR on a
large-scale dataset (e.g. ImageNet), and treat object detec-
tion as the downstream task. The motivation is intuitive,
but existing pretext tasks seem to be impractical to pre-train
the transformers of DETR. To overcome this problem, we
propose a novel unsupervised pretext task named random
query patch detection to pre-train the detector without any
human annotations — we randomly crop multiple query
patches from the given image, and pre-train the transform-
ers for detection to predict bounding boxes of these query
patches in the given image. During the pre-training proce-
dure, we address two critical issues as follows:

(1) Multi-task learning: Object detection is the coupling
of object classification and localization. To avoid
query patch detection destroying the classification fea-
tures, we introduce frozen pre-training backbone
and patch feature reconstruction to preserve the fea-
ture discrimination of transformers.

(2) Multi-query localization: Different object queries fo-
cus on different position areas and box sizes. To illus-
trate this property, we propose a simple single-query
pre-training and extend it to a multi-query version. For
multi-query patches, we design object query shuffle
and attention mask to solve the assignment problems
between query patches and object queries.

In this paper, the proposed detector is named as Unsu-
pervised Pre-training DETR (UP-DETR). We evaluate
the performance of UP-DETR against a highly optimized
Faster R-CNN and DETR baseline on two popular object
detection datasets: PASCAL VOC [12] and COCO [22].
For VOC dataset, UP-DETR significantly surpasses the pre-
cision of the original DETR by a large margin with faster
convergence. For the challenging COCO dataset with suffi-
cient training data, UP-DETR obtains 42.8 AP with ResNet-
50, which still outperforms DETR in both convergence
speed and precision.

2. Related Work
2.1. Object Detection

Most object detection methods mainly differ in posi-
tive and negative sample assignment. Two-stage detec-
tors [28, 2] and a part of one-stage detectors [21, 23] con-
struct positive and negative samples by hand-crafted multi-
scale anchors with the IoU threshold and model confidence.
Anchor-free one-stage detectors [32, 40] assign positive and
negative samples to feature maps by a grid of object cen-
ters. Zhang et al. [39] demonstrate that the performance gap
between them is due to the selection of positive and nega-
tive training samples. DETR [4] is a recent object detec-

tion framework that is conceptually simpler without hand-
crafted process by direct set prediction [31], which assigns
the positive and negative samples automatically.

Apart from the positive and negative sample selection
problem, the trade-off between classification and localiza-
tion is also intractable for object detection. Zhang et al. [38]
demonstrate that there is a domain misalignment between
classification and localization. Wu et al. [34] and Song et
al. [29] design two head structures for classification and lo-
calization. They point out that these two tasks may have op-
posite preferences. For our pre-training model, it maintains
shared feature for classification and localization. Therefore,
it is essential to take a well trade-off between these two
tasks.

2.2. Unsupervised Pre-training

Unsupervised pre-training models always follow two
steps: pre-training on a large-scale dataset with the pretext
task and fine-tuning the parameters on downstream tasks.
For unsupervised pre-training, the pretext task is always in-
vented, and we are interested in the learned intermediate
representation rather than the final performance of the pre-
text task.

To perform unsupervised pre-training, there are various
of well-designed pretext tasks. For natural language pro-
cessing, utilizing time sequence relationship between dis-
crete tokens, masked language model [10], permutation lan-
guage model [36] and auto regressive model [26, 27] are
proposed to pre-train transformers [33] for language repre-
sentation. For computer vision, unsupervised pre-training
models also achieve remarkable progress recently for vi-
sual representation learning, which outperform the super-
vised learning counterpart in downstream tasks. Instance-
based discrimination tasks [37, 35] and clustering-based
tasks [5] are two typical pretext tasks in recent studies.
Instance-based discrimination tasks vary mainly on main-
taining different sizes of negative samples [15, 7, 13] with
non-parametric contrastive learning [14]. Moreover, in-
stance discrimination can also be performed as parametric
instance classification [3]. Clustering-based tasks vary on
offline [5, 1] or online clustering procedures [6]. UP-DETR
is a novel pretext task, which aims to pre-train transformers
based on the DETR architecture for object detection.

3. UP-DETR
The proposed UP-DETR contains pre-training and fine-

tuning procedures: (a) the transformers are unsupervisedly
pre-trained on a large-scale dataset without any human an-
notations; (b) the entire model is fine-tuned with labeled
data which is same as the original DETR [4] on the down-
stream tasks. In this section, we mainly describe how to
pre-train the transformer encoder and decoder with random
query patch detection.
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Figure 2: The pre-training procedure of UP-DETR by random query patch detection. (a) There is only a single-query patch
which we add to all object queries. (b) For multi-query patches, we add each query patch to N/M object queries with object
query shuffle and attention mask.

As shown in Fig. 2, the main idea of random query patch
detection is simple but effective. Firstly, a frozen CNN
backbone is used to extract a visual representation with the
feature map f ∈ RC×H×W of an input image, where C
is the channel dimension and H × W is the feature map
size. Then, the feature map is added with positional encod-
ings and passed to the multi-layer transformer encoder in
DETR. For the random cropped query patch, the CNN back-
bone with global average pooling (GAP) extracts the patch
feature p ∈ RC , which is flatten and supplemented with
object queries q ∈ RC before passing it into a transformer
decoder. Noting that the query patch refers to the cropped
patch from the original image but object query refers to po-
sition embeddings, which are fed to the decoder. The CNN
parameters are shared in the whole model.

During the pre-training procedure, the decoder predicts
the bounding boxes corresponding to the position of random
query patches in the input image. Assuming that there are
M query patches by random cropping, the model infers a
prediction fixed-set ŷ = {ŷi}Ni=1 corresponding toN object
queries (N > M ). For better understanding, we will de-
scribe the training details of single-query patch (M = 1) in
Section 3.1, and extend it to multi-query patches (M > 1)
with object query shuffle and attention mask in Section 3.2.

3.1. Single-query Patch

DETR learns different spatial specialization for each ob-
ject query [4], which indicates that different object queries
focus on different position areas and box sizes. As we ran-
domly crop the patch from the image, there is no any priors
about the position areas and box sizes of the query patch.
To preserve the different spatial specialization, we explic-
itly specify single-query patch (M = 1) to all object queries
(N = 3) as shown in Fig. 2a.

During the pre-training procedure, the patch feature p
is added to each different object query q, and the decoder
generates N pairs of predictions ŷ = {ŷi}Ni=1 to detect the
bounding box of query patch in the input image. Following
DETR [4], we compute the same match cost between the
prediction ŷσ̂(i) and the ground-truth yi using Hungarian
algorithm [31], where σ̂(i) is the index of yi computed by
the optimal bipartite matching.

For the loss calculation, the predicted result ŷi = (ĉi ∈
R2, b̂i ∈ R4, ẑi ∈ RC) consists of three elements: ĉi is the
binary classification of matching the query patch (ci = 1)
or not (ci = 0) for each object query; b̂i is the vector
that defines the box center coordinates, its width and height
{x, y, w, h}. They are re-scaled relative to the image size;
ẑi is the reconstructed feature with C = 2048 for the
ResNet-50 backbone typically. With the above definitions,
the Hungarian loss for all matched pairs is defined as:

L(y, ŷ) =
N∑
i=1

[λ{ci}Lcls(ci, ĉσ̂(i)) + 1{ci=1}Lbox(bi, b̂σ̂(i))

+ 1{ci=1}Lrec(pi, p̂σ̂(i))]. (1)

Here, Lcls is the cross entropy loss over two classes (match
the query patch vs. not match), and the class balance weight
λ{ci=1} = 1 and λ{ci=0} = M/N . Lbox is a linear combi-
nation of `1 loss and the generalized IoU loss with the same
weight hyper-parameters as DETR [4]. Lrec is the recon-
struction loss proposed in this paper to balance classifica-
tion and localization during the unsupervised pre-training,
which will be discussed in detail below.

3.1.1 Patch Feature Reconstruction

Object detection is the coupling of object classification and
localization, where these two tasks always have different



feature preferences [38, 34, 29]. Different from DETR, we
propose a feature reconstruction term Lrec to preserve clas-
sification feature during localization pre-training. The mo-
tivation of this term is to preserve the feature discrimination
extract by CNN after passing feature to transformers. Lrec
is the mean squared error between the `2-normalized patch
feature extracted by the CNN backbone, which is defined as
follows:

Lrec(pi, p̂σ̂(i)) =

∥∥∥∥∥ pi

‖pi‖22
−

p̂σ̂(i)∥∥p̂σ̂(i)∥∥22
∥∥∥∥∥
2

2

. (2)

3.1.2 Frozen Pre-training Backbone

With the patch feature reconstruction, the CNN backbone
parameters seriously affect the model training. Our moti-
vation is that the feature after transformer should have sim-
ilar discrimination as the feature after the CNN backbone.
Therefore, we freeze the pre-training backbone and recon-
struct the patch feature after the transformers by Lrec. Sta-
ble backbone parameters are beneficial to transformer pre-
training, and accelerate the feature reconstruction.

As described above, we propose and apply feature recon-
struction and frozen backbone to preserve feature discrimi-
nation for classification. In Section 4.3, we will analyze and
verify the necessity of them with experiments.

3.2. Multi-query Patches

For general object detection, there are multiple object
instances in each image (e.g. average 7.7 object instances
per image in the COCO dataset). Moreover, single-query
patch may result in the convergence difficulty when the
number of object queries N is large. Therefore, single-
query patch pre-training is inconsistent with multi-object
detection task, and is unreasonable for the typical object
query setting N = 100. However, extending a single-
query patch to multi-query patches is not straightforward,
because the assignment between M query patches and N
object queries is a specific negative sampling problem for
multi-query patches.

To solve this problem, we divide N object queries into
M groups, where each query patch is assigned to N/M ob-
ject queries. The query patches are assigned to the object
queries in order. For example, the first query patch is as-
signed to the first N/M object queries, the second query
patch to the second N/M object queries, and so on. Here,
we hypothesize that it needs to satisfy two requirements
during the pre-training:

(1) Independence of query patches. All the query
patches are randomly cropped from the image. There-
fore, they are independent without any relations. For
example, the bounding box regression of the first crop-
ping is not concerned with the second cropping.

(2) Diversity of object queries. There are no fixed group-
wise relations between the object queries from the
same group. Therefore, a query patch should corre-
spond to various object queries. In other words, the
query patch can be added to arbitrary N/M object
queries ideally.

3.2.1 Attention Mask

To satisfy the independence of query patches, we utilize an
attention mask matrix to control the interactions between
different object queries. The mask matrix X ∈ RN×N is
added to the softmax layer of self-attention in the decoder
softmax

(
QK>/

√
dk +X

)
V. Similar to the token mask

in UniLM [11], the attention mask is defined as:

Xi,j =

{
0, i, j in the same group
−∞, otherwise , (3)

where Xi,j determines whether the object query qi attends
to the interaction with the object query qj . For intuitive
understanding, the attention mask in Fig. 2b displays 1 and
0 corresponding to 0 and −∞ in (3), respectively.

3.2.2 Object Query Shuffle

To satisfy the diversity of object queries, we randomly shuf-
fle the permutation of all the object query embeddings dur-
ing pre-training. Due to object query shuffle, the attention
mask and the query patch assignment can be fixed in prac-
tice.

Fig. 2b illustrates the pre-training of multi-query patches
with attention mask and object query shuffle. To improve
the generalization, we randomly mask 10% query patches
to zero during pre-training similarly to dropout [30]. In our
experiments, two typical values are set to N = 100 and
M = 10. Apart from such modifications, other training
settings are the same as those described in Section 3.1.

4. Experiments
We pre-train the model using ImageNet [9] and fine-tune

the parameters on VOC [12] and COCO [22]. In all ex-
periments, we adopt the UP-DETR model (41.3M param-
eters) with ResNet-50 backbone, 6 transformer encoder, 6
decoder layers of width 256 with 8 attention heads. Refer-
ring to the open source of DETR3, we use the same hyper-
parameters in the proposed UP-DETR and our DETR re-
implementation. We annotate R50 and R101 short for
ResNet-50 and ResNet-101.
Pre-training setup. UP-DETR is unsupervisedly pre-
trained on the 1.28M ImageNet training set without any
labels. The CNN backbone (ResNet-50) is also unsuper-
visedly pre-trained with SwAV [6], and its parameters are

3https://github.com/facebookresearch/detr



frozen during UP-DETR pre-training. As the input im-
age from ImageNet is relatively small, we resize it such
that the shortest side is within [320, 480] pixels while the
longest side is at most 600 pixels. For the given image,
we crop the query patches with random coordinate, height
and width, which are resized to 128× 128 pixels and trans-
formed with the SimCLR-style [7] without horizontal flip-
ping, including random color distortion and Gaussian blur-
ring. AdamW [24] is used to optimize the UP-DETR, with
the initial learning rate of 1× 10−4 and the weight decay
of 1× 10−4. We use a mini-batch size of 256 on 8 V100
GPUs to train the model for 60 epochs with the learning
rate multiplied by 0.1 at 40 epochs.
Fine-tuning setup. The model is initialized with pre-
training UP-DETR parameters and fine-tuned for all the pa-
rameters (including CNN) on VOC and COCO. We fine-
tune the model with the initial learning rate 1× 10−4 for
transformers and 5× 10−5 for CNN backbone, and the
other settings are same as DETR [4] on 8 V100 GPUs with
4 images per GPU. The model is fine-tuned with short/long
schedule for 150/300 epochs and the learning rate is multi-
plied by 0.1 at 100/200 epochs, respectively.

4.1. PASCAL VOC Object Detection

Setup. The model is fine-tuned on VOC
trainval07+12 (∼16.5k images) and evaluated on
test2007. We report COCO-style metrics, including
AP, AP50 (default VOC metric) and AP75. For a full
comparison, we also report the result of Faster R-CNN with
the R50-C4 backbone [6], which performs much better than
R50 [19]. DETR with R50-C4 significantly increases the
computational cost than R50, so we fine-tune UP-DETR
with R50 backbone. Here, all the CNN backbone is
pre-trained with SwAV [6]. To emphasize the effectiveness
of pre-training models, we report the results of 150 and 300
epochs for both DETR and UP-DETR.

Model/Epoch AP AP50 AP75

Faster R-CNN 56.1 82.6 62.7
DETR/150 49.9 74.5 53.1
UP-DETR/150 56.1 (+6.2) 79.7 (+5.2) 60.6 (+7.5)
DETR/300 54.1 78.0 58.3
UP-DETR/300 57.2 (+3.1) 80.1 (+2.1) 62.0 (+3.7)

Table 1: Object detection results trained on PASCAL VOC
trainval07+12 and evaluated on test2007. DETR
and UP-DETR use R50 backbone and Faster R-CNN uses
R50-C4 backbone. The values in the brackets are the gaps
compared to DETR with the same training schedule.

Results. Table 1 shows the compared results of PASCAL
VOC. We find that the DETR performs poorly in PASCAL
VOC, which is much worse than Faster R-CNN by a large

gap in all metrics. Due to the relatively small-scale data
in VOC, the pre-training transformers of UP-DETR signif-
icantly boosts the performance of DETR for both short and
long schedules: up to +6.2 (+3.1) AP, +5.2 (+2.1) AP50

and +7.5 (+3.7) AP75 for 150 (300) epochs, respectively.
Moreover, UP-DETR (R50) achieves a comparable result to
Faster R-CNN (R50-C4) with better AP. We find that both
UP-DETR and DETR perform a little worse than Faster R-
CNN in AP50 and AP75. It may come from different ratios
of feature maps (C4 for Faster R-CNN) and no NMS post-
processing (NMS lowers AP but slightly improves AP50).

Fig. 3a shows the AP (COCO style) learning curves on
VOC. UP-DETR significantly speeds up the model conver-
gence. After the learning rate reduced, UP-DETR signif-
icantly boosts the performance of DETR with a large AP
improvement. Noting that UP-DETR obtains 56.1 AP after
150 epochs, however, its counterpart DETR (scratch trans-
formers) only obtains 54.1 AP even after 300 epochs and
does not catch up even training longer. It suggests that pre-
training transformers is indispensable on insufficient train-
ing data (i.e. ∼ 16.5K images on VOC).

4.2. COCO Object Detection

Setup. The model is fine-tuned on COCO train2017
(∼118k images) and evaluated on val2017. There are
lots of small objects in COCO dataset, where DETR per-
forms poorly [4]. Therefore, we report AP, AP50, AP75,
APS , APM and APL for a comprehensive comparison.
Moreover, we also report the results of highly optimized
Faster R-CNN-FPN with short (3×) and long (9×) training
schedules, which are known to improve the performance re-
sults [16]. To avoid supervised CNN bringing supplemen-
tary information, we use SwAV pre-training CNN as the
backbone of UP-DETR without any human annotations.
Results. Table 2 shows the results on COCO with other
methods. With 150 epoch schedule, UP-DETR outperforms
DETR by 0.8 AP and achieves a comparable performance
as compared with Faster R-CNN-FPN (3× schedule). With
300 epoch schedule, UP-DETR obtains 42.8 AP on COCO,
which is 0.7 AP better than DETR (SwAV CNN) and 0.8
AP better than Faster R-CNN-FPN (9 × schedule). Over-
all, UP-DETR comprehensively outperforms DETR in de-
tection of small, medium and large objects with both short
and long training schedules. Regrettably, UP-DETR is still
slightly lagging behind Faster R-CNN in APS , because of
the lacking of FPN-like architecture [20].

Fig. 3b shows the AP learning curves on COCO. UP-
DETR outperforms DETR for both 150 and 300 epoch
schedules with faster convergence. The performance im-
provement is more noticeable before reducing the learning
rate. After reducing the learning rate, UP-DETR still holds
the lead of DETR by ∼ 0.7 AP improvement. It suggests
that pre-training transformers is still indispensable even on



Model Backbone Epochs AP AP50 AP75 APS APM APL
Faster R-CNN † [20] R101-FPN - 36.2 59.1 39.0 18.2 39.0 48.2
Mask R-CNN † [17] R101-FPN - 38.2 60.3 41.7 20.1 41.1 50.2
Grid R-CNN † [25] R101-FPN - 41.5 60.9 44.5 23.3 44.9 53.1
Double-head R-CNN [34] R101-FPN - 41.9 62.4 45.9 23.9 45.2 55.8
RetinaNet † [21] R101-FPN - 39.1 59.1 42.3 21.8 42.7 50.2
FCOS † [32] R101-FPN - 41.5 60.7 45.0 24.4 44.8 51.6
DETR [4] R50 500 42.0 62.4 44.2 20.5 45.8 61.1
Faster R-CNN R50-FPN 3× 40.2 61.0 43.8 24.2 43.5 52.0
DETR (Supervised CNN) R50 150 39.5 60.3 41.4 17.5 43.0 59.1
DETR (SwAV CNN) [6] R50 150 39.7 60.3 41.7 18.5 43.8 57.5
UP-DETR R50 150 40.5 (+0.8) 60.8 42.6 19.0 44.4 60.0
Faster R-CNN R50-FPN 9× 42.0 62.1 45.5 26.6 45.4 53.4
DETR (Supervised CNN) R50 300 40.8 61.2 42.9 20.1 44.5 60.3
DETR (SwAV CNN) [6] R50 300 42.1 63.1 44.5 19.7 46.3 60.9
UP-DETR R50 300 42.8 (+0.7) 63.0 45.3 20.8 47.1 61.7

Table 2: Object detection results trained on COCO train2017 and evaluated on val2017. Faster R-CNN, DETR and
UP-DETR are performed under comparable settings. † for values evaluated on COCO test-dev, which are always slightly
higher than val2017. The values in the brackets are the gaps compared to DETR (SwAV CNN) with the same training
schedule.
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Figure 3: AP (COCO style) learning curves with DETR and UP-DETR on VOC and COCO. Models are trained with the
SwAV pre-training ResNet-50 for 150 and 300 epochs, and the learning rate is reduced at 100 and 200 epochs, respectively.

sufficient training data (i.e. ∼ 118K images on COCO).

4.3. Ablations

For ablation experiments, we pre-train UP-DETR with
four different settings for 15 epochs with the learning rate
multiplied by 0.1 at the 10-th epoch. We fine-tune the mod-
els on PASCAL VOC following the setup in Section 4.1
with 150 epochs. Therefore, the results in ablations are rel-
atively lower than those shown in Section 4.1.

4.3.1 Single-query patch vs. Multi-query patches

We pre-train two models with single-query patch (M = 1)
and multi-query patches (M = 10). The other hyper-
parameters are set as mentioned above.

Table 3 shows the results of single-query patch and
multi-query patches. Compared with DETR, UP-DETR
surpasses it in all AP metrics by a large margin no mat-
ter with single-query patch or multi-query patches. When



pre-training UP-DETR with the different number of query
patches, UP-DETR (M = 10) performs better than UP-
DETR (M = 1) on the fine-tuning task, although there are
about 2.3 instances per image on VOC. Therefore, we adopt
the same UP-DETR withM = 10 for both VOC and COCO
instead of varying M for different downstream tasks.

Model AP AP50 AP75

DETR 49.9 74.5 53.1
UP-DETR (M=1) 53.1 (+3.2) 77.2 (+2.7) 57.4
UP-DETR (M=10) 54.9 (+5.0) 78.7 (+4.2) 59.1

Table 3: The ablation results of pre-training models with
single-query patch and multi-query patches on PASCAL
VOC. The values in the brackets are the gaps compared to
the DETR with the same training schedule.

Case Frozen CNN Feature Reconstruction AP50

DETR scratch transformers 74.5
(a) 74.0
(b) X 78.7
(c) X 62.0
(d) X X 78.7

Table 4: Ablation study on frozen CNN and feature recon-
struction for pre-training models with AP50. The experi-
ments are fine-tuned on PASCAL VOC with 150 epochs.

4.3.2 Frozen CNN and Feature Reconstruction

To illustrate the importance of patch feature reconstruction
and frozen CNN backbone of UP-DETR, we pre-train four
different UP-DETR models with different combinations of
whether freezing CNN and whether adding feature recon-
struction. Noting that all the models (including DETR) use
the pre-trained CNN on ImageNet.

Table 4 shows AP and AP50 of four different pre-training
models and DETR on VOC with 150 epochs. As shown in
Table 4, not all pre-trained models are better than DETR,
and pre-training models (b) and (d) perform better than the
others. More importantly, without frozen CNN, pre-training
models (a) and (c) even perform worse than DETR. It con-
firms that freezing pre-trained CNN is essential to pre-train
transformers. In addition, it further confirms the pretext
(random query patch detection) may weaken the feature dis-
crimination of the pre-training CNN, and localization and
classification have different feature preferences [38, 34, 29].

Fig. 4 plots the AP50 learning curves of four different
pre-training models and DETR, where the models in Fig. 4
correspond to the models in Table 4 one-to-one. As shown
in Fig. 4, model (d) UP-DETR achieves faster convergence
at the early training stage with feature reconstruction. The

experiments suggest that random query patch detection is
complementary to the contrastive learning for a better vi-
sual representation. The former is designed for the spatial
localization with position embeddings, and the latter is de-
signed for instance or cluster classification.
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Figure 4: Learning curves of VOC (AP50) with four differ-
ent pre-training UP-DETR models and DETR. The models
trained with 150 epochs corresponds to the models in Ta-
ble 4 one-to-one.

It is worth noting that UP-DETR with frozen CNN and
feature reconstruction heavily relies on a pre-trained CNN
model, e.g. SwAV. Therefore, we believe that it is a promis-
ing direction for further investigating UP-DETR with ran-
dom query patch detection and contrastive learning together
to pre-train the whole DETR model from scratch.

4.3.3 Attention Mask

After downstream task fine-tuning, we find that there is
no noticeable difference between the UP-DETR pre-trained
with and without attention mask. Instead of the fine-tuning
result, we plot the loss curves in the pretext task to illustrate
the effectiveness of attention mask.

As shown in Fig. 6, at the early training stage, UP-
DETR without attention mask has a lower loss. However, as
the model converging, UP-DETR with attention mask over-
takes it with a lower loss. The curves seem weird at the
first glance, but it is reasonable because the loss is calcu-
lated by the optimal bipartite matching. During the early
training stage, the model is not converged, and the model
without attention mask takes more object queries into atten-
tion. Intuitively, the model is easier to be optimized due to
introducing more object queries. However, there is a mis-
matching between the query patch and the ground truth for
the model without attention mask. As the model converg-
ing, the attention mask gradually takes effect, which masks



query

patches

Figure 5: The unsupervised localization of patch queries with UP-DETR. The first line is the original image with predicted
bounding boxes. The second line is query patches cropped from the original image with data augmentation. The value in the
upper left corner of the bounding box is the model confidence.

the unrelated query patches and leads to a lower loss.
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Figure 6: The loss curves of pre-training procedure for UP-
DETR w/ and w/o the attention mask.

4.4. Visualization

To further illustrate the ability of the pre-training model,
we visualize the unsupervised localization results of given
patch queries. Specifically, for the given image, we man-
ually crop several object patches and apply the SimCLR-
style [7] data augmentation to them. Then, we feed these
patches as queries to the model. Finally, we visualize the
model output with bounding boxes, whose classification
confidence is greater than 0.9. This procedure can be treated
as unsupervised one-shot detection or deep learning based

template matching.
As shown in Fig. 5, unsupervisedly pre-trained with ran-

dom query patch detection, UP-DETR successfully learns
to locate the bounding box of given query patches and sup-
press the duplicated bounding boxes. It suggests that UP-
DETR with random query patch detection is effective to
learns the ability of object localization, which helps the
downstream transfer learning.

5. Conclusion

We present a novel pretext task called random query
patch detection to unsupervisedly pre-train the transformers
in DETR. With unsupervised pre-training, UP-DETR sig-
nificantly outperforms DETR by a large margin with higher
precision and much faster convergence on PASCAL VOC.
For the challenging COCO dataset with sufficient train-
ing data, UP-DETR still surpasses DETR even with a long
training schedule. It indicates that pre-training transformers
is indispensable for different scale of training data in object
detection.

From the perspective of unsupervised pre-training mod-
els, pre-training CNN backbone and pre-training transform-
ers are separated now. Recent studies of unsupervised pre-
training mainly focus on feature discrimination with con-
trastive learning instead of specialized modules for spatial
localization. But in UP-DETR pre-training, the pretext task
is mainly designed for patch localization by positional en-
codings and learn-able object queries. We hope an advanced
method can integrate CNN and transformers pre-training
into a unified end-to-end framework and apply UP-DETR
to more downstream tasks (e.g. few-shot object detection
and object tracking).
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